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Once-subtracted dispersion relations are written for the amplitudes of the nonleptonic de-
cays of hyperons. The subtraction constants are given by equal-time commutators and,
after the low-mass baryon intermediate states are separated, the remaining dispersion
integrals over higher-mass resonances are evaluated in the framework of the Regge theory.
A four-parameter best-fit solution to both the s- and p-wave amplitudes is found to be in
very good agreement with experiment.

I. INTRODUCTION

Ever since ihe powerful techniques of current
algebra have been applied to nonleptonic decays of
hyperons, each new effort to calculate the s- and
p-wave amplitudes for these decays has led to
more numerical puzzles than would seem reason-
able for such deceptively simple processes. In

fact, after the initial success of Suzuki and Suga-
wara' in describing the s-wave amplitude on the
basis of current algebra, partial conservation of
axial-vector current (PCAC), and soft-pion extra-
polation, several authors ' have attempted simul-
taneous fits of both the s- and p-wave amplitudes.
The only partial agreement of their results with
experiment has led to refinements to the theory in
various forms, 4 ' but without appreciable changes
in the discrepancy, or with the introduction of too
many parameters and ad Roc additions.

Here we present a new analysis of the problem
by applying dispersion-relation techniques to the
scattering of a spurion from an hyperon. In a par-
ticular form of amplitudes considered by Okubo, '
the scattering process formally reduces to the de-
cay process in the limit of vanishing four-momen-
tum of the spurion. In this approach the Regge be-
havior of the scattering amplitude at high energies
requires one subtraction to the dispersion relation
in the energy variable, the subtraction point being
chosen such that the calculable soft-pion amplitude
gives the subtraction constant. Then the low-mass
baryon pole contribution is separated from the dis-
persion integral, the remaining part of the integral
coming from higher-mass resonances. Difficulties
in evaluating this latter resonance contribution
with a minimum of free parameters has previously
led to its neglect without justification.

We propose, within the scheme of current~cur-
rent interaction and octet dominance, to implement
the dispersion approach by making further applica-
tion of the Regge theory. Our method of evaluating

the resonance contribution consists in assuming
Regge behavior for the scattering amplitude at high
energies and extrapolating this form of amplitude
to the lower-energy region. In this way the result
of the higher-mass integration is just the real part
of the Regge amplitude from the t-channel ex-
changes, slightly modified due to the once-sub-
tracted form of the dispersion relation. This ap-
proach has its qualitative justification in the con-
cept of local duality which has been explored in the
realm of high-energy phenomenology. ' Simply
stated, local duality says that the Regge amplitude,
when extrapolated to lower energies, represents
the true amplitude in an average sense.

In Sec. II we present the formalism and show ex-
plicitly how to evaluate the resonance contribution
in the framework of the Regge theory and local
duality. Parametrization of the s- and P-wave
amplitudes in terms of unknown weak coupling con-
stants is given in Sec. III, and in Sec. IV we dis-
cuss the results obtained. An appendix gives the
final expressions used for the numerical fit.

II. FORMALISM

~(e)+ ~(P) - PV ')+ v'(e'), (2)

and properly taking the limit q-0 in the scattering
amplitudes so as to recover the amplitudes for the
decay (t).

The transition amplitude for (2) can be written'

. The energy-momentum conservation for the de-
cay

~(I )- P(P') + ~'(e')

requires p =p'+ q'. Then the invariant s- and p-
wave amplitudes a.."e constants, and we are not
able to write dispersion relations directly for this
reaction. This difficulty can be avoided by consid-
ering the associated scattering process of a spu- '

rion z from the hyperon e,
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M(s, t, u) = u(p')(E, (s, t, u) —y,E,(s, t, u)+ ay (q+ q') [G,(s, t, u) +y,G,(s, t, u)]}u(p),

where the invariant amplitudes E,. Rnd 6,. Rre functions of the Mandelstam variables

S = (p+ q)' = (p'+ q')',

t = {p-p')' =(q" —q)',

u={p-q')'={p'-q)',
s+t+u=M„+My +m~ +q

(4)

It is convenient to take s, t, q as independent variables. Also, using the Dirac equation, we can express
amplitude (3) in a more suitable form as

M(s, t, q') =u(p')(H„(s, t, q2) —y,H, (s, t, q')+ [y q, y q'] [J',(s, t, q') —y, J,(s, t, q')]]u(p),

where

8 Q

2(M.+M )

2(M„+Ms)' 2(M„-Ms)

In the limit q-0 we see from (4) that s=M„',
I; = q'2 = m ' = 0, and q2 =0 so that the transition
matrix for the decay (I) is given by

M(M„', 0, O) =u(p')[H, (M„', 0, O)- y,H, (M„', 0, O)]u(p) .

We formaUy identify H, (M„', 0, 0) and H, (M ', 0, 0)
with the s- and p-wave decay amplitudes, respec-
tively,

A. =H, (M.', O, O) and H=H, (M.', O, O).

Before we write down dispersion relations in s
and fixed t, q' for the amplitude H,.(s, t, q'), we
have to settle the question of subtractions. Assum-
ing Regge behavior for H, (s, t, q') at high ener. gies,
the need for subtraction depends on the trajecto-
ries exchanged in the t channel. For the s-wave
amplitude, H, (s, t, q2), the exchanged trajectory in
the t channel is that of K*, whereas for the p-wave
amplitude, H, (s, t, q'), we have the trajectories of
E and K„exchanged. Although the trajectory pa-
rameters for these mesons are not firmly estab-
lished at present, under the reasonable assump-
tion of a linear trajectory with a universal slope
of about 1 GeV ', we obtain the following inter-
cepts for K*, K, and K~ respectively:

n~ = 0.25, aJ, = -0.25, m~ —-0.75.

These numbers imply one subtraction for H, and
none for H, . To stay on the safer side, however,
we make one subtraction to both amplitudes and
write the dispersion x elation

H,.{s, t, q') =H, (s„ t, q')

I )'", ImH~(s', t, q')
m

' J „(s'—s,)(s' —s —ie)'
(9)

where the subtraction point s, should be chosen in
such a way that we are able to compute the sub-
traction constant H,.(s„ t, q'). For this purpose re-
call that in the soft-pion calculation we let q'-0
and find the extrapolated amplitude in terms of an
equal-time commutator. In this limit q'-0 we ob-
tain s=P" =%6' and t=q'. Therefore, if we choose
s, =MB' and let q-0 in order to recover the de-
sired decay amplitudes, the subtraction constant
Hi(MS, 0, 0) will be given by the soft-pion ampli-
tude.

There are three reasons why we wish to sepa-
rate the pole contribution from the dispersion inte-
gral in (9). First, we need the pole term to re-
move Ule well-known ambigul+" RssoclRted with
the soft-pion extrapolation. Second, the soft-pion
term (subtraction constant) plus the pole contribu-
tion reproduce the old results so that the magnitude
and fox'Dl of Ule x'enlRlnlng integral px'ovldes R pos-
sible explanation for the numerical puzzles associ-
ated with the problem. Third, the removal of the
pole makes the idea of extrapolating the Regge am-
plitude down to low energies more plausible, as
discussed below. Then, denoting H", for the pole
contribution to the dispersion integral, we re-
write (9) as

H, (s) =H, (s,) +HP{s).
+" ImH,'. (s')

+—(s —s,) ds'
(S —So)(s —S —tE)

(10)

where H,. stands for the remalnlng part of H,. after
the removal of the one-baryon intermediate states.
Also the arguments of the H's have been simplified
for ease of notation. Note that the point s =M ', to
which we wish to extrapolate in order to obtain the
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decay amplitude, lies at the lower end of the reso-
nance region, and since we already extracted, the
large pole contribution from this region, the re-
maining amplitude H,' can be assumed to be repre-
sented approximately by the extrapolated Regge
amplitude according to the concept of local duality.
In what follows we elaborate on this qualitative
idea and evaluate the remaining integral explicitly.

With the help of an identity, the integral in (10)
can be written as
+", ImH,'. (s')

ds
S -So S -S-26

I'+" ImH,'.(s')
ImHI(s)+P~ ds'( f )( /

)
(11)

1+e ~"+
(13)

Here the minus sign refers to K* and K„trajecto-
ries, and the plus sign to that of K. Inserting the
Regge form (13) into Eg. (12) and performing the
integration, we obtain

Now the assumption of local duality implies

imH,'. (s') "" lmHN(s')
P ds', I P ds'(s' —s,)(s' —s) ~ „(s'—s,)(s' —s) '

(12)
where the Regge amplitude" H", (s} h. as the form

r +" ImH,'(s') iv wyv

(S —SO)(S —S —2&) S —So S —So
(14a)

ds', , = ImH,'(s)+ (s "~ —s, "&)tan-,'so.„— (s N —s, "&)cot-,'soN. (14b)
(s —so}(s —s —'LE) s —so s —so s —s()

Note that the eciuality (12) is less restrictive than
local duality itself. By taking the value of the in-
tegrals obtained in (14) into the expression (10),
we get

A = K, + ReH, (M ')+ yv(M„'" v —Ms2" v)tan2vnv,

(15)
B = K,'+ ReHP(M„')+ y„(M„'~& Ms'"&)tan-2 so.„

—ys (M„2~ —Ms'"j')cot2soN,

parametrized' as follows:

1 1
&P(P')li;(0)15(P.))=(2„).H N

(I') y (P.)Ks,

(P(P')13e(0)159.)}= . 9 ')(1 1

where

(17)

(18)

where we have written K,. for the current-algebra
term and have eliminated the soft-pion ambiguity
between the surface and the pole terms. From the
intercepts given in (8) and the small mass splitting
among the octet baryons, we see that ~ ' ~ —~8'~~

is proportional to M '"~- Mz'~&. Also recent
studies" suggest the same D/F ratio for the strong
BBKand BBK„vertices. Therefore, we can re-
place the two resonance contributions to the p-wave
amplitude B by an effective term and write

A =K~+ReH, (M~)+y„(M„"v—Ms v)tan2vo. v,
(16a)

B=K, +ReH2P(M')+y'(M'~&-M &)st2nava&„.

(16b)
I

Of course the form of the resonance terms is rem-
iniscent of the t-channel pole models. ".

III. PARAMETRIZATION OF THE s- AND

p- WAVE AMPLITUDES

The strong BBPand the weak BBa vertices are

A(K', -0)
4'rNN 2

mg
(19)

The amplitude A(K', -0) for the transition of the

K', into the vacuum can be related to the amplitude
A(K', -2m') in the soft-pion limit: A(K', -0)
=2F,'A(K', -2w') with F, =0.95m, . The suppression
factor $ accounts for the coupling-constant shift
from the SU(3} values in the BBKvertex as well as
for the uncertainty involved in using the physical
value of A(K', -2s') instead of the unknown soft-
pion limiting value. A dispersion-theoretical eval-
uation" of the BBKcoupling constants found con-

Hs= (Es/Ms)'", Z-s=(p" +Msm)'",

Kss 2k;NN [eF=-ss + (1 —n)Dss],

c&s
—= 2(fFess + dDess),

'Uss —= 2iG[QFgs + (1 —Q)Dss] .

Here Fgs = if,ss and -Dss =d,ss. In the tadpole mod-
el' G takes the form
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sistency with the SU(3) values, but bootstrap cal-
culati. ons" suggested a considerable reduction
from those values. Regarding the uncertainty in-
volved in the soft-pion extrapolation, a hard-pion
study" of the decays K-2w yielded corrections to
the usual current-algebra values of about 10'.
Therefore, assuming relatively small coupling-
constant shift from SU(3) values, we expect $ to be
nearly unity.

Furthermore, we assume the coupling of the K*

to the baryons to be of F type only, whereas the
BBK„and BBKvertices have both F- and D-type
couplings with the same mixing parameter e for
both vertices. As for the weak vertex of the reso-
nance term, we take it proportional to D' for both
the s- and p-wave amplitudes. " With the defini-
tions and assumptions stated above, the s- and p-
wave amplitudes (16) can be written more explicit-
ly as

(M —M~)Kg~v~„(M„- Ms)vs« K„'„
F, ~ ' ~ ' (M, +M,)(M„+M,) (M„+M,)(M, +M,)

(M„+Mg)Kagcg„(M„+ M8)cB« Kv'~
j-B +(M M)(M M) (M M )(M M)+

(20a)

(20b)

where we have extracted the SU(3) dependence
from y„and y' defined in (16), and introduced the
current-algebra and pole terms given in previous
analyses. " For convenience we rewrite the above
expressions in terms of current-algebra (C), pole
(P), and resonance (A) parts:

A=—A +A A. +A
1 C

mr
(21)

a =—a'+ a~+a"G 8
r mr

where B=g„»m, /v 2M„and, for example, in the
case of the A decay,

A'(A') =—(3f + d),
1

&6

jlrjA —~~ 21'~A'(A') =—
~6 M~+M„Mq+M„

MA —M~ 2M'
+—(1 —n)(1 —2u)

6 A+ r F+ N

3 1/2

A (A') =y„— (M '"v —M '"«)tan-,'mc. «)

B'{A')=—(1+2&),C 0

ve

'( '- = 6(f'")M' M"
MN+ N A N

2 MA +Mz 2M~——(1 —n)(f -d)
W6 MA+Mg Mg —M~'

B"(cV)=y' (1+ 2)(oM~ „M~2)t-a'~n„u

The parameters y~ and y' have been redefined to
absorb over-all factors. The other relevant decay
amplitudes are given in the Appendix.

Masses in the resonance terms are specified in

GeV, and the values of the fixed constants ar.e
2

Cries

14 6
4m

A(K', -2p') =2.58x10 ' MeV.

With $ =0.7 we obtain G =11.25m, in units of
10'mr ' ' sec ' '. This leaves four adjustable pa-
rameters: f, d, y«, and y'. The best fit to the
experimental amplitudes gave the following values
for these parameters: f =1.513m„yv =20.52,
y' =-3.25 in units of 10'm, ' ' sec '", and d/f
= -1.09. The corresponding theoretical amplitudes
are displayed in Table I with the contributions of
each part given explicitly. Also shown are the ex-
perimental values. "

IV. DISCUSSION

Table I shows a very good over-all fit, being
sufficiently accurate to discriminate between the
two experimental values for the decay Z', . The
only appreciable deviation occurs in the amplitude
A(Z', ) in which none of the four adjustable param-
eters appears. Then, in the framework of current
xcurrent interaction and octet dominance, the ob-
served value A(Z', ) = 0 requires the symmetry-
breaking terms to be negligible. However, devia-
tions from octet dominance and from unitary sym-
metry have been found to occur in many other de-
cays, indicating that the interpretation of the ob-
served value A(Z;) = 0 as an evidence for the si-
multaneous validity of octet dominance and unitary
symmetry to a high degree of accuracy does not
seem plausible. Instead, we argue that these two
types of deviations tend to cancel each other in the
amplitude A(Z', ) so as to reproduce the observed
value. On the other hand, the vanishing p-wave
amplitude, B(Z ) = 0, has all three parts combined
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TABLE I. Best-fit solution to both the s- and p-vive amplitudes and experimental values
in units of M'pg '~' sec '~'

Baryon
pole

Total
(theory)

Experimental
values

a(z', )

x(„= )

a(~')
a(z )

1.241

3.330

2.355

2.660

8.374

3 0173

-2.244

1.113

-0.437

0.151

-0.942

0.489

4.090

2.357

-11.203

18.200

—9.780

-0.954

-1.390

0.697

0.493

-0.278

1.444

1.846

1.766

-0.942

2.195

11.074

-0.120

-12.954

18.200

-7.814

1.545+ 0.024

1.859+ 0.017

1.568 + 0.142

(1.155+0.187)

0.016+0.034

2.020 +0.029

10.644+0.475

-0.549+0.386

—11.573 +1.880

(-15.713+1.420)

19.078 + 0.347

-6.831+0.574

to reproduce the observed value. Thus, having
several adjustable parametex s, the addition of the
2'| representation can be made without spoiling the
present good fit for this amplitude. Similar argu-
ments hold for the other amplitudes. In the ap-
proximation of octet dominance, therefore, we do
not see the nonvanishing result for A(Z', ) in Table
1 as unreasonable, although the validity of our
arguments remains to be seen.

Another important result displayed in Table I
concerns the relative magnitude of the resonance
contribution to the s-wave amplitude. Note that a
suitable choice of the d/f ratio (=-0.3) makes the
cux rent-algebra term for the s wave proportional
to the observed amplitude. This has previously
led to the belief that the current-algebra term was
the dominant one, so that the assumption of negli-
gible higher-mass baryon contribution to the s
wave was considered to be on a good footing.
Table I does not support this assumption. In con-
trast, the assumption works well for the p wave,
explaining the rough fit of the old p-wave pole-
model results.

Finally, the magnitude of the current-algebra
contribution to the p-wave amplitude indicates a
x'elatively large violation of unitary symmetry, a
re+alt quite different from that of any previous
work.

the manuscript.

APPENDIX

For each specific decay the general expressions
(20) yield the following amybtudes.

Z n+m

Mg —i@~
W =--,'(1- n)(1+2a)

Z+ A A+ g

Mg —M@ 2M~
+ n(1- 2n)

z+ z z+ ar

A ~ =y, (cw,'"» M„'" )t»'a—~n„n
ac =(2a —1),

M, +M„B~=a(f -d)
M. V, M. -M.

Mg+ Mg 2M~

A+ Z A N

B =y'(2n -1)(Mr ~&-M~2"&)tan~ma~.

Z'- p~m'.

A~ = (f —d),
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g' = y —(M '"« —M '"«)tan-»a1

«~2 z» 2 «1

B =—(2n —1),
W2

Mq +M„2M»B» =-—f -d
M»+M» M«- M»

2 Mz+ M~ 2M'
+ —a(f -d)

v2 Mz+Mz Mz —M@'

a' = y' —(2a —,1}(M,'"A —M„'"A)tan-, w aA.

Z+ n+ m':

A. =0,

2MN
A =-(1-2n)

Mg+1II~ Mz+ Mg

Mz —Mg 2M'——,'(1 - a)(l + 2e)
Z+ A A+ N

Mz —M~ 2M~

Z+ Z Z+ N

Mz+ M@ 2M@

Z+ A A™+
Mz+ Mg—a(f -d)
Mz+Mz Mz —Mp'

A~ =—(Sf -d),j.
W6

2 M —MA 2M~
A =—(1-~)

~6 Mq+MA M +My

1 M —Af~ 2M'

= y«v'2/2(M~ "« —MA "«)tan2»a«,

a~ =—(4n —1),1
&6

Mg+ M„2M»B~=(f -d
M„+M» Mg - M„

a"=y' —(4n -1)(M 2"A-M "A)tan-,'»~ .

~Work supported in part by the U. S. Atomic Energy
Commls sion

~M. Suzuki, Phys. Rev. Letters 15, . 986 (1965);
H. Sugawara, ibid. 15, 870, 997 (1965).

2Y. Hara, Y. Nambu, and J. Schechter, Phys. Rev.
Letters 16, 380 (1966); S. A. Bludman, Cargese I ec-
tÃres in Theoretical Physics, 2966, edited by M. Levy

(Gordon and Breach, New York, 1967).
3L. S. Brown and C. M. Sommerfield, Phys. Rev. Let-

ters 16, 751 (1966).
4A. Kumax and J. C. Pati, Phys. Rev. Letters 18, 1230

(1967); C. Itzykson and M. Jacob, Nuovo Cimento 48A,
655 (1967); J. Shimada and S. Bludman, Phys. Rev. D 1,
2687 (1970).

'F. C. P. Chan, Phys. Rev. 171, 1543 (1968); D. S.
Loebbaka, ibid. 169, 1121 (1968); L. R. Ham Mohan,
ibid. 179, 1561 (1969).

6J. Schechter, Phys. Rev. 174, 1829 (1968).
~S. Okubo, Ann. Phys. (N.Y.) 47, 351 (1968).
sK Igi and S, Matsuda, 'Phys. Rev. Letters 18, 625

(1967); R. Dolen, D. Horn, and C. Schmid, Phys. Rev.
166, 1768 (1968); R. R. Crittenden, R. M. Heinz, D. 3.
Lichtenberg, and E. Predazzi, Phys. Rev. D 1, 169
(1970).

9Metric and y matrices are those of S. Gasiorowicz,
Elementary Particle Physics (Wiley, New York, 1966).

l V. A. Alessandx ini, M. A. B. BOg, and L. S. Brovm,
Phys. Rev. 144, 1137 (1966).

~~See, for example, V. D. Barger and D. B. Cline,
Phenomenological Theories of High Energy Scattering
(Beiqamin, New York, 1969).
~2T. Inami, K. Kawax'abayashi, and S. Kitakado, Phys.

Rev. D 2, 2711 (1970). Also, Y. Hara, Phys. Rev. 137,
B1553 {1965).

~38. W. Lee and A. R. Swift, Phys. Rev. 136, 3228
(1964); J. J. Sakurai, ibid. 156, 1508 (1967).
~40ur assignment of the SU(3) operators for baryons

and mesons in that of P. Carruthers, Introduction to
Unitary Symmetry (Wiley, New York, 1966).

~5J. K. Kim, Phys. Rev. Letters 19, 1079 (1967).
~6R. H. Dashen, Y. Dothan, S. C. Frautschi, and D. H.

Sharp, Phys. Rev. 143, 1185 (1966); B. Diu, H. R.
Rubinstein, and R. P. Van Royen, Nuovo Cimento 43,
961 (1966).

~TS. Okubo, R. E. Max'shak, and V. S. Mathur, Phys.
Rev. Letters 19, 407 (1967).

~BR. E. Marshak, Riazuddin, and C. P. Ryan, Theory
of Weak Inte~act~ons in Particle Physics (Wiley, New
York, 1968), p. 518; P. Berge, in Proceedings of the
Thirteenth Annual International Conference on Hi gh-
Energy Physics, Berkeley, 296'6 (Univ. of California
Press, Berkeley, Calif. , 1967).


