
5 COMP LETENESS OF EVANESCENT WAVES

We only sketch the proof for the left half-space,
which proceeds in a very similar fashion. Now all
the integrals over K should be transformed into
the integrals over k and the commutator function

D„ in the homogeneous dielectric medium,

2'') (12)

la,. (rs t), 8, (r', t)]= Ne.,„s,5'(r - r'), .

which follows directly from our calculations.

(13)

replaces the vacuum function D.
The integration contour runs above the real axis,

thus avoiding the branch points of the function

J~ =
l. & '/~' —(& '+ & ')(1 —1/~')]'"

The integral along the large semicircle (Fig. 2)
vanishes in the limit. Since there are no singu-
larities inside the contour, the integral vanishes.
The result is similar to Eq. (7) but has an addi-
tional factor of pg' on the left-hand side.

Now let us integrate the left-hand side of Eq. (7)
over r' with a square-integrable divergenceless
function f having support in the right half-space.
When z &0 we get f(r) —this has already been
proved. But the norm of f is certainly not less
than the norm of its orthogonal expansion (Bessel
inequality). Thus for z &0 we get zero. This
proves Eq. (7) in the case when r and r' are on the
opposite sides of the plane z =0.

Another expression of the completeness is the
validity of the canonical commutation relations be-
tween the field operators,

d'x IE(r)l'~'(r) = 2, . d'&El~, (k, s)l'
03&O

+, d'z'glv, (K, s)l'
Es 0&S

(14)

or

d'x B r '=, d'0 Q, k. s
43&0

+
2 3 d'JfZI~. (K, s)l',

dd'3&0 s

where

(15)

n, (Sr, s)d fd =s(nr) 'd(Ss, s, r) E(r),

r, (K, s)=-fd'sn'(r)id„"(Ss, s, r) E(r),
(16)

r, g, s)=-f d'sSd"(K, s, r) SS(r).

In the calculations it is convenient to divide the
field into two fields having supports in the two
half-spaces and to separate the transverse elec-
tric and transverse magnetic parts. We can use
again the contour-integral methods and then re-
duce the equation to the Plancherel formula for
the ordinary Fourier transform.

It is also possible to prove the completeness by
deriving the Plancherel formulas,
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Recent observations of pulsed p radiation from NP0532 provide a very accurate check on
the dispersion relation obeyed by light. The data are sufficient to rule out the mechanism
proposed by Pavlopoulos for breaking Lorentz invariance.

Because pulsars' emit broad-bandwidth signals
that ar rive in nar row pulse s, they provide an ex-
cellent test of the dispersion relation for light. The
best known vehicle for such a test is the Crab pul-

sar NP0532, which has a small (less than 3 msec)
pulsewidth and whose pulsed spectrum covers at
least thirteen decades, from radio waves' to y
rays. ' The low-frequency emission of NP0532
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where At is the pulsemidth in seconds, and D is
the distance to the source. In the case of NP0532,
At= 2.6 msec and D= 2 kiloparsecs, yielding

—&1.3x10 "
C

for any two frequencies found in the same pulse.
But broad-bandwidth experiments have nearly
overlapped the region from optical to low-energy
y ray so one can conclude that the velocity of light
varies by at most a few parts in 10' over the en-
tire range. The great stability of the period of pul-
sars actually enables one to make even more ac-
curate statements by use of a synchronized ap-
paratus. Warner and Nather' claim to have shown
that av/c& 5x10 " in the wavelength range 0.35-
0.55 p. These results are to be compared with
direct measurements of the velocity of light, which
are accurate to about a part in 10' in the radio-op-
tical range and to a part in 10' for y radiation. '

To obtain the corresponding limit on a dispersion
relation, suppose that the propagation of light is
governed by a noncovariant but rotationally in-
variant wave equation of the form

—
2p %+V ——,—~ =0, (2)

where l, is a "fundamental" length. ' Feinberg'
has also studied the limits imposed by pulsar data
on noncovariant terms in the wave equation but,
at that date, the most energetic known pulsed
spectra mere soft x rays and the arguments given

has previously been used to obtain a limit on the
photon mass. 4 The resulting limit, m&& 10-44 g,
is inferior to others now available, e.g. , that based
upon considerations of the galactic magnetic field, '
the principal difficulty being that the intervening
plasma acts like an effective-mass term in the dis-
persion relation, thus masking the mz contribution.
Some improvement over the above estimate will
come with greater knowledge of the interstellar
electron density; one can also attempt to system-
atically isolate the electronic contribution by look-
ing at different angles to the galactic plane, but it
seems unlikely that such a procedure will give a
limit comparable to that of Ref. 5, i.e. , m & 10 "g.

However, the data in the region from optical to
y ray do provide the most powerful test to date of
the dispersion relation for light at high frequencies.
Assuming that there are no canceling effects, the
spread due to dispersion cannot be larger than the
observed width of the pulse; hence the difference
of the velocities of light at frequencies co, and (d,
is bounded by

v((u, ) —v((v, ) ca t
c D

here are only made compelling by the higher-en-
ergy data. The dispersion relation appropriate to
(2) has the form

v= —=(] +2f 'y')(1+ f 'y') '~'dc'
614 0

= c(1+—,'1,'u'),

where it has been assumed that lo'k'«1. Then

2 V(%1) V(%2)
(y 2 f 2) 1

0 1 2

We apply this formula to the data of Ref. 3, in
which pulsed information from NP0532 was ob-
served in the energy range 0.1 to 1 MeV; use of
the bound (1) yields

f p( 1.9 x 10 cm. (4)

This is equivalent to a limit on the fundamental
length: l =—h/Ac & 3 x 10 " cm. Lee and Wick" have
proposed that the photon propagator has a nega-
tive-metric contribution of the above type. With
the largely arbitrary but popular choice of 40
GeV/c' for the heavy photon mass, one finds l=5
x10 "cm.

The limit we have obtained for l, does make
quantitative statements about at least one physical
theory. If space-time is not described merely by
a set of coordinate assignments and is in fact an
oriented medium, where vectors are attached to
each point, one is dealing with a Finsler space, "
and the corresponding geometry is more compli-

Such a fundamental length is about 5 orders of
magnitude smaller than that needed in a number
of attempts to manufacture cutoffs in relativistic
theories. Such attempts have usually involved
either a parameter of order of magnitude of the
classical electron radius' or the pion Compton
wavelength. " Equation (4) does not of course rule
out the possibility that other, perhaps larger,
lengths may enter the theory in other ways. "
Claims of observing higher-energy y rays from
NP0532 have been made" but they are somewhat
controversial' "; use of those results at face
value improves the bound on l, by about a factor
of 50.

For comparison, we mention the limits on the
nonlocality of lepton-photon interactions as obtained
from fitting the predictions of quantum electrody-
namics to experiment. A recent measurement of
the anomalous magnetic moment of the muon"
provides the bound A& 7 GeV/c on the cutoff de-
fined through the usual modification of the muon

propagator

1 1 1

q-m q-m q —m —A2 2 2 2 2 2 2
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cated than Riemannian geometry. Mindlin and
Tiersten" have found that wave propagation in
simple oriented media is governed by Eq. (2).
Pavlopoulos" has proposed that this equation does
govern the propagation of light, and further pro-
poses that the length /, is universal in character,
in the hope of solving the well-known divergence
problems of quantum field theory. One must then

choose l, = 10 " cm, which is in contradiction with
our limit, Eq. (4).
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