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Contour-integration methods are applied to prove the completeness of the solutions of
Maxwell equations, when half of the space is filled with a dielectric medium. Our proof fills
a gap in a recent article by Carniglia and Mandel on the quantization of evanescent waves. A
simple derivation of the commutation relations between the creation and annihilation oper-
ators is also given.

In this note we add two comments on a recent
paper by Carniglia and Mandel' (hereafter referred
to as CM) on the quantization of the electromag-
netic field in a space which is filled with a homo-
geneous dielectric of refractive index n to the left
of the plane z =0, and is empty to the right of this
plane.

First, we observe that for every linear conser-
vative system the Heisenberg equations of motion

ik —O(t) = [O(t), H]

impose rather stringent conditions on the commu-
tation relations.

In particular, when applied to the case described
in CM, these equations enable us to determine
immediately the unknown functions f(k, s) and g(K, s)
which appear in the commutation relations [CM
equations (65)-(67)] for the creation and annihila-
tion operators of elementary modes u~, v~ and

kkk A
Q, V)

[u(k, s), ut(k', s')]=f(k, s)6„,6'(k —k'),

[8(K, s), 8t(K', s')]=g(K, s)6„.6 (K —K').

A11 remaining commutators are assumed to vanish.
The modes created by Q~ and v~ form triplets of

incident, reflected, and transmitted waves and are
labeled by the incident wave vector k or K (depend-
ing on whether the wave is incident from the left
or from the right) and the polarization index s.
The electric field in the modes is denoted by
m~(k, s, r) or Z„(K, s, r) and the magnetic field by
6~(k, s, r) or Qs(K, s, r). If the wave is incident
from the left its transmitted part may be evanes-
cent - that is, exponentially decreasing —in the
right half -space.
'

The Hamiltonian and electric field operator ex-
pressed in terms of creation and annihilation
operators have the form

H =P d'klfk~(ks)k(k, s)+ , d'KKD'(K, s) (K, )),2W ))t )0 E3(0

X/2
E(r, t)=, d'kQ — [u(k, s)Z~(k, s, r)s '«'+H. c.]2''

y )0 E'0

g 1/2d'If' — [8(K, s)(p„(K, s, r)e '«' +H.c.].
E3(0 s=l

(4)

Inserting both these expressions into Eq. (I) and making use of the linear independence of the functions iZ~

and C~, we obtain the final result

f(k, s) = (2«)'I'=g(K, s). (5)

Next we would like to supply the missing proof of the completeness of the modes. Carniglia and Mandel
write on this subject: "We shall not here enter into the question of completeness of the set of modes with
respect to solutions of the Helmholtz equation, which appears to be a difficult problem. " In fact, their
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article contains a great part of the calculations needed to prove the completeness.
In the space of square-integrable vector functions with vanishing divergence (in the distribution sense)

the unit kernel has the form

(5,, -A 'a,. a,.)6'(r -r').
I,et us consider the right half-space first. In this case, for the family of electric fields 5~ and I„, the

completeness condition reads

(6)

2

(
i3 d k Q mzq(kq sq r)alp(%q s~ r ) +q ~ t d Kgms (K~ s~ r)m (K s r ) =(6. —Q &8 8 )63(r r~)

(7)

An analogous formula holds for a complete family of magnetic fields. %e have chosen the same normali-
zation convention as CM.

We operate on both sides of Eq. (7) with the Laplacian (we also use the Helmholtz equation

[a+K'n'(r)]i&{r) =0),

{2-y)t 'kg K C~;(k, s, r)N~)(k, s, r')+,2,~ t O'K+ K'@„,(K, s, r)m„*((K, s, r') =(a, a~ —6„.n)6'(r- rl).
n3 &o E &o

.8« 3

In order to evaluate the left-hand side {LHS) of this equation, we follow with appropriate modifications
the procedure used in CM to find the commutator [E,(r„ t), E,(r', i')] [CM equations (76)-(84)]. The result is

8LHS=&;, —,—&(r —r~i-i)"BIB' Bx Bx. Bt

xexp(i[K, {x-x')+K,(y —y')+K, (z+z')]3

d2+. dg+gggggexpxg+gI{'X-l./n~)(lt~ +X& )]

(2m)'

xexpNK, (x- x')+K, (y-y')]].
[There are two misprints in CM equation (84). The first and the third terms have wrong signs ]

Th«w»n«g»» in Eq. (9) can be combined to form a contour integral in the complex K plane

R dK, K' '
F,E, +, ' (c x«),. (c " x «),. exp(i[Kl(~ —~ ) y K,(y-y') +K, (z +z ')])

(10)

The contour ~ (»g. 1) consists of two ha1ves of
the real axis, part of the imaginary axis up to the
branch point of the function k, = [K,'n'+ (K,'+ K,')
x {n' —1)]' ', and a large semicircle. The two con-
tributions from the integral along the imaginary
axis have opposite signs of k„ in agreement with
the convention that on the real axis sgn(k, ) =sgn(K, ).

Since z+z'&0, the integral along the large semicir-
cle vanishes in the limit. There are no singulari-
ties inside the contour C and thus the integral along
C is zero. Using known properties of the Jordan-
Pauli commutator function D(r, f), we obtain finally

I.HS = (a,. a,. —a, ,A)a'(r —r'). @.E.D.

FIG. 1. Integration contour in the && plane. FIG. 2. Integration contour in the kz plane.
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We only sketch the proof for the left half-space,
which proceeds in a very similar fashion. Now all
the integrals over K should be transformed into
the integrals over k and the commutator function

D„ in the homogeneous dielectric medium,

2'') (12)

la,. (rs t), 8, (r', t)]= Ne.,„s,5'(r - r'), .

which follows directly from our calculations.

(13)

replaces the vacuum function D.
The integration contour runs above the real axis,

thus avoiding the branch points of the function

J~ =
l. & '/~' —(& '+ & ')(1 —1/~')]'"

The integral along the large semicircle (Fig. 2)
vanishes in the limit. Since there are no singu-
larities inside the contour, the integral vanishes.
The result is similar to Eq. (7) but has an addi-
tional factor of pg' on the left-hand side.

Now let us integrate the left-hand side of Eq. (7)
over r' with a square-integrable divergenceless
function f having support in the right half-space.
When z &0 we get f(r) —this has already been
proved. But the norm of f is certainly not less
than the norm of its orthogonal expansion (Bessel
inequality). Thus for z &0 we get zero. This
proves Eq. (7) in the case when r and r' are on the
opposite sides of the plane z =0.

Another expression of the completeness is the
validity of the canonical commutation relations be-
tween the field operators,

d'x IE(r)l'~'(r) = 2, . d'&El~, (k, s)l'
03&O

+, d'z'glv, (K, s)l'
Es 0&S

(14)

or

d'x B r '=, d'0 Q, k. s
43&0

+
2 3 d'JfZI~. (K, s)l',

dd'3&0 s

where

(15)

n, (Sr, s)d fd =s(nr) 'd(Ss, s, r) E(r),

r, (K, s)=-fd'sn'(r)id„"(Ss, s, r) E(r),
(16)

r, g, s)=-f d'sSd"(K, s, r) SS(r).

In the calculations it is convenient to divide the
field into two fields having supports in the two
half-spaces and to separate the transverse elec-
tric and transverse magnetic parts. We can use
again the contour-integral methods and then re-
duce the equation to the Plancherel formula for
the ordinary Fourier transform.

It is also possible to prove the completeness by
deriving the Plancherel formulas,

~C. K. Carniglia and L. Mandel, Phys. Rev. D 3, 280 (1971).
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Recent observations of pulsed p radiation from NP0532 provide a very accurate check on
the dispersion relation obeyed by light. The data are sufficient to rule out the mechanism
proposed by Pavlopoulos for breaking Lorentz invariance.

Because pulsars' emit broad-bandwidth signals
that ar rive in nar row pulse s, they provide an ex-
cellent test of the dispersion relation for light. The
best known vehicle for such a test is the Crab pul-

sar NP0532, which has a small (less than 3 msec)
pulsewidth and whose pulsed spectrum covers at
least thirteen decades, from radio waves' to y
rays. ' The low-frequency emission of NP0532


