
PHYSICAL REVIEW 0 VOLUME 5, NUMBER 2 15 JANUARY 1g72

Analyticity in the Forward Tube, Complex Scaling, and New Sum Rules
for Virtual Compton Amplitudes*

N. N. Khurl
The Rockefeller University, New York, Nezo York 20021

(Received 29 September 1g71)

The forward virtual Compton amplitude is studied as an analytic function of two complex
variables. A method is developed for deriving sum rules that fol1ow from analyticity in two
variables where the domain of analyticity is the forward tube. Using this method, new sum
rules are derived. These sum ru1es fo1low from analyticity in the tube and "complex" scal-
ing. They relate a double integral over the inelastic form factor W&(v, q2) to an integral over
the scaling function E2(~). The sum rules provide a tool for direct1y testing whether scaling
occurs when ~q ~

—~ in complex directions inside the tube domain, and whether this scaling
starts at relatively low values of ~q ~

as in the real case. The possibiIity of finding more
restrictive sum rules by enlarging the domain of analyticity is also briefly explored and a
mathematical but unphysical example is given.

I. INTRODUCTION

In this paper we shall show how one can derive
sum rules for the virtual Compton amplitude that
follow from analyticity in taboo complex variables.
Our main result is a new sum rule that relates a
double integral of the inelastic structure function

W, (v, q') to an integral over the scaling function

E,(~). The only input used to obta. in this sum rule
is analyticity in the forward tube, and complex
scaling.

For photons with four-momentum q we use as
our two variables q, -=( and ~q~ -=g. The forward
virtual Compton amplitude is then analytic in P and

g regular in the forward tube domain given by Imp
& ~Imp(. One important property of the tube is that
it contains points at which both g and g are complex
but such that q =—( —g is real and spacelike. It .

also of course contains closed contours along which
q' is real and negative but g and g are complex.
For any given fixed spacelike value of q' at least
one of the two Compton amplitudes, T„satisfies
an unsubtracted dispersion relation in v at fixed
q'; v=q. P. Thus for any complex q„and space-
like q', T, (v, q') is known from the experimental
measurement of W, (v', q'), and the elastic form
factors, and the use of the dispersion relation.

The main question now is: Can we find a contour
in the tube along which q' is spacelike, so that in-
tegrating T, (g, q) along the contour we get a useful
sum rule by substituting for T, at each point along
the contour the value obtained from the dispersion
relation? We stress here the fact that given an

analytic function of two variables, f(z„z,), regular
in some domain, the integral of f over some closed
curve C lying completely inside the region of anal-
yticity, fcf (z, (~), z, (7))d7, is not necessarily zero

It is of course true that if we fix z, (or z, ) then
over C' on which z, is fixed jc.f(z„z,)dz, =O, if
C is inside the analyticity domain. It is, however,
still possible in most cases to find "special" con-
tours such that Jcf (z, (~), z,(r))dc=0.

In Sec. II, we first show how these "special"
contours can be found. Then we consider the fol-
lowing problem: Find a "special" closed contour
in the four-dimensional tube domain such that along
this contour q' is spacelike and preferrably vari-
able. For such a contour fcT,(&(r), q(w))d~=O,
with ~ being a parameter that defines the contour.
For each value of v along our integration path, q'
= r„'(7.) —tP(7) is negative and therefore the value of
T, at that point is determined by 8', through the
dispersion relation. If one can find such a special
contour the above integral will give a powerful sum
rule by substituting for (Tg(r), 7l(r)) the dispersion
representation for it.

The first result of Sec. II is to show that, with
our analyticity domain limited to the forward tube,
the only "special" contours we can find for which
q' is spacelike along the contour have the feature
that q'(7) is also constant along C. These contours
lead to trivial identities and no sum rules since by
interchanging integrations over 7 and v' one shows
they hold trivially for any W, .

Next we try to construct "special" contours along
which q'(7. ) is restricted to be real and can be both
spacelike and timelike. In this case we find many
solutions. Each gives us a sum rule for T, (v, q').
However, these sum rules involve both timelike
and spacelike q'. They are not very useful since
Tz(v, q ) for timelike qa is not accessible to rea-
sonable experiments.

Up to this point our only input is analyticity in
the forward tube which follows directly from the
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fact that our amplitudes are Fourier transforms
of a retarded function. Very little physics has
been included and it is not surprising that the re-
sults are just methodological.

In Sec. III, we include more physical input and
get some useful sum rules. The new physical in-
put we assume is the concept of complex scaling.
Namely, we assume that vT, (v, q') also scales
when ~vl —~, )q'~-~ but v/q' remains fixed. We
stress that we only make such an assumption for
paths that lie completely within the domain of
analyticity, the forward tube. With this assump-
tion, which is valid in many models that scale,
vT, (v, q') is also known for some large values of
complex v and complex q', and as we shall show,
given by the same function of w = 2v/(-q') as one
obtains when taking the usual real Bjorken limit'
—q'-, & fixed, for vT, .

The problem now is to choose a "special" con-
tour which is made of two parts. Along the first
part q' is spacelike and variable and goes through
the interesting resonance region for some values
of the parameter v.. Along the second part of the
contour both v and q' are in the complex-scaling
region. We find such a special contour and it
gives us the sum rule given in Eq. (3.13). Since
the analyticity input we use requires no testing at
present energies, the main value of the sum rule
(3.13) is to test not only complex sealing, which is
probably correct if real scaling is true, but also
to answer the important physical question of
whether complex scaling occurs at relatively low
values of (q'

~
as it does in the real case. If it

does not, then the precocious nature of real Bjor-
ken scaling could well be due to an accidential
cancellation of some phases and not more funda-
mental reasons.

In Sec. III we also write another sum rule which
in addition has a region of the contour along which
T, is in the Regge region, v large and q' small but
complex. We hope that this sum rule, if complex
scaling holds, will also differentiate between the
different Regge fits of the data for vS",.

Finally, in Sec. IV we go back to the mathemat-
ical question posed in Sec. II and ask if it is pos-
sible to find "special" contours along which q' is
spacelike and variable if the domain of analyticity
of T, (g, q) is larger than just the tube. We know
that the actual domain is larger but we do not (at
least this author does not) as yet know what is the
maximal domain. But we show that at least from
the mathematical side the question is open. Name-
ly, we give an example of a domain D' larger than
the tube, for which one can find "special" contours
with q' spacelike along the contour. However, un-
fortunately, D' has some very unphysical features.
It looks quite doubtful that, at least without a com-

piete study of the analyticity domain of the full
four-point function, one could make much progress
towards a completely spacelike sum rule. Never-
theless, enlarging the tube domain might be quite
helpful in improving the sum rules of Sec. III or
deriving similar physical sum rules.

A detailed numerical evaluation of the sum rules
(3.13) and (3.15) is being carried out and will be
published separately.

II. ANALYTICITY IN TWO VARIABLES AND

SUM RULES FOR COMPTON AMPLITUDES

In this section we shall study the analyticity of
the forward amplitude for the scattering of virtual
photons on protons as a function of two complex
variables. We show how in principle this anal-
yticity could lead to potentially useful sum rules.

We write the spin-averaged amplitude for virtual
Compton scattering as

T„„(q,p) = i d x e" '"
6(x )(p ~ [Z„(x),j (0)j ~p) .

(2.1)
Here we take only the connected part and the ab-
sence of operator Schwinger terms is assumed. .
Actually all one needs to assume is that the extra
terms in (2.1) due to operator Schwinger terms
are polynomials in qo and q' and automatically have
the tube analyticity to be discussed below. We use
the retarded product to define T„, since it is the
one that gives an analytic function for Imqp +0 The
time-ordered and retarded functions are of course
identical for q, &0, q, real.

Following the usual notation we define the two
invariant amplitudes T, and T, as

1
Tv v(q& p)

(qual

qll gv Ilq ) 2

+ 2 PjI —qjI 2 Pv-q 2 T2

(2.2)

where the well-known inelastic structure functions
are given by

(2.3)

W, (v, q') =—O(q'). (2.4)

Second, we assume that for fixed spacelike q,
T,(v, q') satisfies an unsubtracted dispersion re-

27

The variable v is defined by v=q ~ p.
There are two properties of T, that we would

like to recall here. First, we note the fact that as
q'- 0,
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la,tion in v of the fox'm

The residue of the Boin term, f (q'), is a known
linear combination of (Gs~)' and (Ge~)'.

From (2.5) we see that given W, for physical v'

and spacelike q' and the elastic form factors, then
T,(v, q') is known for any complex v and spacelike
q'. Thus given any fixed value of q'&0 u e can by
measuring W, for v& v, (q') effectively determine
through (Z. &) the value of T, (&, q ) for that value of
q' and any complex value of v.

Finally, we note that as in {2.4) as q'-0, we
have

T,(v, q') = O(q'). (2.7)

Fox' the discussion below it turns out to be sim-
pler to use two new variables & and q defined by

(2.8)

(2.9)

%e choose our fx'arne such that e - p=0. Actually
for most of this papex' it suffices to use the labox'a. -
tory frame, p=0. Qux' old variables are given by

and T,(g, 1)) are also analytic in the domain D.
For reasons that will soon be evident below, we

limit our discussion to the invariant amplitude
T,(g, 1)).

It is trivial to show that there exist points in-
sHie the four-dlmenslonal domain D at wlHch both

( and q are complex, but such that q' = &' —g' is
real and negative (spacelike). At such points we
have

( )

However, since we are inside D, g; & ~1), ~, and

therefore ll}.l&lr. l
It then follows that q'

= (g„' -1)„')—(g - 1},') is negative definite at such
points.

At these points q3 is real and spacelike and v is
complex, and therefore T,(g„ i,l) is completely
determined at each of these points by a measure-
ment of W, (v', q' = g,' —1},') for all v'& v, and the use
of (2.5). Thus the complex spacelike points, though
they lie inside the forward tube, axe still a.cces-
sible to experiment because of the unsubtracted
nature of (2.5).

Suppose now we choose a closed contour inside
D defined by some parameter 7.,

(2.12)

such that along this contour g —q is real and

(2.14)

If we can choose the contour such that

We consider T„„(g,1}) as a function of the two
complex variables & and q, given by

(TI'( ),71}(1.))d1.= 0, (2.15)

D: imp&~iml}). (2.11)

This domain D is just the forward tube when one
translates it back to four-vector form. For if we
write q=q„+iq, , then {2.1) defines a function anal-
ytic in the forwax'd tube; q &0, qo&0. This is
identical with (2.11) since q,

' = (Imp)' —{1m')'.
The continuation of T„„(r., 1})to complex values

of & and 1} clearly leads to the analytic function de-
fined by the physical amplitude since by definition
it agrees with the physical amplitude on the two-
dimensional surface, Imp =0 and Imp=0. This
two-dimensional surface is a nonanalytic sulfa, ce.

It is easy to show that the analyticity of all com-
ponents of T„, in g and 11 implies that both Tl(t, li)

~i.()' ")= (J d '*~"*' "' *'&(~.)()IIJj,(*),& (0)Ill).

(2.10)

Using the locality of the currents, it follows im-
mediately that every component of T„„is an anal-
ytic function in the two variables g and g regular
xn the domain D,2

then we would get an interesting sum rule from
(2.15) by substitlltlng (2.5) 111'to (2.15). Tile sum
rule will provide a restriction on 8', if along the
contour g'(1.) -1}'(1.) is not only negative but also
not constant.

The immediate problem one faces, however, is
that given an analytic function of two complex vari--
ables, f(z„z,), regular in a four-dimensional do-
main D, it is not tx'ue that for any closed contour
chosen to lie inside D, Jcf(z, (7),z, (1.))d1.=0 How-.
ever, it is true obviously that if we take a. contour
along which z, is fixed, then Jcf(z„z,)dz, = 0 and
similarly if we take a contour along which z, is
fixed and integrate ovex' z, .

Given a contour C lying completely in 8, one
way to determine whether (2.15) is true is to find
a pair of transformations co, = (d, {&,1}) and ((),
= 1(),(g, 1)) such that (d, (g, 1}) remains constant as g
and q vary along C, and such that the inverse
transformations & = g(co„((),) and 1}=1}((d„&o,) are
analytic in the domain D' whi. ch is the image of
D under the mapping (g, 1})- ((d„~,).

A simpler way to proceed is as follows. Suppose
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y{v)dI.= IdT-T(r. (7.), Il(I)) =0.
C C

{2.17)

Along C, g'(v) —Il'(T) is negative and reai by con-
struction and hence we can substitute (2.5) into
(2.17) and get

f(C'(~) -n'(~)}
—,'[&'( ) —q'(T)l —~'( )m'

~v' v'll', (v', q' = K'(7) —Il'(r))
v —l (T)m

(2.18)
This sum rule is a trivial identity when f'(7')

—r}2(7.) is constant along C. For then both sides of
(2.18) would be zero by interchanging integrations.
It would be a very powerful sum rule if r'(T) —Il'(7')
varies significantly along C. However, unfortu-
nately, as we shall see below, without enlarging
the region of analyticity D given in (2.11), it is
impossible to obtain (2.18) except for the trivial
case of constant q'.

We llote llel'8 tllat colld1tIoll (b) 011 g aIld Ii Is
quite restrictive. If the domain C is finite then
since g'(x) -Ii'(x) is real on the simple closed
curve C bounding G, we have Im(g' —ri') =0 for al-
most all YgC. This a harmonic function in Q and
hence Im(g' —ll') =0 for all rEG unless g' —ll' be-
comes unbounded on some isolated points on the
boundary. If it does not then our only solution has
the form g'(7) =I}'(I)a(real const). Thus in the
interesting cases either g(r) or Il(v) must become
unbounded on at least one point on the boundary.
This might require us to introduce convergence
factors into (2.17) and (2.18) as we shall see be-
low.

The problem can be simplified substantially by
transforming the hypothetical region C into the
upper half-plane. Given any bounded C and simple
closed curve C one can a)ways find a conformal
transformation,

we can construct functions f(w) and Il(v) such that:
(a) &(1 ) and Il(r) are analytic in I in some do-

main G bounded by a simple contour C;
(b) g'(1.) —Il'(r) &0 for I on the boundary C;
(c) for all rCG,

Imp (1.) &
~ lmll(r) ( .

We now consider the function P(v) defined by

(2.16)

By construction Q(v) is analytic in v regular for
all v g G. Hence we can write

upper half -plane.
%e can here state our two main problems:
Problem A. Find two functions g(z) and ll(z)

such that
(i) ((z) and Ii(z) are analytic for Imz &0;
(ii) g'(x) -I}'(x)«0, i.e., real and nonpositive

on real axis;
(iii) Imp(z) & ~lmll(z) ~, for all Imz & 0.

Conditions (i) and (iii) imply that g(z) is a Herglotz
function and hence bounded by C~z

~
as ~z (- along

complex directions. It also follows from (iii) and
(i) that Ii(z) is boullded by collst && ~z j for large (z (

although Il(z) does not necessarily have to be a
Herglotz function.

Problem B. Find two functions f(z) and Il(z)
such that

(i) f(z) and Il(z) are analytic for Imz &0;
(ii) K'(x) —Il'(x) is real on the real axis;
(ii1) imp(z) & ~lmll(z) ~, for all Imz & 0.
In problem B we allow q' on the boundary to be

both spacelike and timelike. Although this makes
part of our sum rule not measurable, we shall see
later that by including some physics, in addition
to pure analyticity, we ca.n get some interesting
and useful sum rules from case B.

Problem A has an immediate, but for our pur-
poses useless, solution. One takes

C{z)=[q'(z) -m, 'J'", m, real. (2.20)

Note that for any complex number F. such that ImE
&0, we have Im(E'-m, ')'"&ImE, ~here m, is
real. For ImE=O, Im(Ez -m, ')'"&ImE. This
solution has the feature that q' is a constant inde-
peIldeIlt of z~ q = g —Il = —mo .

The inequality (2.21) is satisfied with some room
to spare. One would thus think that there must be
other solutions of problem A with at least a slowly
varying q'(z). It is remarkable that one can show
that the only solutions of problem A are of the form
(2.20). In Appendix A we give a proof of this fact
which is due to Dyson. '

Unfortunately, solutions of the type given by
(2.20) with constant spacelike q' are useless for
our purposes. For example one can choose Ii(z)
such that Ii(~) is a constant. Then Tg&(z), Ii(z})
will tend to a constant as ~z[- ~. The value of that
constant will be T(g(~), Ii(~)) . One can write

Setting Il(z) to be a Herglotz function guarantees
the absence of branch points in g(z) for Imz &0. It
is trivial to show that

lm[ll2(z) -m, ']'" & ~imll(z)~, Imz&0. (2.21)

~ = 7.(z), (2.19)
(2.22)

which maps G, onto the upper half z plane and C
onto the real axis. This way we can concentrate
on functions g(z) and Il(z) which are analytic in the

The factor (z+i}' is introduced to make the con-
tribution from the large semicircle in the upper
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half z plane vanish. In the integration above,
L'(x) —rP(x) = -m, '. If we substitute (2.5) into
(2.22), we get an identity for any ~~, Gz, and Gv
since we integrate over fixed q'. All one has to
do is interchange the order of integration over x
with that over v'.

Problem B, on the other hand, has an infinite
number of solutions. We recall that the difference
between the two cases is just that in case B we
allow q'(x) to be positive and negative on the real
axis, while in case A q2(x) &0 on the real axis.

We write down a class of solutions of problem
8 as follows:

(2.23)

&b Im[h(z)]+ a Im[zh(z)]
4[z+ bi ih(z) f

(2.29)

From the representation (2.24) of h(z) we see that

Im[zh(z)] = cImz+Imz t
r" xp(x)dx (2.30)

which is positive for Imz &0. From (2.30) we see
that the lower limit of the integral in (2.24) should
be zero or positive to ensure positivity in (2.30).
Now, Imp(z) =m, [Imh(z)+ImG(z)] and Imp(z)
= m, [Imh(z) —ImG(z)] where both Imh and ImG are
positive. Hence, inequality (2.26) is satisfied.

Before we can use the functions in (2.23) to ob-
tain a sum rule we have to discuss the behavior of

T,(f(z), rl(z)) as ~z~- ~ and at the singular point
z= —b First. , we take the ~z~-~ limit. In this
ca.se it follows from (2.23) and (2.24) that

where a and 6 are real positive constants, and

m, is a mass that sets the scale, all other quan-
tities being dimensionless. The function h(z) is
given by

g(z)- cm„

g(z)- cm„

q'(z) —0.

(2.31)

h(z) = c+ i dx, p(x) &0, c&0."p(x)
0 x z

(2.24)

In addition we see that for large ~z ~, q'(z) = O(1/z).
As z- —b, we have

The function h(z) is thus chosen to be analytic and

of Herglotz type Furt. hermore, we set p(x) &0

except at x=0 and x=~. This way from (2.24) it
is clear that h(z) has no zeros not only for Imz &0

but on the real axis as well. As ~z~- ~, we have

h(z) —c.
Let us now check that (2.23) satisfy the condi-

tions of problem B. The analyticity for Imz &0 is
evident. Both g(z) and q(z) have a pole at z = —b

on the real axis. As for condition (ii), we have

q'(x) = g'(x) —g'(x) = -m, '
x+5 (2.25)

imp(z) & limy(z) I
.

From (2.23) we write

(2.26)

g(z) =m [h(z)+G(z)],

q(z) =m, [h(z) —G(z)],

with

(2.27)

a
4(z+ b)h(z)

' (2.28)

We claim that G is also a Herglotz function. We

have

Thus on the boundary q' is spacelike for all x& —b

and timelike for x& —b, and q' has a pole at x= —b.
Finally, we check that for all Imz &0,

2

q'(z) =
x+5

(2.32)

However, the Bjorken variable ~= —2v/q' tends
to a finite limit,

lim (u(z) =lim
—2v(z) —m 1

z- bq~(z)-2mo h(- b)
' (2.33)

where by definition h(- b) is a real positive num-

ber, Taking the limit z- —b corresponds to taking
the Bjorken scaling limit. Hence if the scaling
assumption is correct,

lim [v(z)T,(g(z), 7}(z))]= const, (2.34)

where g(z) and q(z) are given by (2.23). But since
v(z)- ~ as z- —b, we have

lim Tgg(z), g(z)}=0. (2.35)

We stress here that the scaling assumption (2.34)
is not necessary to get a sum rule. %'e shall see
below that as long as T,(g(z), q(z)) does not blow

up worse than a polynomial as z- —b, we can still
get a modified sum rule.

The function T2(g(z), rl(z)} with g and q given by

(2.23) is now an analytic function of z for all Imz
&0; it vanishes as O(1/z) as ~z~- ~, and even

though g and g are singular at z = —b, T2(f(z), q(z))
vanishes at that point. By taking a contour just
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above the real z axis we get the sum rule

(2.36)

0(l/~z('"). Hence we can write

"+" dx
Vx T,(W(x), n(x)) = o. (2.36')

The factor (z+ i) ' ensures the fact that the contri-
bution from the large semicircle vanishes. If
(2.35) is not correct, i.e. , the scaling limit does
not hold, and T, is divergent as z ——b, then we
can modify (2.34) and write

(2.37)

The Born term satisfies this sum rule trivially and
can be taken out. We define T,' as

f( m„'-a/(z + b))
[m,' a'/ 4( z+ b)']- g'(z)m'

(2.38)

where N is determined by the degree of divergence
of T,(&(z), n(z)) as z ——b. Again we assume the
absence of an essential singularity at z =- b.

In order to get a sum rule in which only
ImT, (g(x), q(x)) appears we have to choose a dif-
ferent convergence factor than in (2.34). We note
that T,(g(z), q(z))/~z is also analytic in the upper
half z plane, and as lzl —~ it vanishes as

The denominator of the Born term certainly does
not vanish inside the forward tube, q- pt —,'q' if
q=q„+iq, and q &0, q, &0. The function f(q') is
analytic in the cut q' plane with a timelike cut only.

The sum rule (2.36') will involve timelike q' for
x« —b and spacelike q' for x& b. Writing (2.36')
for T,'(g{x),q(x)), using (2.5) for the region x& —b,
and taking the real part of both sides, we get

2w W,(v= g{x)m, q'=-m, 'a/(x —b)) — Re 4v'dv' W(v' q'=-m 'a/(x+b))

(2.39)

where

'fFEO a
v, (x) = —,'y, '+ p,m+ x+b (2.40)

Note that for x& 0, ((x) almost everywhere has an
imaginary part so the real part of the last integral
above is not just a principal value. In (2.39), g(x)
and q(x) are given by (2.23).

The right-hand side of (2.39) is directly calcu-
lable from the data on W, for spacelike q'. The
left-hand side depends on the lmaglnaly part of
T2 for timelike values of q', a quantity which is
not accessible to experiment. The imaginary part
on the left includes the contributions of the class
II intermediate states. Thus the sum rule (2.39) is
practically useless for any direct experimental
checks.

The question of course arises of using (2.39) as
it stands to check certain model calculations that
make predictions about the timelike region. This
could be useful but we must add a word of warning.
Very little information has gone into (2.39), just
analyticity in the tube. Ior example any model
catcatation pf T,(v, q') that satisfies the Deser
Gilbert-Sudarshan (DGS) representation spill auto-
maticatty satisfy (Z. 39) since it tvill certainty have
tke tube analyticity. However, in some model

calculations arbitrary momentum cutoffs are in-
troduced and it is not beyond the ingenuity of the-
orists to violate two-variable analyticity. In sum-
mary, while we do not rule out the possibility that
(2.39) might be useful, it certainly is a very weak
restriction.

From this point on there are two ways to pro-
ceed further. One is to add some more physics to
the analyticity information and see if we can get
more useful sum rules. This we shall do in Sec.
III. The new physics we add is complex scaling
inside the tube and Regge behavior.

The second way to proceed further is much more
ambitious. One can try to enlarge the region D to
find the maximal region of analyticity in g and g,
and then see if with this new maximal domain it is
possible to solve problem A with condition (iii) re-
placed by (f{z),q(z))FD for a.ll Imz &0. This, if
possibl, will lead to a powerful sum rule for
W, (v, q'), restricted to spacelike values of q',
which can be directly compared with the data. In
Sec. IV we make a very limited start to explore
this direction. We first show that at least mathe-
matically it is possible to define an analyticity do-
main, D'gD, such that for D', problem A has non-
trivial solutions which we explicitly construct.
However, the example of D' which we give has
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some rather unphysical features.

III. COMPLEX SCALING, ANALYTICITY, AND

FINITE-q2 SUM RULES

q', ((u, q') —= —,T,(v, q'). (3.2)

Bjorken scaling states that for any fixed e, we

have

lim
-q2~~; ~ fixed

(3.3)

The limit function%2 can be calculated from the
scaling form factor F, (&u) by assuming that one can
take the limit inside the integral sign in (2.5). One

gets

S,((u) = 4(u d(u' F2((0 )

l CO Cu
(3.4)

We have seen in Sec. II that starting with just
analyticity in the tube it was not possible to find
solutions to problem A with &'(x) —rP(x) spacelike
on the real axis. The reason we were seeking
such functions was because T,(v, q') is experi-
mentally accessible to us only for spacelike q'.
Clearly, what we need is additional physical input
that determines T,(v, q') for some other values of
q'. Then we get around the difficulty by choosing
contours in the z plane such that on one part of the
contour q' is spaeelike and on the rest of the con-
tour T, is determined by the additional physical
input. This additional input we shall, in this sec-
tion, take to be what we call "complex sealing, "
a concept which we will define and clarify below.

In Sec. II we found many solutions to problem
B where g'(x) —q'(x) is spacelike on some segments
on the real axis and timelike on the rest of the real
axis. We shall start with such a solution for which
g'(x) —xP(x) &0 in some interval x, & x& x2. Then
for any curve C joining x, and x2 through the upper
half z plane, we get

x2
dx v(x)T,(g(x), q (x)}= -J( dz v(z)T,(g(z), 7)(z)}.

(3.1)
The left-hand side of the sum rule is given directly
by the data on W2. To determine the right-hand
side we choose g(z), q(z), and C such that along
C,

~
v(z)~ is large, (q'( is large, q'(z) complex, but

their ratio is finite. Note that we are not proposing
to generalize scaling to all complex directions,
but only to directions which correspond to q, re-
maining inside the forward tube. We certainly
avoid the regions with singularities.

To define complex scaling let us recall the defi-
nition of the usual Bjorken limit. ' We shall need
to assume that not only vS'2 but also vT, scales.
We use the variables &u =2v/- q', and q', and write

where

lim (v'/m')~ (v', q') = F,(~'), &u' fixed.
q2-+ oo

The assumption of the interchangeability of limits
is not necessary in models where scaling is the
result of the dominance of behavior on the light
cone. ' There, (3.3) and (3.4) are features of the
model.

In (3.3) we can certainly take u& to be complex,
keeping q' real and spacelike, and the limit will
still hold and is given by (3.4) with complex m.

This is a trivial extension of scaling.
What is not so trivial is taking the limit for

fixed complex cu along complex directions in q'.
Namely, one considers lim~, 2~ „g,(~, q') with ~
fixed and arg(q') o v, where the limit is taken for
values of + and q' that correspond to & and g re-
maining inside the region of analyticity D, the for-
ward tube.

On the basis of looking at several models which
scale, we shall make the assumption that complex
q' scaling limits exist and write

lim v (Iu q2) = p (~)
q2l ~; ~fixed

(3.5)

Again we stress that in (3.5) we choose paths that
remain inside the region of analyticity. The above
limit can easily be disastrous in the q' timelike
direction.

The second assumption about complex scaling we
make is that it is path-independent at least for
paths in the tube, and hence we identify the two
limits by writing

(3.6)

This feature of complex scaling is also true in
several models, as will be shown at the end of this
section. However, one can do more. In Appendix
B we show that if &,(&u, q') is polynomially bounded
for large ~q'~ and fixed &u, then for values of u
lying in the strip —1 & Re&a &+ 1 the limits (3.3) and

(3.5) lead to identical results as long as one takes
the limit in (3.5) along lines that lie in the Re(q')
&0 half-plane. In the application we consider in
this section, Re(q') does in fact remain negative.

We shall defer the discussion of models which
exhibit complex scaling to the end of this section,
and proceed now to derive sum rules which will
test whether this assumption is correct or not.

An interesting and still puzzling feature of the
usual real scaling is its "precocious" nature.
Namely, the onset of scaling begins at low values
of q' of the order of a few BeV'. An immediate
question to ask is, given complex scaling, is its
limit reached quickly for not too large values of
~q'~ as in the real case? Or is the "precocious"
nature of real scaling more of an accident due to
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some cancellations that occur only for real space-
like q'T In the sum rule we derive below, we
shall assume that the limits (3.3) and (3.5) are
reached at roughly the same rate and use the sum
rule to test whether this is in agreement with the
data.

We now derive a finite-q sum rule which de-
pends on analyticity in the tube and complex seal-
ing. Following the discussion of Sec. II we choose
&(z) and I)(z) as follows:

Here we take

(3.8)

{3.9)

The lower limit in (2.9) has to be greater than b.
With this choice of &(z) and I) (z), we have

q'{z) = -m, '
z —b

(3.10)

Both f(z) and II(z) are analytic for Imz &0. We
have to also prove that for g and Il given by (3.7)
we have Imp(z)& Iimg(z)I for all Imz &0. This can
easily be done by repeating the same steps fol-
lowed in Eqs. (2.27) —(2.30) in Sec. II. Thus
T2(f(z)) T/(z)) 18 RIIRlytlc 111 z fol' Rll IIIlz &0.

The function q'(z) given by (3.10) is real for
real z. It is spacelike for x&b &2, infinite for
x=b, timelike in the interval 1&x&b, and again
spaceli:ke for x& 1.

Since we want to avoid timelike q' we concen-
trate our attention on the domain that lies inside
the unit semicircle in the upper half z plane, In
the real interval, -1 & x & 1, q (x) is spacelike and
varies in the interval

m, ' & q'(x) & 0.5+1 (3.11)

By choosing w. ,'-= lorn~'„we have then a range of
q' that goes from zero up to and beyond the onset
of scaling. The constant b we take to lie in 2&5
& 3. The sum rule will be trivial if both on the real
interval -1 & x& I and on the unit semicircle,

I
q'I

is everywhere in the scaling region so that we can-
not test the low-q' resonance region. e

Along the unit semicircle, q'(e'~) is large except
for a region 0 & (j) & (j),—= 2m'/m, '. As the phase of
z varies inthe interval 2m'/m, ' & (j) &)I, Iq'(e' )I
varies between

m's Iq'(e'")Is m, '.

Taking b=2.5, this puts this range almost com-
pletely in the scaling region. For the range 0 & Q
& 2III'/m, ', Iq'I is small and vanishes at $ = 0. In
this region we are going to use the Regge fits to
calculate T,. These fits have been made to the
data for large v and small real q'. ' We shall use
them also for small complex q . All the Regge
fits proposed do scale so we have a smooth trans-
ition from the Regge region, 0 & (j) & (j)„ to the
scaling region, Q, & (j) & Il, which is not sensitive
to the precise value we choose for Q, as long as it
is roughly 0(m'/III, ').

At this stage we are still free to adjust the be-
havior of g(x) along the real axis. To get a useful
sum rule one has to explore the resonance region.
Therefore, we must choose &(x) and I)(x) in such a
way that even for mo'= 10m~' the variable I (x) be-
comes small for some values of x in the interval
-1&x& l. One way to do this is to choose h(x)
such that g (0) is zero. This can be done by setting

(3.12)

011e IIR8 'to 8R'tlsfy (3.12) but choose A(X) 111 suCll R

way that I (I) = ((I)III is large enough to be close to
the Regge region for small q'. To give a specific
example, just for demonstration, we take 6 = 2.5,
and let I (z)=(-,')'"/(5-2z), and set ~'=10;. Wit
this choice the value of v(0) = 0 and v(l) = —,'m'. With
q'=—0 this means that at the end of our interval
s(l) = v'm' just barely below the Regge region but
still in the region where the Regge fit of Ref. 7 is
good. With this choice of h(z), b, and m„we can
easily see that in the neighborhood of x= —', we a,re
in the midst of the resonance region. A simple
cRlculRtlQI1 gives v(@)=2()III RIId q (4) = —

7 m
This gives a. value for s(—,') = (q+P)'=—2m', which is
right in the middle of the resonance region. A
better choice of h(z), m„and b has to await a
numerical evaluation of our sum rules which is
being carried out. Along the unit circle II)(z)I,
with b given as above, will always be 0(mm, ) and
hence large.

We define the amplitude T,'=-T, —T, as in (2.36).
The Born term explicitly satisfies all the analytic-
ity properties we use and the sum rule is an iden-
tity for it since the best experimental fit we have
for Gz(q') and G„(q') has only singularities for
timelike q2.

To obtain. our sum rule we integrate T,'(&(z), I)(z))
with K and Il given by (3.7) along a contour extend-
ing along the real axis-from x= -1 to x =+1 and
then along the unit semicircle back to the point
z = —1. Alollg the 1'eRI Rxls T2(f(x), 'g(x)) 18 glvell
by the dispersion relation (2.5). On the semicircle,
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z = e'~, for P, & Q ~ v, &f&, = 2m'/mo', T,' is given by

6, (v); while in the interval 0 c Q
& Q, we use the

Regge fits to determine T,'. The result is

= —4i dp e' ~(e' ) dv' „, , e, i-dP e' R(q'(P), v(P)) .
J y~

(3.13)

The left-hand side of (3.13) involves only physical values of W,(v', q'(x)) and can be evaluated directly from
the data. . Note that we have shown above that by a. proper choice of b(z), m, ', and b we can make the inte-
gration over x go right through the region where resonances are important for 5, . The first term on the
right in (3.13) also involves only physical values of F,(&u'), and ~ is given by &u(z) = —2$(z)m/q'(z). In the
second term one has to put in for R one of the Regge fits that have been recently obtained from the data on

W, for small q'. These fits have the form'

R(q', v) = [v +(-v) ] . + '
' [(v)" '+(- v)" ']p q') . . 1 Pp (q')

v sinn o~ v sinn+~ ' (3.14)

with @~=1 Qp = 2 and P~ and P~. explicitly given in terms of q'. In all the fits P~ and P~. vanish as q'
—0 as they should, and also scale for large q'.

The sum rule (3.13) will probably not be sensitive to the region q'=0 since T,' vanishes as O(q') as q'
—0. Thus it is hard for (3.13) to distinguish between the different Regge fits or the model calculation of

Pp(q') by Preparata, ' since for small P, q'(Q) = O(g), and hence R(q'(Q), v(&p)) vanishes as O(&f&) as y —0.
The main idea that (3.13) will test is complex scaling and its precocious nature. One can even write a
sum rule less sensitive to the Regge region than (3.13) by integrating (e - I)'~'v(e)T,'(g(e), ))(e)) along the
same contour as before. This will further deemphasize the q'= 0 region near z =1.

To get a sum rule that is more sensitive to the input near q'=0, we use the fact that T,'(v, q') = O(q') as
q'-0 and divide by q /mo2 to get a sum rule of the form

x —b "",v'W, (v', q' = —mo'(x —1)/(x —b))
x —1 .„. ,(„) v" —g'(x)m'

i4 i@

1 1 Q

(3.15)

This sum rule we hope will be sensitive enough to distinguish between the different. Regge-type fits for q
small and v large of Refs. 7 and 8.

&s m /m- ~, the sum rules (3.13) and (3.15) be-
come identities. " This is analogous to what hap-
pens to the finite-energy sum rule as the cutoff
tends to infinity.

Finally, we remark that the Regge fits are made
for vW, and there is no direct information about the
real part of T, in the Regge region. In (3.14) we

have chosen the simplest Regge form for the real
part consistent with the fit for vW, . This choice is
somewhat arbitrary and one should check in eval-
uating the sum rules (3.13) and (3.15) whether they
are very sensitive to changes in the form of the
Regge fits (3.14).

We close this section by discussing several mod-
els which both scale in the real and complex direc-

tions.
(a) Regle model. In this model vT, ha, s the form

vT (v q') Z ' [v" +( v)" ]
~ P;(q')

v sin7t n,.
'

(3.16)

Scaling would occur if p,. (q2)- G,.(- q')' "~ as —q2

To get complex scaling we have to assume
that P;(q') will have the same power behavior as
above for large complex q'. This is a feature of
the ladder-type models that exhibit Regge scaling.
One can easily check that in this model. given com-
plex scaling it will be path-independent and the
identification made in (3.6) is trivially true.

(b) The DGS mode/. We assume that T, (v, q')
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—,T, (v, q') = —vq'
I dl) I do

(3.17)

A retarded ie in the denominator had been sup-
pressed. In terms of ~ and q' we get

7', (&u, q') =+ ~ d48
i

do
q'(u " " h(o, P)

2 „~ „o 1 —P(d —g q

(3.18 )

One can formally expand the denominator in (3.18)
in powers of o/q'(1 —P&u). It is easy to see then
that to get real scaling the DGS spectral function
h must satisfy the relation

I do h(o, P) =0. (3.19)

In that case we have for the standard Bjorken
limit,

lim
-e2~~; &ti~cd

C

(~, q') = P, (~) =+ —' dj3
h(o, P)o

-1 1 —pQ)

(3.20)
The important point to notice here is that for real
spacelike q' and fixed complex cu the denominator
in (3.18) does not vanish and the expansion in pow-
ers of o/q'(1 —Pv) does not lead to trouble. For
timelike q' or complex q' this expa.nsion could be
quite dangerous. However, if we restrict ourselves
to the forward tube, q = q„+iq;, q,

' & 0, the denomi-
nator in (3.17) does not vanish. One can easily
check this fact by choosing a frame such that q;
= (q;, 0). This can be done since q, is timelike.
The vanishing of the denominator in (3.17),

q +2Pq ~ p-v=0 (3.21)

implies that q„' = —Pp'. Substituting this relation
back into the real part of (3.21) one gets an expres-
sion that is negative definite.

Thus we can repeat the same arguments that
lead from (3.18) to (3.20) for the case when q' ap-
proaches infinity along a complex direction inside
the tube. The limit will not only exist if the real
limit exists but should give the same function of
&e as given in (3.20) independent of the path.

(c) Perturbation theory models The-DOS rep-.
resentation is based on perturbation theory. It is
clear from the discussion of the DQS model that
models in which the sum of a given subset of dia-
grams exhibits scaling in the usual Bjorken sense
will also scale in the complex Bjorken limit as
long as that limit is taken inside the tube. After
.introducing the Feynman parameters, the perturba-

satisfies the DQS representation. This representa-
tion is known to hold to all orders in perturbation
theory. We write

tion-theory denominators one gets will also not
vanish inside the tube.

One should add that in general it is possible to
construct counterexamples to complex scaling and
exhibit functions that scale in the real —q limit
and fail to scale in some complex directions. An

example would be the existence of a nonscaling
term in vT, which asymptotically behaves like
(exp[t(q' —4p') ]] /q', A. = -,'. Such a term will van-
ish for large real q' but blows up exponentially in
some complex q' direction. It is interesting to
note that it has exponential growth in q'.

The above models do not prove complex scaling
but they tend to show that it is a reasonable feature
to assume. There would be a significant change in
one's outlook on scaling if complex scaling turns
out not to be true. We hope that sum rules like
(3.13) and (3.15) will shed some light on this. ques-
tion.

IV. LARGER DOMAINS OF ANALYTICITY AND

SPACELIKE SUM RULES

D': Im&&(1 —e)~imp~, 1&e &0. (4 1)

Comparing this with (2.11) we see that D'g D. The
problem we now have to solve, in analogy to A, is
to find functions g(z) and q(z) such that:

(i) g(z) and q(z) are analytic for Imz &0;
(ii) g'(x) —g'(x) c0, real, and nonconstant on

real axis;
(iii) Im&(z) & (1 —e) ~lmg(z)~, for all Imz &0.
This problem has many solutions. We shall ex-

hibit one of them:

g(z) =m,([h(z)+az]' —z')'",

~(z) = ~,[h(z) + az],
(4 2)

with a & 1 and such that (a' —1)'"—(1 —e)a & 0, and

h(z) = c+ '
dx, p(x) &0, c &0.

* p(x)
X Z

(4.3)
'~

The first two properties (i) and (ii) can be easily
checked. The bracket defining g has no zeros in
the upper half-plane and the analyticity is guaran-
teed. We only have to prove (iii).

On the real axis, we have

We return in this section to the problem posed
originally in Sec. II as problem A. The question
we ask is: Does there exist an enlargement of the
analyticity domain D such that given the larger
domain one can find a "special" contour along
which q' is spacelike? We give an example of such
a domain. However, unfortunately, the example is
only of mathematical interest and has drastically
unphysical features.

Consider a function f (r„, g) analytic in g and q
regular in domain D', defined by
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Im([II(x) + ax]' —x'jl"

o 1m[II(x) + ax] & (1 —e) 1m[II(x) + ax] .

(4.4)

I.et us consider the function w(z) defined by

w (z) =([h(z) +az]' -z'] I~' —(1 —e)[II(z) + az] .

(4.5)

As
~
z

~

- ~, we have w (z)- [(a' —1)'~' —(1 —e}a] z.
Also Imw(z) is positive for real z. It is trivial to
show that as long as (a'- 1)'"—(1 —e)a &0, as we
have chosen it, then w {z) is a Herglotz function.
All one has to do is to consider

the more ambitious first question, but they could
stiQ be helpful for our second question. Work
along these lines is in progress.
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w=-w —[(a' —'1)'"—(1 —e}a]z.

Then w(z} is a Herglotz function since w(z}
(real const) as ~z ~, and imw(x) &0, on the

real axis. It follows that w(z) is also a Herglotz
function when (a' —1)'"—(1 —e)a &0.

One can write for f{r„,II) a sum rule of the form

. ~f(g(x), I)(x)) dx=0, (4 6)

where g and II are given by (4.2). The integration
in (4.6} is carried out along a path for which q'(x)
-=g'(x) —I)'(x) = —m, 'x' is spacelike and va.riable.
The factor (x+i)" is introduced to damp out the
asymptotic behavior of f for large ~z~.

This is all mathematically satisfying, but the
region D' cannot be obtained in any reasonable
physical theory. Its most disastrous feature is
that it contains timelike q' points of arbitrary
values. One can check this directly from (4.1), but

it is easier to see it from the example (4.2). There,
q'(z) = -m, 'z', and the points on the imaginary z

axis are in the analyticity domain but they corre-
spond to positive, real q' and complex I . However,
we know that for timelike q' we have singularities
coming from the class II intermediate states.

There are two main questions which arise from
this discussion. First, can one enlarge the tube
domain D in the physical case to get a domain for
which a spacelike sum rule holds'? This seems
difficult and most probably not achievable; how-

ever, work along this direction might lead to less
ambitious but still useful results-namely, our
second question: Can one enlarge the domain D in
order to get a domain for which better sum rules
of the type considered in Sec. III can be found' ?
For example, one can look for a sum rule which

does not depend on the Regge region.
A preliminary look at perturbation theory shows

that one does get domains larger than D. However,
these domains approach D in the crucial region
Imp- ~. They seem to be of no help in the case of

u(z) = g(z) +I)(z),

v(z) = &(z) —n(z).
(Al)

Then it also follows from (iii) that for all Imz &0,
Imll(z) = Imp(z) +11Illi(z) & Imp —ilmlli & 0 slid also
Imv(z) &0. Hence, both u(z) and v(z) are Herglotz
functions.

Next we consider the function f(z) given by

This function is analytic for Imz &0. It is contin-
uous except at isolated points for Imz ~ 0. Prom
(ii), f(z) is real on the real axis except at isolated
points. Hence, f(z) is single valued and analytic
in the whole z plane except for isolated poles, and

isolated essential singularities on the real axis.
But (A2) states that f is the product of two Herglotz
functions. Using this fact, and the standard rep-
resentation for Herglotz functions, "one can ex-
clude the possibility that any real point x, can be
an isolated essential singularity of f (z)

Thus one concludes that f (z) is meromorphic in

the entire z plane with poles and zeros only on the

In this Appendix we give a proof due to Dyson of
the assertion made in Sec. II that the only solutions
to problem A have the form (2.20).

Tile pl'OMelll ls 'to find fullctlolls f(z) aIld 'g(z)

such that:
{i) &(z) and I)(z) are analytic in z for Imz &0,

and continuous in Imz ~ 0 except at isolated points
on the real axis;

(ii) on the real z axis, g'(x) -ll'(x) is real, and

g'(x) —I) (x) a0, except at the isolated points men-
tlolled 111 (1);

(iii) for all Imz & 0, Imp(z) & (1m'(z) [ .
The assertion is that all pairs of functions g and g
that satisfy (i), (ii), (iii) must be related such that
f'( )z—I)'(z) = —C, with C real and C & 0.

To prove this fact we first note that (i) and (iii)
imply that g(z) is a Herglotz function. " We con-
sider the two functions &(z) and v(z) defined by
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real z axis. But condition (ii) states that on the
real axis f (z) is almost everywhere negative.
Therefore, all the poles and zeros of f(z) must be
double or of even order. However, f (z) =u(z)v(z)
is a product of two Herglotz functions. Herglotz
functions can only-have simple poles or zeros.
Hence, u(z) and v(z) must each have a simple pole
at each double pole of f.

Consider such a pole at z = xo. In the neighbor-
hood of such a pole we have

&APPENDIX B

%e prove here the assertion made in Sec. III
concerning the limit of q', (&u, q') defined in (3.2) for

~
q'~ -~, Req' &0, and ~ fixed and chosen such that

-1&Re&v&+1. The statement we want to prove is:
Given a f', (&u, q') with analyticity in ~ and q' in the
domain that follows from perturbation theory, and
assuming that ~T, (e, q')

~
for fixed &o and large (q'~

is bounded by exp(~ q'
~

' '), then if

lim r, (o, q') = S.(u ), (Bl)
u(z) =

xp
v(z) =

xQ

with x&0 and s &0. Hence near x, we have

(AS)
-q2~ ~. ttitixt;d
-1& R P i'&+ 1

and if the limit along complex directions in the
left half q' plane also exists, i.e.,

f(z)=
( ), , z=x, . (A4)

lim q', (&u, q') = p, (~), Req' & 0,
il I-; f0d

1 & R Ptd&+j.

(B2)

This leads to a contradiction with condition (ii)
which restricts f(x) to be negative almost every-
where on the real axis. We conclude that f(z) can
have no poles and is an entire function.

Using the well-known upper bound for Herglotz
functions, we get from (A2) the bound for large

[f(z)[ &const /z f'. (A5)

Thus f(z) is a polynomial of degree less than or
equal to two.

Now, the same argument we used to prove that
f(z) has no poles can be used to show that f has no
zeros. A Herglotz function can have only simple
zeros. Hence, f (z) must be a negative real con-
stant and &'-g'= -C, C&0.

then P, (~) —= B,(&u) in the strip —1&Re&v &+ l.
The first point to notice is that it follows from

the DGS representation (3.18) that q", (~, q') is anal-
ytic in both co and q'in the domain -1&Rex&+1
and Req'&0. Now i'f we fix co = co, with ~, lying in
the strip -1& Res&, &+ 1, the function q', (&u„q') for
fixed &u= &a, is analytic in q' in the half-plane Req
& 0. If lim ~„„q',(iu„q') = s, (~,) and if also the
limit along any complex direction in the left-plane
exists, lim ~,,~

„W',(u&» q') = F,(~,), Req' &0, then
the Phragmdn-Lindelof theorem guarantees that
5,(~,) =6', (e,). But this relation must be true for
every ~, in the strip -1&Recap&+1. Hence since
$,(v) is an analytic function we can identify the
functions 6, and F, in the strip, and in any region
where s,(~) is defined and not separated from the
strip by a natural boundary.
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A renormalizable model of weak interactions is presented. The leptons and the SU(3)
quarks are classified in an SU(4}x SU(2) symmetry scheme in which the quantum numbers are
charge, baryon number, lepton number, and weakness —a quantum number that replaces the
usual second lepton number. The coupling of a sextet of spinless bosons to the leptons and
hadrons gives a theory of weak interactions that has universality, the correct selection rules,
renormalizability, conserved vector current, and V —A in the 1oca1 1imit. Elastic ev& scat-
tering is predicted. The intermediate scalar boson leads to pe and ee pairs in the convention-
al high-energy neutrino experiments but no pp, pairs are predicted. Some neutral-current
effects are expected and these are consistent with present data.

I. INTRODUCTION

The development of a renormabzable theory of
weak lnteraetcons has recel. ved const. derable at-
tention, "but so far no entirely satisfactory so-
lution has been proposed. Soon after weak inter-
actions were found to proceed by the V-A cur-
rent-current Hamiltonian, ' a renormalizable
theory using spin-zero bosons was proposed by
Tanikawa and Watanabe. ' Their theory was based
on the fact that a V-A interaction can be reex-
pr essed in terms of scalar and pseudoscalar inter-
actions by means of the Fierz transformation

g.r,(l ~,)s.s,~„(i.y.)S, = 2&.(I ~,)S-;g;(I r,)t„
(I)

where 5 and c are the antipartieles of b and e. By
introducing a semiweak coupling of spin-zero
bosons to the vari. ous densities of the form
P(l+y, )P~, a renormalizable theory is produced.

The two main criticisms' of the Tanikawa-Wa-
tanabe approach are that universality is accidental
and the conserved vector current plays no role.
Of these two faults the former is more serious as
the conserved vector current can be introduced in
a number of ways. For example, one could couple
the pseudoscalar mesons to intermediate spinor
particles in such a way that the lepton current in

the effective second-ordex Lagrangian is coupled
to the conserved isospin current if the right rela-
tions exist between the coupling constants and be-
tween the masses of the intermediate particles.
This approach makes universality even more ac-
cidental. The conserved vector current may also
be introduced by coupling the leptons and the SU(3)
quarks to intermediate scalar bosons in such a way
that the conserved vector current in quark form
appears in the effective I agrangian. This approach
again requires certain degeneracies in coupling
constants and masses and therefore makes uni-
versality accidental unless a reason ean be found

for the existence of these degeneracies. ' A pos-
sible reason for such degeneracies is that the

particles involved belong to irreducible represen-
tations of a symmetry group under whose transfor-
mations the weak-interaction Hamiltonian is invar-
iant. This point of view is adopted in this paper.

In Sec. II the symmetry of weak interactions is
discussed. Section III is devoted to the interesting
leptonic processes while Sec. IV outlines the appli-
cation of the-theory to conventional semileptonie
processes. The associated production of SU(3)
quarks and intermediate scalar bosons is discussed
in Sec. V. Sections VI and VII treat neutral-cur-
rent effects and nonleptonic processes.


