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Guided by the Lovelace mm formula, a set of constraints is proposed for any realistic Vene-
Eiano formulas for the scattering of pions by any target. One constraint, the vanishing of in-
tegrals over the (s,u) term in the forward direction due to a mechanism of local mass cancel-
lations, is tested for xZ, TfN, xp, and mA scattering. This leads to the following predictions:
F/(+ +7)) =1.4+ 0.1 for the ratio of octet baryon —vector- (tensor-) meson couplings; I"& «= I'& /W2= 90 MeV; g~++ ~+~+ /4~=35 in agreement with SU(6),

The Lovelace' formula for gp scattering is still
g. major achievement in the field of Veneziano-
type2 models. The formula, having duality and
crossing symmetry naturally built in, accounts,
roughly, for the know'n physics of the gp system
in the w'hole range of energies. For detailed fits
one x'equlx'e8 unltRrlzed versions of the model~
but we shall not attempt to include such featux'es
1Q oui dlscusslon.

The attempts to apply Veneziano's formula to
other four-particle amplitudes has not always met
with complete success and certainly has never
achieved the general agreement with experiment
and theory of the gg formula. In particular, trou-
ble occurs when baryons are included. For in-
stance, both a straight mN generalization of the
Veneziano formula~ and a relativistic dual quark-
model formulation' failed to give sensible low-
ene1"gy parameters.

Instead of imposing from the beginning a partic-
ular form for the amplitude, we try in this paper
to extract from the Veneziano-Lovelace formula
some basic properties. These properties, which
Rre derived from the dual structure and Qot from
the specific form of the Veneziano amplitude, are
then classified and their consequences explored.
We shall concentrate our attention only on scatter-
ing of pions on an arbitrary target T because pion-
mass extrapolations are small and allow direct
comparison with soft-limit results, but what we
have to say could equally be extended to other
pseudoscalar-meson-target reactions.

%e work in the framework of dual-resonance
modelss and assume that planar duality holds, i.e.,
the scattering amplitude A(s, t, u) has the quark
underlying structure given by duality diagrams. v

It can then be written as a snm of (s, t), (u, t), and
(s, u) terms, each term exhibiting poles in two
channels s and t, etc. According to the physical
situation, these quark-model nonexotic poles are

&f&= P[v(s, t)+ V(u, t)]+ 5U(s, u),

~,'= &[V(s, t) —V(u, t)],
A,' = yU(s, u) .

(2a)

(2c)

In principle, V(s, t) and U(s, u) are not the same
function, and of the four Veneziano Clebsch-Gor-
dan coefficients o., p, 5, and y two can be ab-
sorbed in the normalization of V(s, t) and U(s, u).
Note that throughout this paper we shall never as-
sume a specific form for V(s, t) and U(s, u).

We now consider the soft-pion limit (q,', q, '-0)
in the reaction

m(q, ) + T(p, )- w(q, ) + T(p, )

and define the variable v = q„.(p, +p, )/2mr, mr be-
ing the mass of the target. If in the region v=0
the s-wave pax't of the amplitude is vanishingly
small and allows an expansion in the variable v,
then the s -wave scattering length is approximately
given by

The best justification of Eq. (3) is the success of
the current-algebra calculations of scattering

interpreted either as resonances or Regge poles.
The terms V(s, t) and V(u, t) have the same quark
structure and show no particular symmetry under
s —t Rnd u —t interchanges, respectively. The
(s, u) diagram does not change when seen from s
or u channels, and the corresponding U(s, u) term
is then taken as even under s —u interchange:

U(s, u) = U(u, s) .
Keeping in mind that a pure U(s, u) term is t

channel exotic (I, = 2) and the s —u crossing prop-
erties of the t-channel isospin amplitudes, we
write the simplest and most general t-channel iso-
spin amplitudes for TfT scattering in the form
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lengths ". Theoretically, Eq. (3) is on more se-
cure grounds for an amplitude odd under isospin
crossing because such an amplitude is constrained
to vanish at p= 0." This is in fact the amplitude
we are most interested in in this paper. We extend
Eq. (3) to each planar dual amplitude, defining in
this way the a„, a„„and a, „contributions to the
s-wave scattering lengths. Using the s —u cross-
ing properties of the g-channel amplitudes, we ob-
tain from Eqs. (2) the following expressions for
the scattering lengths:

a,'= P(a„+a„,) + 6a, „=0,
af = u(a„—a„,) = 2o'a„,

a2=ya =0.t
SQ

(4a)

(4b)

(4e)

Note that if Eq. (3) is true the addition of a Pomer-
anchuk-like term to A would not affect the scatter-
ing lengths because it is even under s —u cross-
ing. For zz scattering with physical pions, the
zero-pion-mass approximation of Eq. (3) is not
correct. ' In particular, because of the additional
symmetry, one has a,„=a„, modifying Eqs. (4a)
and (4c).

If we now go to the high-energy limit in the for-
ward direction, then

Im A(s, t = 0, u) ~ Im V(s, t = 0),+~oo (5)

which implies that the resonance contributions
from ImU(s, u) at t =0 do not add up at high ener-
gy to form Reggeons, but rather compensate
among themselves. Such compensations are
achieved in chiral schemes, "" as in the pp Vene-
ziano formula, '.""by the inclusion of low-lying
particles (daughters). For example, . in the sw

case the mass-degenerate p and c have equal and
opposite contributions to ImU(s, u). We now ex-
tend these ideas to other processes.

As ImU(s, u) does not contribute at high energy
in the forward direction, one can write for U(s, u)
superconvergent relations in the form

v ImU(s, u)dv=0 (t=0). (6)

Equation (6) holds for all odd integers k. The
most natural way of achieving this is by cancella-
tions between high- and low -partial-wave contribu-
tions in each local mass region. Then Eq. (6)
would be expected to hold also for even k. In our
applications we restrict k to a, value, k= —2, that
provides convergence even for amplitudes which
are not superconvergent, and thus safely allows
saturation with a few resonances. The test for
superconvergence then becomes the local cancella-
tion of the integral.

It is important to remark that the superconver-

gence of U(s, u) is not derived here from the pres-
ence of exotic states in the t channel, but appears
as a consequence of the dual planar structure of
the amplitude. When an exotic t channel is pres-
ent, I, = 2, Eq. (6) coincides with the supercon-
vergent relations of Brout et aL. ,

"but as shown
below in the case of nN scattering it is also valid
when there are no exotic channels.

At this stage we compare our Eqs. (1)-(6),
which we think should be kept in a Veneziano for-
mula for the gT scattering amplitude, with the
Lovelace expression. Equations (1) and (2) are
satisfied. Equations (3) and (4) are also satisfied
up to terms in m, ' in the limit of linear expansion
of the denominator I' functions. " Equation (5} is
obviously satisfied. Equation (6) is exact in the
zero-width resonance approximation. Note that
the Veneziano formula for pE scattering" also
satisfies the equations that refer to V(s, t) and

V(u, t} terms [there is no U(s, u) term in wK scat-
tering]. In the case of the mq system, conditions
(3) and (4) are not satisfied and the Lovelace for-
mula then is not correct. "

As the next step we discuss the consequences of
imposing on the gT amplitude the constraints of
the additivity quark model in the version proposed
in previous work": quark-model additivity is
additivity of V(s, t) w-quark duality diagrams gen-
erating the V(s, t) w Tdiagram. -We express the
high-energy additivity rule in the following way:

lm&~T ~&
~
~T&

S ~ o o g'~™0
Q lm(mg, .

~
A

~ wQ,.) = n Im V, (s, t = 0),

where ImVo(s, t= 0), a universal function of s, is
the amplitude for the basic n-nonstrange-quark
Q interaction and n is the number of interacting
quarks in T. Note that the additivity rule (7) does
not work for the real part of the amplitude be-
cause then V(u, t) and U(s, u) terms also contribute.
Via duality and finite energy sum rules (FESR),
the high-energy curve when extrapolated down to
the low-energy region must be, on the average,
equal to the low-energy contributions. In this way
the additivity rule (7) for the imaginary part of
the planar dual amplitude V(s, t) can be extended
to the whole range of energies.

We shall now apply these ideas to specific re-
actions and see how far they are satisfied in prac-
tice. We need to select an amplitude in which s-
channel resonances come only from V(s, t), i.e.,
the Af amplitude [Eq. (2b)]. As a "good" FESR
(k = -2), we take the Adler-Weisberger relation"
interpreted as a FESR for Af/v2, '9
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A,'(v, 0)
a,'=

lj-0
2 "ImA. '(v' 0)=(Born term)+ — '„' dv'.

(8)
The sum rule is convergent, which simplifies the
comparison of different scattering processes be-
cause no cutoffs, which may be channel-dependent,
need be introduced.

To saturate the right-hand side of (8), we gen-
eralize the procedure developed ia Ref. 17: In

the resonance region we take only the first p-wave
resonances and treat the contributions above as
high-energy contributions, i.e. , satisfying (7).
Additivity for ImV(s, t) implies, via (8}, that the
p-wave resonances also satisfy (7). We thus de-
rive a set of SU(6) relations for coupling constants
by considering the p-wave contributions to (8) of
different »T reactions (»Q, »», »K, »N, »Z, »")
in the zero-width approximation:

Wg m A P7fm' ~K 'kg m (9a)

(9b)

To obtain relations (9b) the kinematic factors ap-
pearing in the relativistic widths were approxi-
mated by putting (m~+&n„)/m„= 2, etc. , as is us-
ual in SU(6} calculations. Relations (9a) and (9b)
are SU(6) relations, as in the relativistic quark
model2'. the f'P V (pseudoscalar, pseudoscalar,
vector meson) coupling constant is proportional
to m and the BBP (baryon, baryon, pseudoscalar
meson) coupling is pseudovector in its nature with
the s-channel SU(3) mixing parameter f'-=F/(F+I&)

We could write more SU(6) relations using
target particles with higher spin (vector mesons,
for instance), but then (7) should be interpreted
in a spin-average sense. Also, if one substitutes
a kaon for the pion more SU(6) relations are ob-
tained. Note that we are not imposing the satura-
tion of the Adler-Weisberger relation with p-wave
resonances, but simply eornparing their contribu-
tions in different processes.

As. both the high-energy and low-energy con-
tributions in the right-hand side of (8) satisfy (7),
obviously the left-hand side also has to satisfy (7),
i.e. ,

check SU(6) but to stress that the vehicle for such
an over-all SU(6)-consistent picture is the idea of
duality. As emphasized several times by Rosner, "
duality is less restrictive than SU(6) or quark-
model additivity, and it is probably more funda-
mental.

This is the point of view we take from now on
when we consider the U(s, u} integrals of Eq. (6).
We have another specific reason for doing so: The
vanishing of these integrals cannot be achieved in
the framework of SU(6) quark-model L = 0 states,
as has been known for some time. " %'e are led
back to the necessity of low-lying particles to sat-
urate (6), i.e. , particles below the main trajector-
ies initiated by the SU(6) L = 0 states. In first ap-
proximation we shall include in (6) all the ob-
served p- and s-wave resonances in the first reso-
nance region, in analogy with the p, e case, " and,
because of the convergence argument referred to
above, use k= -2 as in the Adler-Weisberger re-
lation.

In general, from Eqs. (2), the U(s, w) term can
be isolated by the combination

a,'= na, (10) U(s, u) ~A,' —(P/n)A, '.
where a is a universal constant, the. scattering
length for &rQ scattering. Equation (10) with Eqs.
(4a) and (4c) reproduces Weisberg's universal
scattering lengths for scattering of soft pions on
any target. '

The equations within each of the sets (9a) and

(9b) are experimentally fairly well satisfied, but
the agreement is not so good when one equates
meson (VP») to baryon (BB&&) coupling constants.
The additivity relations provided by (7} are also
not always well satisfied. They impose the eondi
tion of having pure F coupling in the $ channel,
which is too strong. However, our aim. is not to

Equations (2), combined with the condition of no
exotic states in the s channel, allow the following
classification of the target particles according to
their quark content:

Group 1 —only one nonstrange quark in T(K, :-,...),

Group 2 —two nonstrange quarks in T(», Z, A, ...),

I~=0: y=0, @=0
(12)
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I,=-', : 5/y=-i, P/a=3. (13)

In group 1 there is no U(s, u) integral to satisfy,
and from this point of view no low-lying particles
were required in these processes. This of course
is a negative result and does not preclude the ex-
istence of these particles, but it is perhaps not an
unrelated coincidence that few, if any, low-lying
particles coupled to ~K and =g have been unmis-
takably detected. " The = resonances, " though
not definitely classified, seem to fit quite well in
the two main trajectories. "

In group 2, apart from vx itself (which leads to
the results of Gilman and Harari") we can investi-
gate Eq. (6) for 11Z scattering. The first p- and
s-wave resonances are""."A(1115), A(1405),
Z(1189), and Z(1385). Using Eqs. (11) and (12)
we compute the Ie[t-hand side of (6) for }i= —2 in
the zero-pion-mass limit to be

-(24+ 14) + (32 + 10) = -38+ 42 = 4 + 8 GeV ',
(14)

which is compatible with zero on the right-hand
side. Our proposed mechanism of local mass can-
cellations then seems to work.

In group 3 the testable case is gN scattering, but
here p/n is undetermined. Looking back to Eqs.
(2), taking t = 0 and the high-energy limit, one
sees that p/n is related to f' =-Fj(E+D) by"

P/n =4f' —1. (15)

The fi.rst p- and- s-wave resonances' * are now

the N(938), N(1460), N(1525) and A(1236), and Eq.
(6) gives

(1 —p/o. )(104+9.2+ 1.1) + (2+ p/o. )(60.8) = 0 (16)

Group 3 —three nonstrange quarks in T(N, A, ...),
Ir= —', : y=0, no constraint on p/n;

violations in the universal scattering lengths. Tak-
ing. the pN a,' scattering length as the standard
quantity a, the scattering lengths for Nz, Zz, and
-p would be

Zw: a11=2f'a=3a,

:-x: a 11 = (2f ' —I)a = 2a .
(18}

(19)

For g'g p they are larger than predicted by uni-
versality. Neither (18) nor (19) can be unambig-
uously tested. It should be kept in mind that any
result for scattering lengths relies on the validity
of (3).

Other possible tests of Eq. (6) are more specula-
tive. However, we shall consider np and wh(1236)
scattering using spin-averaged amplitudes.

For 11p, inserting the w, &u, and A, poles, Eq. (6)
gives

(m~'-m ')'
4gPÃ1l 2g 2+ +7 P . (2g R+g 2) 0

P PBQ

(20)

where g, and g, are, respectively, the transverse
and longitudinal couplings iri the A, pg decay,
with I'„z,= ( I/12')( 2g,

'
+g,')q'/m„'. To keep con-

sistency with our previous arguments and the local
saturation of (6) with s- and p-waves only, the
A, - pn decay should occur in a purely orbital s
state. This corresponds to ~g,/g, ~

=1. (For in-
formation on the experimental situation and theo-
retical analysis of A, data, see Ref. 28. To make
an estimate of I'„&„we allow ourselves some free-
dom in playing simultaneously with SU(6) and chir-
al symmetry. From SU(6) we borrow the relation"
4gp,„'jm~' =g ~,', and from chiral symmetry"'"
(or experiment), m„' = 2m~'. Neglecting terms
in m, ', Eq. (20) then gives

and, from (15),

f '= l.4+0.1.
r„„,=(I/vY)r „,

=90 MeV.

(21a)

(21b)

Tllls VRlue of f, 1R1'gel' 'tllR11 tile SU(6) q11R1'k-111od-

el value f'=1, is in reasonable agreement with the
experimental determination and other theoretical
predictions of f'= 1.5 (see Ref. 27 and further
references there). If our arguments about the van-
ishing of the IJ(s, u) integral by cancellations in
narrow mass strips are right, Eq. (17) determines
a high-energy parameter from only a few low-
energy resonances. Because of the rapid conver-
gence of (6), additional high-energy contributions
to (16) or to (14) would not change the results ap-
preciably.

Returning to the s-wave scattering lengths, de-
viations from the high-energy quark-model addi-
tivity, as indicated by f ' e 1, are expected to cause

The width predicted in (2lb} is quite acceptable
(experimental value": ~ 95 MeV).

For wb, scattering (6), saturated with the same
contributions as in the nÃ case I the 1V(1525) is
here negligiblej, allows a prediction for the 6611
coupling constant. %e use data from Sutherland's
work" and his definition of the ~~p coupling:
gg++g+ ~+ $ ~ ysgp„. Tile 1'eslllt ls

2
35+2

4~
(22)

in good agreement with the SU(6) value, -32 (Refs,
28 and 30). In Ref. 30, from the Adler-Weisberg-
er relation, a larger value is obtained, but this,
we think, is related to the general difficulty in
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saturating the Adler-Weisberger relation with a
restricted number of resonances. """

We summarize the main points in our work. A

generalization of the Veneziano-Lovelace formula
to other nT processes should preserve fully the
power of duality. This implies having simulta-
neously satisfactory low- and high-energy behav-
iors and the correct dual connection between them.
Equations (l) —(6), we believe, form a sort of pre-
scription to follow in attempts to obtain realistic

Veneziano formulas. The tests of Eq. (6) in nZ

and pN scattering and in gp and 7t h scattering us-
ing local mass cancellations are encouraging.
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