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We study here the scattering of a charged vector meson (without the anomalous magnetic
moment) in a static field, The scattering amplitude for such a process is obtained explicitly
in the case of a central field, We find that the simple-exponentiation form of the eikonal

approximation does not occur.

I. INTRODUCTION

More than a decade ago, a number of authors
discovered' that the scattering amplitude of a high-
energy scalar meson (or a fermion without the an-
omalous magnetic moment) in a static field takes
the simple-exponentiation form of the eikonal ap-
proximation. Two years ago, several authors have
found that, at high energies, this simple-exponen-
tiation form holds for the multi-photon-exchange
amplitude of electron-electron scattering®:%or
pion-pion scattering.* There remained the ques-
tion of whether the simple-exponentiation form in
fact occurs in all high-energy amplitudes.

Lately, it has become clear that this cannot be
true. When the particles in collision have finite
sizes or internal degrees of freedom, the simple-
exponentiation form does not occur.

Several examples of this breakdown of simple ex-
ponentiation have been given. In field-theoretic
models, for instance, the failure of exponentiation
is due to the fact that a particle in collision devel-
ops a structure by creating particles.’”” Since
field-theoretic models are difficult to handle, we
have also sought easier and physically more trans-
parent examples in potential scattering. In particu-
lar, we have studied the following two cases: (i)
potential scattering with more than one channel®;
(ii) potential scattering of a fermion with an
anomalous magnetic moment.® In both instances,
breakdown of the simple-exponentiation form oc-
curs. Case (ii) is closely related to case (i): A
fermion has two spin states which do not decouple
at high energies if the fermion has an anomalous
magnetic moment.

In this paper, we shall study the scattering of a
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charged vector meson in a static field. We shall
show that the simple-exponentiation form does not
occur even if the vector meson has no anomalous
magnetic moment. Physically, this is because the
spin states of a vector meson do not decouple at
high energies even if the vector meson has no
anomalous magnetic moment —a fact which can be
easily checked by examining the Born term. Thus
the case of the vector meson is equivalent to the
potential-scattering case with more than one chan-
nel.

II. VECTOR MESON IN STATIC FIELD

We here consider the interaction of a charged
vector meson'® with a static field. We shall des-
ignate the magnetic moment of this vector meson
to be (1+«k)(e/2M)S, where S and M are the spin
and the mass of the vector meson, respectively.
The wave function ¢, of a vector meson in a static
field V(X) satisfies!!

89,Gyy - M*$, +iekp, F,,=0, 2.1)

where
Gpu:ap‘bu - au¢u » ‘

9 )
BH*EE—ZQAH :

A, =i8,,V(X),
and

BV ox,  ax,

Equation (2.1) can also be written as

445
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5% o2 2 3P, ® o¢ 9
- - = - —A e = 2 - o e
8x,0%, P 8x,0%), Pu=M¢, =te (A“Bxu +8x“ (Aupy) =4y ox, 0x, ‘A”(b“)) +e* (A A by~ ALAL ) —iekp, Fy, .
(2.2)
Applying 9, to (2.1), we get
9,0,Gy~M?0,p, +iekd, ¢, F, =0, (2.3)
which will be useful later. The boundary condition is
lim ¢, (x)=e " EtP2)q (2.4)
where a, is a constant and z is the third component of the four-vector x,.
We give explicitly the four equations contained in (2.1):
N ‘ - 3 B
[(E - eV)?+V2 =M, +i(E - eV)—a—cpo——-a—V c ¢ +iekp,— V(X)=0, j=1,2, and 3 (2.5)
ox; o9X; dx;
(V2 = M?)p,—iV - [E - eVX)|p +iekd - VV(X) =0 . (2.6)
Putting
‘IJU - eiE(t-z)d)V , (2.7)

we rewrite (2.5) and (2.6) as

- >

9 = - - - . =3 >
<—2EeV+2iE5;+V2 - M? +¢? Vz) 3, +i(E -eV)V,®, - vl[ (zE +53—> P3+V,e QL]HQK%V'LV(X) =0, (2.8)
z

- 9 . 0 \= = . 9 - !
(—2EeV+E2+V 2 = M® +e*V?)®, +i(E -eV)(iE +'a;)‘1>o—(lE +-5;)Vl- <I>l+zel<c1>0£ V(%) =0, (2.9)
and
9, " - S - .
<-E,2 +2E 5~Z-+v2 —M2><1>0 -1 (zE +5%->[E —eVR)]®, — iV, ' [E - eV(X)]|®, +iexd  VV(R) =8 (2.10)

In the above equations, & L and v , are the transverse parts (containing the first and the second component)
of ¥ and V, respectively. ‘

For the convenience of later calculations, we shall choose the dependent variables in (2.8)—(2:10) to be
&, ®_=&,-d,, and &,. Then (2.8)-(2.10) become

(zi(E —eV)D - ieg—zzmz +V 2 M2 ——V;ﬁl'>5l+[iek(—V’lV) —DV, &, +[i(E - eV) +D|V 0 _ =0, (2.11)

_-

-~ F) -
~[i{(E -eV) +fD]VlwI>L+<i(E —eV)D+V 2 - M? +iel(5'; V) ®,-[(E -eVP+V?-M*®_=0, (2.12)
and

[=i(E - eV)¥, +ie(1 +K)(V, V)] &,

- ) . ) OV
+<z'(E —eV)D+D2+V 2 -M? +iefcgzv:><1>o - ((E ~eV)? - i(E=eV)D+iefl +x)_5‘;)4>_ =0,

(2.13)
where

:D=~§-+ieVl (2.14)
0z

Finally, we shall rewrite (2.3) into a more convenient form. We first observe that
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(84, 9A,
9,0,Gpy==9,0,G,y==8,8,G ;= =0,0,G +ze< L Gy

PRy dx, 9x,
_ , 0A
——3u3“0pu+2wax:0w ,
thus
. 0Ay
9,0,G,,=ie=—G,,. (2.15)
AT 8x“ ue
From (2.3) and (2.15), we get
_ie(1+K)Z_}C,~<Z_;h_i(E —eV)q>j> —MP[—i(E —eV)py+V+ ¢| —iekp,VEV=0. (2.16)
i 1

Substituting (2.7) into (2.16), we get
[eQ+k)(E - eV)(V,V) +M?*¥,]- &,

+<ie(1 +K)%§D +ie(l +K)(_V,_,_V) . _V'l+M25D +iek(V2V)><I>o - (e(l +K)%§(E -eV)+M%(E - eV—i‘.D)> &_=0.

(2.17)
Although Eq. (2.17) is already contained in Eqgs. (2.11)-(2.13), it is useful in later calculations.

In the following sections, we shall solve (2.11)—(2.13) to obtain the scattering amplitude in the high-ener-
gy limit.
III. THE WAVE FUNCTION
In this section we shall solve (2.11)-(2.13) in the limit E =, for the special case x=0.

When «=0, (2.11)-(2.13) take the form
<2i(E -eV)D -iegng Ve TV, >5l—5)—v’ld>o+[i (E-eV)+D]|V,&.=0, (3.1)

JiE-eV)+D]V, S, +[i(E-eVD+V 2 -M?|®,-[(E - eV +V 2-M?]d_=0, (3.2)

and

[—i(E - eNV,+ie(V, V)] &, +[i(E - e VD +D?+V 2 = M?]| &, — ((E —-eV)? —i(E - eV):D+ieg><1>_ =0. (3.3)
In the limit E -, (2.4) and (2.7) give
lim @,(x)~a, . (3.4)

g—>=o0

By Lorentz covariance, a, and a, are O(E), while &, is O(1).
Also, Eq. (2.17) becomes, at k=0,

— o 5 ~ ~
[e(E -eV)(V,V)+M?V,]- <I>l+<ie8—y:l) +ie(V, V). VL+M25D) o, - [(E -eV) (egH'Mz) +M2:D]<1>_ =0. (3.5)

A. The Wave Function in the Leading Order
We shall solve (3.1)—(3.4) in the limit E ~~. We make the asymptotic expansion
& =(E/M)®Y +83 +ME '@ +- -+,

&_=(E/M)®?+d®P +ME '@ +...,

(3.6)
3, =(E/M3?+3L + ME"E@ 4+ -
and substitute it into (3.1)-(3.3). The leading term in (3.2) (proportional to E2) immediately gives
9=0. (3.7

Similarly, the leading term in (3.1) gives
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D3P =0,
which, together with (3.4) and &, =0(1), implies that
3P =0. (3.8)
Next we equate to zero the terms that are O(E) in (3.1) and the terms that are O(E?) in (3.2):
2% D3P - MDYV 9 +iV,82 =0 (3.9)
and
iDdY - Mo =0, (3.10)

Because equating the terms which are O(E?) in (3.3) to zero also gives Eq. (3.10), we still need one more
equation for determining &, &%, and . We can go to the higher-order terms in (3.2) and (3.3), but it
is much simpler to collect the leading terms in (3.5):

e(V,V) -39+ <z‘eg§0 +ie(V,V)- 'v’l+MZ:D> Y <eg+z’M2) ¥ =0. (3.11)
Making use of (3.10), we reduce (3.11) into

(¥, V) 3L +[ieM MV V)V, +2MD]®P =0. (3.12)

Egs. (3.9), (3.10), and (3.12) constitute a complete set of equations which we can solve to obtain the leading
terms of &, ®_, and ®,.
Let us set

_ﬁ1=[?{;‘f+iM'1_V7l<I>§,°’]exp(iesz(il,z')dz’> ,
F0=<I>(0°)exp(ie f‘ V(il,z')dz’> s (3.13)

Gl=<1>‘_”exp<ie sz(iJ_,z’)dz'> ,

and substitute (3.13) into (3.9), (3.10), and (3.12). We get

By oM@, 1)F, =0, (3.14)

ot ieM™ (V1) H, =0, (3.15)
and

G =i MR, (3.16)

Note that (3.14)~(3.16) are no longer partial differential equations. Equations (3.14) and (3.15) can be writ-
ten in the matrix form
o |

Py

H,
=4eM™*A |H,| , (3.17)
F, F,

where H, and H, are the components of —ﬁl and

0 0 oV/ox
A= 0 0 avV/oy |. (3.18)
-0V/ox =8V/ody 0

If the potential V(X) is a central field, i.e., V(X)=V(r), where » =|X|, then
A=r"V'(»)B, (3.19)

where
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d
d = —
V' (r) d'rV(T)
and
0 0 «x
B=|0 0 yf. (8.20)
-x -y 0

The important point to observe is that B is independent of z. Since, in the process of solving (3.17), we
can treat B as a constant, it is possible to obtain the solution of (3.17) in closed form.

We write
Y x x 0 o0 0 Y -x 0
B=|%,|"" |-x y 0 x| o0 3y —u|%]|, (3.21)
0 Z‘;{,LI —i'i_Ll 0 0 _ilij_‘ éx %y %”EL'
where

|X,[2=x2+3?. From (3.17)—(3.21), we then obtain

H, y X X 1 0 O Yy -x 0 a,
Hy|=|X ]2 |-x v y 0e" 0 X 3y -3 %] a,
F, 0 4%, =% Jl0 0 e |{ix 3y Zil|X,|||ME-a
(* +x%cosW)/|%.[? —xy(1 - cosW)/|%.|* xsinW|ZX, | a
= | —xy(1 = cosW)/|X,|® (x2+y%cosW)/|%X,|? ysinW|X, | a, , (3.22)
—-xsinW/|%,| -y sinW/ | %, | cosW ME ~q,
where
z
W=eM R [ VAR RN R e (3.23)
and a,, a,, and g, are related to the incident wave vector and are defined in (2.4) or (3.4).
From (3.22) and (3.13), we get
=] ~(xa, + ya,)| X,| ! sinW + ME ~'a, cosW] exp< —ie[:V(iL, z’)dz’), (3.24)
&= —2ieM2V (| X| )| X| Y (xa, + ya,) cosW + ME™*| % | a, sinW]exp(—iesz(il, z’)dz’) , (3.25)

z
& V=[a,(y?* +x% cosW)| X,|~2 - ayxy(1 = cosW)| X, | "2 + ME " *ax| %X, |~ sinW ] exp( —ie ]:wV('iL, z')dz’ > —iM"aix‘b“;” ,
(3.26)
and
z
®=[-axy(1- cosW)| X,| "2+ a,(x% ¥* cosW) | X, | =% + ME 'a,y| %, |~ sinw]exp< —ie ,/;,V&“ z’)dz'> i1 %‘I’(om )
(3.27)

Notice that lim &?’=0, since V’ vanishes at infinity.

X | o0

B. The Wave Function in the Next Order

We shall now give the equations which determine &4, 2 and . These three equations are obtained
by equating to zero, respectively, the following: (i) the terms which are O(1) in (3.1); (ii) the terms which
are O(E) in (3.2); (iii) the terms which are O(1) in (3.5). We get

2iMDE? EDGLKI)((,” +iMV, 2= (ZieV:D +ie%¥ - D2V, 2+ M?+V,V, ) W 4 (ieV - D)V, 'Y, (3.28)
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iD= MO -3V, 3D 1 (1eVD - V, 2+ MM ) = 20V | (3.29)
and
- - Y - -
eM(V, V)@ 4+ (leahzﬂ)+ze(VLV) . VL+M2> el eMz—Zé(_z’

=[e2V(V, V) -M2V, ]3P - l:eV (eg+zM2) —MZ.:D] oL,

3.30
Although Eqgs. (3.28)-(3.30) are easy to solve, their solutions are quite complicated. Fortunately, f(or thze
purpose of obtaining the scattering amplitude, we need only the asymptotic form of the wave function in the
limit z—~. In particular, we shall need lim,_. ®®.
As z—, the potential V can be neglected, and (2.2) and (2.3) become

82
—M2>¢ ~0, z=w (3.31)
<8xuaxu v
and
9y
5—9‘-}~o, Zeco, (3.32)

Substituting (2.7) into (3.31) and (3.32), we get

- S )
<21E.E+Q+VL2—M‘>@"~O, Z =0 (3‘33)
and
b, .
—Z'E‘ﬁ_+'—a;+VL'(I)J_~O, Z -0, (3.34)

From (3.33), we get

ed;” ~i(2E)" WV, 2 -MP)®,, z—, (3.35)

the term 8°®,/82” being negligible. From (3.34) and (3.35), we get

L] - = -
ﬁ)N—iE_IVL'@J.“L (2E2)-1(VJ.2"'M2)‘1>0; g0, (3.36)

®_~ —iE‘1(§l°$l+

Notice that ® - is of the order of E~! in the limit z—~. This is consistent with the earlier observation that
lim, ,, %' =0. Equations (3.35) and (3.36) can also be obtained from (3.28)-(3.30) by setting V =0.

Finally, let us write down explicitly the wave functions in the limit z—«. We have from (3.10) and (3.24)

—(3.27) that, as z—,

&, ~[=(xa, +va,)| X, | "EM ™ sinU + a, cosU] exp( —ief VX, z’)dz') (3.37)
and
&, ~[3, -%,,-&,)(1 = cosU)| %, |2 +ME'1aO§L|ij"sinU]exp( -ief VX, z’)dz’) —iE7WV, &, (3.38)
where
© VX, 2")
_1 -1 L ’
U=3eM ™%, | /:w CEENFAREE dz'. (3.39)

C. The Polarization Vectors

The incoming vector meson has three polarizations. They are, in the limit E o,

[1,0,0,0], (3.40)
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[0,1,0,0], (3.41)
[0,0, E/M, iE/M = isM/E], (3.42)

where we use the notation [a,, a,, a,, a,] for a four-vector. The first two vectors, given by (3.40) and (3.41),
respectively, are transverse, while the third vector, given by (3.42), is longitudinal.

Let us denote the momentum transfer as K, which is taken to be in the direction of the x axis. Then the
outgoing vector meson can have the following three polarizations:

[1,0, -aE™, 0], (3.43)

[0,1,0,0], (3.44)
and

[A/M,0,E/M - 30%/(EM), iE/M - 5iM/E], (3.45)

where A =|A|. The polarization vectors given by (3.43) and (3.44) are transverse, while that given by
(3.45) is longitudinal.

IV. THE SCATTERING AMPLITUDE

The scattering amplitude is equal to the integral of the right-hand side of (2.2) multiplied by the complex
conjugate of the wave function of the outgoing plane wave. Thus

E)Ilﬁzb,j‘fd3xd""f"[ie(A L (A,@,J) -, % -%(Avcpu))w?(A Ayt -A A D,) ~iekd, ,w]

#ax, *ox,
) . (4.1)
By making use of Eq. (2.2), (4.1) is reduced to
2
mpx [ dixemir| 2 8 (3
My b”.[ xe [axuaxu ¢y ax axu Mo, | . (4.2)

In the above, b, and p; are, respectively, the polarization vector and the four-mementum of the outgoing
vector meson.

Since \
(axfax -M) ¢, and _a_a%
are both zero if ¢, is a free field, we may rewrite (4.2) as
8% i
_b*f d%ce“!vx(ax o7, - 57,07, (;b Mchy)_, (4.3)
where
Gy=¢, —e i%a, , 4.9

with @, and p; the polarization vector and the four-momentum, respectively;, of the incoming vector mesen.
Notice that ¢, vanishes at infinity.

In order to make use of the results in Sec. III on the asymptotic form of the wave function in the limit
z-o, we write (4.3) as

X 32 . 82
M, ; =lim b f dx e=ibs* (4.5)
lzl<L

by 2
Lo 0%,8%, = 0X,0%, Pu-M ¢"> '
In fact, if the external field vanishes outside of a finite region, we only need to-take L large enough so that
the external field vanishes for | z|>L. This is because (2.2) becomes the free wave equation in the region
where A, vanishes, and the integrand in (4. 5) is equal to zero. For- clamty of .argument it is helpful to.
imagine that L can be so chosen and the hmxtmg process L = is unnecessgry.
We also observe that sinee ¢;,=e*#*b, is a free field, we have

0 (P!u 0 8 2
—V =0 and - =0.
X 0%,9%, M )05

v
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Therefore, if we perform integration by parts to get the differential operators in (4.5) to apply on the final-
state wave function ¢;,, the integrand vanishes and we are left with only the surface terms. Furthermore,
the integrated terms at the surfaces | x| =» and | y| =« vanish as ¢, vanishes at infinity, and the integrated
terms at the surface z=~—L vanishes because of the boundary condition. Thus we are left with only those
terms contributed by the surface z=L and originating from integration by parts with respect to 2. Thus
(4.5) is reduced to

- " -
mfi:}’i_g}afdsz.(Cb}kya_:;z_avm*' % éﬂ) (4.6)

13
9z axu

z=L "

Since a@,/ax,l vanishes if the external field vanishes, we can drop it from (4.6). Thus (4.6) is finally re-
duced to

(4.7)

. 0, — 0df
My, =tim [ a%, (o7, 227, 220

z=L

So far no approximation has been made and (4.7) is exact.
In the high-energy limit E - (4.7) is reduced to

My, ~ 2Ez‘fazzxl lim ¢}, ¢, = 2Ei fdle e“'“nm[ bi®, — b;}‘a,,] , (4.8)
Z2>% Zz >0
where (2.7) has been used. We may, alternatively, write (4.8) as
M,y ~ 2Eifd2xle‘m" lim [-03(2_-a.) -b%(@, - a,) +ore@,-14,)], (4.9)

where b_=b,-0b,.

In the following, we shall explicitly calculate I,; from (4.9), (3.36)-(3.38), and (3.31). We shall consider
only the case in which the potential is central so that the wave function is given by (3.36)—(3.38).

A. Transverse to Transverse

If both the incoming and the outgoing vector mesons are of transverse polarization, then b, and b- are
both O(E™") and a,=a,=0. Equation (4.9) becomes

My~ 283 [ dPx,e7its ;ig}o[ —bt(@o—ao)df-(i—a)]. (4.10)
Substituting (3.37) and (3.38) into (4.10), we get
2 [ ate,emsox| (b - G B, A - costl Rl esplie | VR, 2hdz) Fees |-
In obtaining (4.11), we have set
fdlee'm"[—bt(tbo—ao) —~iE~ ¥ V,8,]=0. (4.12)
Equz;tion (4.12) is true because
iE™? f d?x, e" 8 0%V &, =iE ™ J d?x, e~14%b¥ - Y, (@~ ag)

=—E’1fdlee‘i“(ﬁ}"ﬁ)(@o—ao), (4.13)

the last step following an integration by parts. Furthermore, from (3.36) or (3.37), it is easily shown that
b_=E"(b,-R)

if b, is transverse. Thus (4.12) is verified.
Since we have taken V to be central, we may make in (4.11) the replacement

(&, - DY&, &) = (b F +y08)(xay +yaz) = x*abf +y7azbf - (4.14)
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This is because the terms linear in y vanish upon integration as they are odd functions of v. Thus if &, and
b, are both in the scattering plane, we have

M, ~ 2E¢ f dlee‘m"[ [1-%%|%,] 2(1 - cosU)] exp<-z'e Jm VE,, z)dz) ~ 1:!. (4.15)
If 2, and ﬁL are both perpendicular to the scattering plane, we have

9, ~ 2E; fdlee—iAx[[]_ -9 %, ~3(1 - cosU)] exp< -ie Jw VX, z)dz) -~ 1} . (4.186)
If one of 3, and b . is parallel to the scattering plane and the other is perpendicular to the scattering

plane, the scattering amplitude vanishes.
In terms of the helicity states, we have

I, =M__ ”inJ'dlee_iAx[%(l +cosl) exp(—ief V(il,z)dz> -1}, (4.17)

and

EYII+_=3II_+~Ein2xLe'iA"(y2 —xz)lill'z(l—cosU)exp(—ief V(?(l,z)dz>. (4.18)

In the above I, _ designates the scattering amplitude for the case in which the incoming vector meson is
of helicity —1 and the outgoing vector meson is of helicity +1. The other notations should be obvious.
Notice that at the forward direction A =0, we have 9,_=M_, =0.

B. Longitudinal to Transverse

As long as the outgoing vector meson is of transverse polarization, (4.10) always holds. Now if the incom-
ing vector meson is of longitudinal polarization, we have from (3.37)~(3.38) that, as z -+,

®,~EM ™ cosU exp(—z‘e f V(}?L,z’)dz’> s (4.19)

& ~%,|%, | tsinU exp< —ie f Vi, Z')d2'> —iE™V, &,. (4.20)

Substituting (4.19) and (4.20) into (4.10) and remembering (4.12), we get

mfi"zEl.fdlee-iAx(Br'il)lil’—1SinUeXp<_ief V(il, Z)dZ). (4 21)

Thus, if the polarization vector of the outgoing vector meson lies in the scattering plane, the scattering
amplitude is given by

2Ez’fd2xle“'“x] X, |t sinUexp(-—ie f V(X,, 2)dz ) (4.22)

And if the polarization vector of the outgoing vector meson is perpendicular to the scattering plane, the
scattering amplitude vanishes.
From (4.22), the helicity amplitudes are given by

Mo =M
=V2Ei J.dlee‘m"xlil -t sinUexp< —ief V(X,, z)dz >, (4.23)

where 91,, (9_,) is the amplitude for the transition from the helicity-zero state to the helicity-plus-
(minus-) one state.
Notice that (4.22) and the right-hand side of (4.23) both vanish at A =0.

C. Transverse to Longitudinal

If the outgoing vector meson is longitudinal and the incoming vector meson is transverse, we have from
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(3.38) and (4.9) that
IMy; ~2Ei f d?x,e” A lim [-EM @+ 2EM)H(M? - A&+ AM P, - a,)], (4.24)
Z—0
a, and a- being zero. From (3.36), we have
J-dlee‘““‘ lim(-EM™®_) = J‘dzxLe"'A" lim [iM™V ,+ (®, -3,) - (REM)™(V .2 - M?)%,)
= fdlee"w" lim [~AMY(®, —a,)+ (2EM) (A% + M?),]. (4.25)
The last step is a result of integration by parts. Combining (4.24), (4.25), and (3.37), we get
My, ~ 2Mijd2xle"’“ lim &,
~—2Ez’f d?x,e” 8% (xa,) | X, |t sinUexp(—z‘ej VX, z)dz > (4.26)

Thus, if the polarization vector of the incoming vector meson is in the scattering plane, the scattering am-
plitude is equal to

__infdzxLe‘“l" xlill'lsinUexp<—ief V(Sil,z)dz>. (4.27)

And if the polarization vector of the incoming vector meson is perpendicular to the scattering plane, the
scattering amplitude vanishes. We also have

M, =9,_= —\/—Z'Eifdlee'i“ x| f{ll'lsinUexp( —z’ef VX, z)dz ) (4.28)

Notice that, aside from the sign, (4.27) and (4.28) are, respectively, identical to (4.22) and (4.23).

D. Longitudinal to Longitudinal

If both the incoming and the outgoing vector mesons are longitudinal, we have from (3.35), (3.38), and
(4.9), that

IM,; ~2Ei f d?x e thx lim [-EM™®_ + CME) ™M (M? - 83+ AM™'®, — 1+ 38°M2] (4.29)
Now, similar to (4.25), we may derive the equality
fdlee-foEgrg (-EM™®_)= fdleef"A"li_L{l[—AM"<I>,+(2EM)'1(A2+M2)<I>O — $AZM2], (4.30)
Substituting (4.30) into (4.29), we get
<My ~2Ez’fd2xle’m"£il§ (ME™®,-1)
~2Ez’fd2xle"'A"[cosUexp< —ie f_m VE,, z’)dz’) - 1] . (4.31)

In deriving (4.31), we have made use of (3.37) and (3.35).

V. SUMMARY
For the convenience of later uses, we list together here all the helicity amplitudes obtained in See. IV:
I, ~2Eijd2xle'im‘l:§(1 +cosU) exp< —ief Vi, z)dz> - 1} s

M. =m,,,
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My, ~2E% J'dlee'm" [cosUexp( —z‘ef VX, 2)dz ) - 1],

fﬁaoﬁ/?EifdzxLe“i“x!iLl'l sinU exp< —ief VX, Z)d2>, (5.1)

Mg =M.,
My, ==Myo,
My = =My,

M, - ~Eifdlee‘iAx(y2 - x%)|%,]"2(1 = cosU) exp< —ie f VX, z)dz) s

Mo, =M, _,
with U given by (3.39).

As is seen from (5.1), all of the helicity amplitudes fail to exhibit the simple-exponentiation form of
Moliére.! This failure is due to the coupling of the three helicity states of a vector meson. Thus we have
once again verified, in a special example, that the failure of simple exponentiation always occurs if a par-
ticle has several degrees of freedom and they couple together. We shall next discuss the implications of

(5.1).

A. Born Term

It is probably worthwhile to list the Born terms
of the scattering amplitudes below. They are

MO ~2EeV (X),
M. =

Tt
m) -,
M2 ~ (2) /2 EeMi [ dx et %x| £V ()
:(2)'1/2EeM'1z'fd3x emiax?V
ox
= =(2)"V2EM-1AeT(R),
m% =m3, (5.2)
g = -on2,
M - ~m2.
mB ~o,
and
m® ~0.
In the above, V(&) is the Fourier transform of
V(x):
17(K)-=fd3x e iy,

Note that (5.2) implies that the helicity of a vector
meson can change by one unit by interacting once
with the external field. It also suggests a simple
way to test whether simple exponentiation can be

-

expected: We study the Born terms in the high-
energy limit. If coupling occurs in more than one

" channel, simple exponentiation cannot occur for an

arbitrary potential.
B. Higher-Order Terms

It is also possible to obtain (5.2) easily from the
Feynman rules. However, the calculation of the
higher-order terms is rather difficult by the Feyn-
man method. For example, in the second order,
an individual Feynman diagram .can give an ampli-
tude of the order of s®. We have explicitly checked
that, upon adding up all second-order amplitudes,
the s® terms cancel out. We have not even at-
tempted, however, to check the cancellation of the
s(Ins)" terms, z=1,2,..., with the Feynman meth-
od. Our calculations in Sec. IV imply that all loga-
rithmic factors indeed cancel in all orders of per-
turbation. In fact (5.1) is much more simple and
elegant than what the perturbation calculations
suggest. '

C. Selection Rules

We note from (5.2) that, in the lowest order, the
helicity can either remain the same or change by
one unit, but it cannot change by two units. Thus
all helicity states are coupled together, as we have
mentioned before. In the second order, change of
two helicity units is allowed, as is evidenced from
(5.1).

In the forward direction A =0, all of the helicity-
flip amplitudes vanish. This is a result of conser-
vation of angular momentum.

From (5.1) we have
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M, =9M__,
Mo =M o,
My, =M, _,
oM, =9M_, .

Equations (5.3)are simply a consequence of invari-
ance under space reflection. Another way to ex-
press (5.3) is that there are three polarization
states: (i) the one with longitudinal polarization;
(ii) the one with the polarization vector lying in
the scattering plane; (iii) the one with the polar-
ization vector perpendicular to the scattering
plane. States (i) and (ii) couple together, while
(iii) only couples to itself.

To conclude, there are no selection rules emerg-
ing in the limit of infinite energy. The only selec-
tion rules found are consequences of sacred laws
such as the conservation of angular momentum or
parity —and hold for low and intermediate, as well
as high energy.

(5.3)

D. Ultraviolet Divergence

Let us consider the specific example

N o e-Ixl )
V(IXI):g(4”) '5{»] )

(5.4)
then
e fw dz V(X ,, z) =eg(2m) K, (| X, [) (5.5)

and

U= %eM"IiLIJ V(X 2)(X, 2+ 22) "1 2dg

PG B S
=zeM™|X, | x la_xf_mv(xl’ z)dz

=zeM™'g(2m) K, (%, ]). (5.6)
Thus, as |X,|~0, we have
U=0(%.[). (5.7)

As a result of (5.7), the nth Born term, n>1,
contains integrals of the form

A ARS

which diverges at |%,|=0. Thus if V is a single
Yukawa potential, all the higher-order Born terms
have ultraviolet divergences and are not defined.
However, the sum of all these terms at high ener-
gies is formally given by (5.1), which is in the
form of convergent integrals. The physical implica-
tions of this are most interesting and will be stud-
ied in a separate paper.
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