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The second-order electromagnetic corrections to the GoMberger-Treiman relation are dis-
cussed. It is shown that when this relation is expressed in terms of physical coupling con-
stants and masses, renormalized by electromagnetism, the residual electromagnetic correc-
tions are finite. The derivation assumes, among other things, the existence of operator-
product expansions at short distances and Wilson's enumeration of the fields of low dimension-
ality. Furthermore, the hadronic matrix elements in the corrections of order e are treated
in the PCAC {partial conservation of axial-vector current) approximation. Some observations
are made concerning the applicability of PCAC to the study of radiative corrections. A new
physical decay constant, f~, renormalized by electromagnetism, is introduced and deter-
mined from experiment. Some salient features of the theory of P decay to first order in G. are
reviewed, with particular emphasis on the role played by the renormalized constants.

I. INTRODUCTION

M(s-P + e +v) = (G,-/~a[(g„- e,}L'+nW],
(la)
(lb)Ul =u.[f'(q'}»+ I' f.(q')o~.q "] .,

In this paper we discuss the high-frequency con-
tributions to the electromagnetic corrections of
order o. to the Goldberger-Treiman relation. "
As in this problem the axial-vector coupling con-
stant is involved in a fundamental way, it is neces-
sary to review some salient features of the radia-
tive corrections to neutron P decay.

It has been known for some time that if the con-
tributions of order nl/M and nq/M are neglected
(l is the electron momentum, q is the total momen-
tum transfer to the leptons, and M is a generic
hadronic mass), the sum of the diagrams of zeroth
order in a and the virtual corrections depicted in
Pig. 1 can be written in the form'

In many cases such as i.n neutron decay or in al-
lowed P decays, it is clearly a good approximation
to further neglect the q' dependence of the form
factors and the terms linear in q in which case
Eq. (1) reads'
M(n P+ e--+ v)

=(G„/va)[u, (f„'y, -g„'y„y,) „L'+~M~], (2)

where f'„=f', (0) and g„' =g((0) are constants "re-
normalized" by electromagnetism. The quantities
G'„=G„fv and G—„' —= G„g„' can then be regarded as
the basic parameters to be determined by experi-
ments in allowed P decays. In fact, the phenome-
nological determination of the real parts of G'„and
C„' has been recently discussed by Blin-Stoyle and
Freemans and by Shann 9.xo

As we show in detail in Sec. IV, a similar analy-
sis can be made in the case of m--p, + v„.decay.
The sum of the diagrams of zeroth order in e and
the corrections depicted in Fig. 2 can be written as

~ = p[gl(q'}»+ g.(q'}ql]~.~. , (lc) M(ll -p, + v&) =(G„/W2)( if/ ~L"+ nN~)-,

where L„=&7,y„(1 -y, )v, i sthe lepton current, the
bare vector coupling constant C~ is to be identified
with G„cos& in the Cabibbo theory, f,'(q') and
g', (q'} are vector and axial-vector form factors
which contain contributions of zero and first order
in o., and f,(q') and g, (q') are the usual "weak
magnetism" and "induced pseudoscalar" form fac-
tors. ' The quantity nlVP is a known amplitude
which is free from ultraviolet divergences and in-
volves complicated functions of the invariants q2

alld (p'f) (p ls tile llllcleoll lllolllellilllll). Fl11'tllel'-

more, nM contains all the contributions from in-
frared virtual photons and is independent of the
choice of gauge in the covariant photon propagator.

where I'„ is the pion four-momentum, f„' is a cou-
pling constant "renormalized" by electromagnet-
ism, and nN~ is a known quantity which contains
all the infrared divergences and which is free from
ultraviolet divergences. The precise definition of
uN~ and the determination of G„~f,' ~

from experi-
ments is analyzed in Sec. IV. We will therefore
regard g„' and f,' as the physical decay constants
when electromagnetism is included to order o..

In Secs. II and III we study several theoretical
aspects of the electromagnetic corrections to the
Goldberger- Treiman relation. " In this analysis
we assume the existence of operator-product ex-
pansions at short distances, as well as Wilson's
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enumeration of the fields of low dimensionality. "
Furthermore, we treat the hadronie matrix ele-
ments which contx'ol the coQtx'lbutloQS of high-fx'8-
quency photons in the PCAC (partial conservation
of axial-vector current) approximation; that is,
matrix elements involving the divergence of the
axial-vector current at q' =0 are appx'oximated by
the corresponding "pion pole" contributions. We
give, in passing, arguments that indicate that the
naive application of PCAC to study the contributions
from low-frequency photons to the radiative cor-
rections is, at best, very delicate and may not be
R useful approximation. We point out that these ax'-

guments, which are connected with the vanishing
photon mass, do not affect the dlscusslon of the
high-frequency contributions under x ather general
assumptions.

Our main theoretical result can then be stated as
follows: Subject to the above assumptions and ap-
proximations, when the corrections of ordex' n are
included, the Goldbex ger- Treiman relation can be
wx'ltteQ ln the fol m

g„'(m~+ m„) = &2f,' g,„„-+6" + nG',

where C' is a finite quantity, m~ and m„are the
physical proton and neutron masses, g~„- is the
renoxmalized pnm' coupling constant in the pres-
ence of electx'omagnetism, and 5". is a quantity of
zeroth order in 0. which repxesents the purely had-
ronic corrections. Note that G„g„' and G„f,' are
observable quantities Rs can be ascertained from
Eqs. (2) and (3) or from the more detailed discus-
sion in Sec. IV." Thus, the above result essen-
tially says that when the Goldberger- Treiman rela-
tion is expressed in terms of the physical masses
and coupling constants, renoxmalized by electro-
magnetism, the xeslduRl coxxectlons of Oldex A

are finite. This in turn implies that all the for-
mally divergent contributions have been "absorbed"
into the physical constants.

In See. IV we discuss the phenomenologieal de-
termination of Gvlf~ I and Gvlg~ I and the degree of
departure from an exact "Goldberger- Treiman"
1 81Rtlon.

The following observations are useful for orienta-
tional purposes:

(i} The renormalized coupling constants f„', g„',
and f„' are not to be confused with the constants de-
fined by the hadronic matrix elements of the vec-
tor and axial-vector currents in the presence of
electromagnetism. The latter are not gauge-in-
variant, but are, in general, infrared-divergent
and involve only the corrections of Figs. 1(a) and
2(a). Instead, the constants f„', g„', and f' involve
contx'ibutions from all diagrams of Figs. 1 and 2.
This will be explained in greater detail in Sees. II
and III.

(e)

FIG. 1. Virtual radiative corrections to neutron P decay.

a. FORMUr. M'tow

Including terms of order a the matrix element
of the axial-vector current between n and P states
cRQ be %'x'ltten Rs

(P'IA,'(0)IP)= (P')[g, (q')~"+ g.(e')q'

+ g, (e')~'"e,l ~.s(p), (»)
where A~, -=A~+ iA~, p and p' are the four-mo-
menta of the. neutron and proton, and q =p'-p.
Note that Eq. (5a) includes only the contributions
of zero order in a and those arising from the dia-
grams of Fig. 1(a}. The latter are, in general,
gauge-dependent Rnd infrared-divex'gent. It should
therefore be clear that when the corrections of or-
der a are included, the coupling constants defined

FIG. 2. Virtual radiative corrections
to ~ p +& decay.

(c)

(ii) The relation between G'„and the bare cou-
pl' g t tG„=G„8' f fg t
terest in discussing the universality of the weak
interactions. ' The reason for this is that the prin-
ciple of universality is stated in terms of the bare
coupllngs &v and Cp "the formu at on of the
present paper, in which the focus of interest lies
in the study of the relation between coupling con-
stants such asg~„~, m~, m„, g„', f„', the connec
tion between these observable constants and the
cox'responding bare quantities will be completely
bypassed.
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by the matrix elements of current operators such
as g', (0) cannot, correspond to observable quantities.

From Eq. (5a) it follows that

=gQO+ EOQ() + 6888 + 63Q3+ gj, Q~ ~

'P (8)

where Xo is SU3~ SUs-invariant, the u's belong to
the (3, 3*)+ (8*,3) representation of SU, X SU„and
j" and a" are the electromagnetic current and the
electromagnetic field, respectively. The term &,u,
represents a violation of isospin of order o. which
is of the form suggested by the tadpole picture of
electromagnetic mass splittings. " The possible

&P'Is A'.(o)lP)= (p')[g «')(

+ g, (q')q']y, n(p) (5b)

Next we assume that the Hamiltonian density of
the strong and electromagnetic interactions is of
the form

connection of E,u, with the subtractions in the ef-
fective electromagnetic Lagrangian (to order e')
has been recently emphasized by Wilson. "

%'e will also assume the validity of the divergence
relation

s„A),'~(x) = -i[@"„,(x,), X(x)]

= -v 2 e' v„,(x) + ieA),'+(x)a„(x),

where Q",+(x,) = fd'x A', +(x. ), e'= (&2e, + ~,)/)(Y, and

v,, = (v, + in, )/v2 is the pseudoscalar counterpart
of u„+. Note that Eq. (Va) corresponds formally to
the prescription of "minimal electromagnetic cou-
pling. " In particular, the "tadpole" term e,e,
commutes with Q",+ at equal times and does not af-
fect the expression for B„A",+(x).

If we neglect terms of order n2 and higher, we
can write

~~&t'I&! (0)~„&0)ill&=~'Jd*&o'IT'M!,(Ob'(*))Iu&(air(a„(0)a, (x))lo&.

Therefore, Eq. (Va) leads to

d4k
& p'Is„A". (0)IP) =-~2~'& p'I~..(0) IP}+ 2, ,, )(q. „., Jl

d'xe*'"& p'IT(A":(0)f „(x))IP) .

(7b)

Alternatively, Eq, (Vc) can be derived by making use of Ward-Takahashi relations rather than Eq. (7a).
Next we note that each of the three terms in Eq. (7c) contains v pole contributions. " Separating out these
terms and recalling Eq. (5b), we obtain

&p'ls, A,', (0)lp}=-(p')[g, (q')( + .)+g.(q')q']v. (p)

=f ~ +' ~&gp. &(P')i y~(p-)- ~~&'&P' l()..(0) IP)""'
m~+

+ z, . fz, , Ja'~,~'4'*&('I&(&!.(O))„(*))I(&""', (Ba)

where f, is defined by"

&oIA." (0)I -(q)}='f.q'.
g~„, is the pm' coupling constant renormalized by electromagnetism and the superscript no vp. (no v

poles) means that the v pole contributions have been subtracted from the corresponding invariant ampli-
tudes. To see quickly how Eq. (Ba) follows from Eq. (Vc) note that the first term on the right-hand side of
Eq. (Ba) [which is the vr pole contribution from & p'IsqA, +(0)l p)] simply cancels the v pole contributions that
have been subtracted from the second and third terms on the right-hand side of Eq. (Ba). Observe also that
f„ includes only contributions of zeroth order in n and those arising from Fig. 2(a). Thus f, will be, in
general, infrared divergent and gauge-dependent in analogy with g„.

Next we take the limit q~-0 in Eq. (Ba) to obtain

g~(~, + ~.)s(p')iy. s(p) = f~2 ~g..- (s'P)iy, s(p) —~2&'&P'I~, (o) IP)""'
d4k

+ 2„,, ~.„., d'«*'"&P' 17'(A.".(0)i, (x))IP)""', (9)

where g„=g,(0), and it is understood that all terms
are evaluated at q' =O. Observe that in this approx-

imation the two last terms of Eq. (9) are constant
multiples of u(P')iy, u(P).
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The left-hand side and the first term on the right-
hand side of Eq. (9) look very much like the contri-
butions obtained in the usual derivation of the Gold-
berger-Treiman relation, to zeroth order in n.
There is, however, the difference that in Eq. (9)
m~, m„, g~„„-,g„, and f, are quantities renor-
malized by electromagnetism.

Next we discuss the last term on the right-hand
side of Eq. (9). We analyze the high-frequency be-
havior of the integrand using the operator-product
expansion of T(A",+(0)j„(x))at short distances in
conjunction with Wilson's enumeration of the fields
of low dimensionality (i.e. , dimensionality - 4)."
Note that only pseudoscalar fields need be retained
in the expansion: The contributions from other
fields will automatically vanish when the eight-di-
mensional integral over x and k is performed.
Therefore, we write

T(A",+(0)j„(x))= c(x)S„A",,(0) + ~ ~ ~ (1'0)

as S„A",+(0} [or equivalently, v„+(0)] is assumed to
be the only pseudoscalar field of dimensionality
~ 4 with the quantum numbers of m'.

The short-distance behavior of c(x) can be ob-
tained by means of a spurion analysis completely
analogous to that developed by Wilson. " The op-
erator S„A",+(0) belongs to the (2, 2) representation
of SU, xSU, while j„and A.'„belong to the repre-
sentations (1, 3) + (3, 1) and (1, 1). Thus, in the
limit of SU, &&SU, symmetry c(x) must vanish. If 6
is the dimensionality of the u's and v's, to first or-
der in the breaking of SU, X SU, , c(x) must scale as
x' ~/x' ~=x '. If b, &4, higher contributions in
the perturbation expansion give rise to milder sin-
gularities. Barring unforeseen cancellations, this
leads to a logarithmically divergent integral pro-
portional to the matrix element (P' ~&„A",+(0)~P)""
in the last term of Eq. (9).

As is well known, several points of view are pos-
sible regarding the mechanism that transforms
formally divergent quantities into the finite results
which are relevant in the real world. " If we adopt
the "renormalization point of view, " the formally
divergent part of the integral in Eq. (9) should be
subtracted and a contribution (n/2m)f
x(p'~s„A~+(0)~p)"'"~', where f is an undetermined
but finite constant, should be added. " However,
because the m pole has been subtracted, the had-
ronic matrix element vanishes in the PCAC approx-
imation and will be, therefore, neglected in the
spirit of this work. It is crucial for this argument
that the formally divergent contributions are con-
trolled by S„A",+(0). Clearly, an identical analysis
can be put forward for any of the other "solutions"
of the divergence problem, with the important qual-
ification that the mechanism that renders the an-

swer finite should not alter the operator structure
which controls the high-energy behavior.

Next we discuss the term involving c'
x(p'~v, +(0)~p)""~'in Eq. (9). To.zeroth order in n

this term represents the hadronic corrections to
the Goldberger- Treiman relation. It also contains
contributions of order 0. proportional to

n d'ye ""p' T B„A.",+ y g 0 p "'""', 11a

1 1 hg2 1
k2 k2 ~2 k2 + k2 ~2 (11b}

where M may be chosen to be a few times the pion
mass. The first term on the right-hand side will
still give rise to the troublesome branch cut, but
its high-frequency contributions have been damp-
ened by the convergence factor M'/(M' —k'). If
the k integration in Eq. (lla, ) with the original pro-
pagator 1/k' is at most linearly or logarithmically
divergent, this contribution is convergent. The
high-frequency behavior of the second term on the
right-hand side of Eq. (11b) is the same as that of
the original propagator, but it behaves as a "mas-
sive photon" so that the corresponding branch cut
in Eq. (11a) is 'moved far away from the pion pole.
For this part, which contains the high-frequency
contributions, we can invoke PCAC to argue that
its contribution may be neglected as the pion pole
terms have been subtracted. If the k integration in
Eq. (11a,) lead, say, to quadratic divergences in
the ultraviolet region, one can repeat essentially
the same argument with a simple modification of
Eq. (11b).

In summary, we reach the conclusion that the
high-frequency contributions to the second and
third terms on the right-hand side of Eq. (9) in-

where 2(0) is the effective second-order electro-
magnetic Lagrangian. [As Eq. (11a) involves o. ex-
plicitly, s„A",+(y) may be regarded here as the di-
vergence operator in the absence of electromagne-
tism. ] At first hand it may appear that we can al-
together neglect this contribution by invoking PCAC
as the momentum transferred by B&A,"+ is q2=0 and
the pion pole contribution has been subtracted.
However, the situation is more complicated: Be-
cause g(0) involves a photon propagator, the am-
plitude of Eq. (1la) will not only contain a pion
pole, but will also exhibit a branch cut starting at
a value of q' = (m„+ X )', arising from intermedi-
ate states involving a pion and a photon. Under
these circumstances the use of PCAC is at best
very delicate, and, in fact, may not be useful for
the full amplitude. " However, as we are interested
here in the high-frequency contributions, we can
bypass the problem by separating the photon pro-
pagator as follows:



44,0 A. SIRLIN

volve vanishing hadronic matrix elements in the
PCAC approximation. This means that if we write
Eq. (9) as

g„(mp+ m„) =f,M2g~„, + 5'+ nC) (12)

where 5~ are the purely hadronic corrections to
the Goldberger-Treiman relation, then, subject to
the assumptions of this paper, the constant C is.
free from ultraviolet divergences in the PCAC ap-
proximation. All such divergences have been ab-
sorbed in the renormalized couplings and masses
that appear in Eq. (12).

Note that this result depends critically on the
basic assumption that s„A",+(0} is the only pseudo-
scalar operator that occurs in the operator-pro-
duct expansion of Eq. (10). For example, the pres
ence of hypothetical pseudoscalar fields with di-
mensionality ~ 4 belonging, say, to the (1,8) + (8, 1)
representation of SU, ~SU, would lead to formally
divergent answers even in the PCAC approxima-
tion.

We must now consider the couplings g„and f, and
express them in terms of the observable constants
g„' and f„'. The question of whether or not such re-
placement introduces ultraviolet divergences in
Eqs. (9) and (12) is studied in Sec. III.

(14a}

where L is the lepton momentum and

&"'=iJ)
d'«'"'"& p' I&(j"(x)[V' (o) -A'..(o)])lp}.

(14b)

Finally

2" (p' IA.', (0) lp&L „ (15)

evaluated in the Feynman gauge.

(M"'+ M"')„".,= -(6 /W2)(p'lA, '+(0)lp)L„

(G-v/M2)g„u(p') y y,u(p}L ~,
(13)

where the superscript A. means that we have re-
tained only the contribution of the axial-vector
current. In Eq. (13) we have set q' =0 and have
neglected the induced couplings as these -play no
role in the present argument.

QP' grQ

v

x d u-»."-
y(1 y )v

'u
~3+&& "& j2-2t t+i~ ~

III. MORE ABOUT HIGH-FREQUENCY
CONTRIBUTIONS

It was pointed out in Secs. I and II that the cou-
pling constants g„and j, which occur in Eqs. (9)
and (12) are infrared-divergent and gauge-depen-
dent and, therefore, unobservable. Our task in
this section is to show that when these quantities
are expressed in terms of the physical constants
g„' and f,', no ultraviolet divergences of order n
are introduced in Eqs. (9) and (12), in the PCAC
approximation.

This result is closely connected with the follow-

ing properties of the radiative corrections which
will be obtained in this section: (i) The formally
divergent parts of diagrams (b) and (c) in Figs. 1

and 2 are proportional to (p' lA~+(0} lp)I ~ in the
case of n decay and to (0lA,"+(0}lP}L~ in the case
of x decay. (ii) The divergent integrals of order n
which multiply these matrix elements are con-
trolled by unknown functions of k', which are how-

ever the same for n and m decays. As we will see,
point (ii) is again a consequence of the existence
of operator-product expansions and the enumera-
tion of fields of dimensionality & 4.

Consider the contributions to the matrix elements
of the axial-vector current in neutron p decay. We

will denote by M„'„'~ the contributions of zeroth or-
der in n and by M„"„'~, M„'„'~, M„'"~ those arising
from the diagrams of Fig. 1(a), 1(b}, and 1(c),

where Z, is the electron renormalization constant.
To study the ultraviolet divergences in Eq. (14a},

we need the asymptotic behavior of T"~ for large
k. To be more precise, we need the contributions
~ 1/k as k- ~. This in turn is controlled by the
operators of dimensionality & 3 in the operator-
product expansion of T(j "(x)[V~+(0)—A~+(0)]). The
most singular contribution in Eq. (14a) comes from
the term involving y„Pyz in the lepton covariant.
Setting l =0 in the denominator and using the iden-
tity

K
yp'B'p =8'poyp 8'ppya+8'apyp+ papuy y5 ~ ( 8a)

one finds that only vector and axial-vector opera-
tors need be considered. We therefore write

T(j "(x)[V,+(0}—A~+(0)])

= d, (x')x "A~~+ (0) + d, (x')x ~A &, (0)

+id, (x')c"~ Sx+q'(0)+ ~ ~ ~ .
(Isb)

Following Wilson we have assumed that A~+(0) is
the only axial-vector operator of dimensionality
& 3 with the appropriate quantum numbers. We
have not included the terms involving V„"+(0) because
we are only interested here in the matrix elements
of the axial-vector current. In the limit of scale
invariance, the d&(x') (j=1, 2, 3) scale as 1/x'
and lead to logarithmic divergences in Eq. (14a).
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From Eq. (16b) we obtain

i d4xe'~'"T j"x V~+0 -A.~+0

= E, (k')k"At'+(0) + E,(k') k~A~+(0)

+ iE,(k')e" " kP (0) +

(16c)
where the functions

E,.(k')=——, e'"'"(k x)dg(x')d'x (j =1, 2, 3)

(16d)
scale as 1/k'.

Insertion of Eq. (16c) into Eq. (14a) shows after
some elementary algebra that the divergent part
of M„'~.'~ (in the ultraviolet region} is given by

2" &P'IA.' (o)IP&L. 4,,

A moment's thought shows that we can carry
verbatim an identical argument for m-p, + v decay.
We obtain in that case

f,' = f,(1+ nC, .) (18a)

(~ p-1)""
7r~ 2

„, [E,(k')+ E,(k')+ —,'E,(k')],

(18b)

(18c)

where Z„ is the muon renormalization constant.
As the divergent parts of Z, —1 and Z„-1 are iden-
tical, we conclude that

x ', (E, +E, + —,E,). (16e)

g„' =g„(1+nC„.n), (17b)

where C„„~is a constant.
Then comparison of Eqs. (13), (14a}, (15), (16e),

(1'7a), and (17b) shows that the divergent part of
eC„„~is given by

[Z(e) —1]""
n~P 2

4

, [E,(k')+ E,(k')+ -',E,(k')] .
(17c}

We recall from the general discussion in Sec. I
and Ref. 3 that we can write

(M"' + M"'+ M' ' +M'")"
n ~P

Gv~2(-g.g, y,y,u„L'+ nM ),

(1'la)
where M ~is free from ultraviolet singularities,
and we have neglected terms of order nl/M and
nq/M. As we pointed outg„' (or rather G„'=Gvg„')"
can be regarded as the observable coupling con-
stant in neutron P decay. Let us now write

Inserting Eqs. (17b) and (18a) into Eq. (12) and

noting Eq. (18c), one sees immediately that the
formally divergent contributions of order n from
C„.~ and C,.cancel each other in the PCAC approx-
imation.

On the basis of the results of Secs. II and III we,
conclude that if we write the Goldberger-Treiman
relation in the form of Eq. (4), then subject to our
assumptions, C' is a finite constant in the PCAC
approximation. The phenomenological situation re-
garding f,' and g„' is examined in Sec. IV.

IV. THE CONSTANT f„' AND ITS
DETERMINATION

The constant f„' is defined by the equation

N 0 +N" + N '+ N'" =(Gv/v 2)( if„'P„L"+ nN )-,

(19a)

where N"' is the matrix element for m--p, -+ v„ to
zeroth order in n, N"', N'", and N'" are the con-
tributions of the diagrams of Figs. 2(a)-2(c) and
a.N& is given by'

n . , ~ ), (2P —k)„(2P —k) „D""(k)
8v'i ' ' (k' —2P k+ i~)2

n d'kD"'(k}[u, (2l„-y,P)y, (1 -y, )u, ](~ ) (
. , ~) (, , ), ( )4w'i (k' —2l .k+ ic)(k' —2P k+ ie)

~~ ~ (19b)

The function aNf possesses the following basic
properties: (i}It is free from ultraviolet diver-
gences. (ii) It contains all the infrared and soft-

photon contributions of Figs. 2(a)-2(c). (iii) It is
independent of the gauge adopted for the covariant
photon propagator D"'(k)." Explicit evaluation of
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the integrals in Eq. (19b) gives the result

nN =if'P Lf Tf X 2g

and (19e) to the transition probability for v - p.

+ v&, we obtain for the decay rate m--
IU, + v„plus

+ vp+ p in the case LE «E

x +
].nx-] 2ln " + lnx + —,'lnx+-,',

] A.min 8m

(19c) X1 P 1+ QA(h) (21a)
where x =m„/m„and X„;„is the photon mass.

Note that the two terms in the right-hand side of
Eq. (19a) are constants multiplying the matrix ele-
ment P~I ~. In order for this separation to be con-
sistent, it is necessary that the left-hand side in
Eq. (19a) should be of the same form, after the in-
tegration over the virtual photon momenta is per-
formed. This is obvious for N'o', Ã", and %'"-
That it also holds for N"' can be readily proved by

studying the equations analogous to Eqs. (14a) and

(14b} in the case of m -p, + v„decay.
The separation described in Eq. (19a) is analogous

to that carried out in Sec. II of Ref. 3. There is,
however, the difference that Eq. (19a}is exact
while the work of Ref. 1 involved some approxima-
tions (however good), such as the neglect of terms
of order nl/M„nq/M, etc. This simplifying fea-
ture of Eq. (19a) is due essentially to the fact that
we are dealing here wwith a two-body decay, rather
than the more complex situation of P decay.

The separation of Eq. (19a) is useful for the fol-
lowing reason: In studying the probability for the

decay w - p. -+ v„, one ~ust include the contribu-
tions of the inner bremsstrahlung (I.B.) in order to
eliminate the infrared divergences. However, the

properties of the function nN& described after Eq.
(19b) tells us that f' is free from such singulari-
ties. Therefore, the infrared divergences of the

real quanta must cancel those of eN~, and the de-

cay probabilities for m-p, + v plus m- p. + v+ y
should determine If,'I'. Note also that f,' is inde-

pendent of the choice of the gauge adopted for the

covariant propagator D„„(I2) in the evaluation of the

virtual radiative corrections.
In considering the contributions of real quanta,

one may envisage two different types of realistic
experiments: (a) The muon energy is restricted to
the range E,„-b.E ~E ~ E,„(b)The muon. energy
is unrestricted. Assuming AE «E,„one finds for
the transition probability for m-- p, + v„+ y in case
(a)22.

(M) = —P(o) lnx —1
n x'+ 1

x'-1

x 2&Z
2 ln + 3 ln x —2 ln(x' —1) .

& min

(20)

Adding this result to the contributions of Eqs. (19a)

x2+ 1 " 2&E
& =4, lnx —1 ln + lnx —ln(x2 —1)

x 1
I mp

(21b)

where we have set G~=G& cos6.
Note that when hE «E only soft real photons

contribute to P&~'. These contributions, given in

Eq. (20), are independent of the details of the

strong interactions. Thus, in principle, Eq. (21)
allows the determination of G22 eos26~ f„'~2 up to
terms of order n in a model- independent manner.

As far as we know, however, detailed experi-
ments with hE «E „have not been performed.
For this reason, it seems that at the present time
the best determination of Gv2~ f '~' can be obtained

from the m lifetime which is accurately known.

To carry out this determination one needs the the-
oretical expression fox' the total decay pI obability
for m- - p, -+ v& + y corresponding to a photon of in-
finitesimal mass A. ;, , with the muon energy unre-
stricted. Such a calculation exists in the literature,
done by Kinoshita. " Adding this ca,lculation to the
contributions of Eqs. (19a) and (19e) to the tran-
sition probability for m - p. -+ v&, we obtain

Gp cos 8

x1— ", 1+—8,
x2+ 1B=4, lnx —1 ln(x' —1) —21nx ——,

'

x'+ 1 1+4 I, 1 ———lnxx' —1 x'

(22b)

L(z) = ln(1 —t)
dt

0

Equation (22) gives the total decay probability
for 7T-- p, -+ v& plus m-- p. + v&+ y. Numerically
8 = -1.4 so that (n/2v)B represents a relative cor-
rection of -1.6& 10 ~, which is quite small. It
should be pointed out that the calculation of the in-
ner bremsstrahlung in Ref. 22 was done for point
particles, ignoring the structure effects of the
strong interactions. Thus, unlike Eq. (21), Eq.
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(22) is not model-independent. However, order of
magnitude estimates indicate that the structure ef-
fects in the inner bremsstrahlung will also give
very small contributions to Eq. (22).'4 Comparing
Eq. (22) with the v- lifetime, we obtain

1.497 x 10 6

G„cosGIf,'I = (23a)

It is interesting to point out that the radiative
corrections affect more the determination of ~g„'[

than that of
~ f,'~. The reason is easy to under-

stand: As the corrections to (g~) and
~ f,'( are finite

by definition, those affecting
~ f,'~ should be ex-

Using the values G~ = 1.1660x 10 ' BeV ' (Ref. 25)
and sing =0.221 +0.004, ' Eq. (23a) gives

~ f,'~ = 131.7 MeV=0. 943 m, + .

Turning our attention to ~G~~, we note that this
renormalized constant can be obtained from the
recent phenomenological analysis of Blin-Stoyle
and Freeman' and of Shann. ' These authors obtain
X' = ~G„'/GP = 1.226 + 0.011 from the ft values of AI2'

and n decays and A. '= 1.26+ 0.02 from the electron
asymmetry in neutron P decay. Combining these
values with the determination of ~G» ~

given by the
first two authors on the basis of the Al" data, one
finds

(1.41+0.01)x10 ' BeV '

(Al" and n decays)
(1.45+0.02) x10 ' BeV '

(Al" and electron symmetry).

pected to be small as there are no large logarith-
mic coefficients depending on the pion and muon
masses. This is reflected in the smallness of the
correction (o./2m)B . Instead, in the case of n de-
cay large logarithmic terms proportional to
In(m~/E, „) (E,„ is the maximum electron energy)
appear and the corrections decrease the value of
)g„'( by abo~t 19o.

Using g~„, '/4m =14.6,"Eqs. (23a) and (24) lead
to

[g„((m,+ m„)
I

o 92

~2lf.'IZp.. ~ 0 94

(AI2' and n decays)

(AI2' and electron asymmetry).

(25) '

This equation summarizes the degree of departure
from an exact "Goldberger-Treiman" relation.
One naturally expects that the bulk of this differ-
ence is accounted for by the hadronic corrections.
We would like to point out that the error of the
recommended experimental value of g~„,- is
roughly 2.5%." Thus, the intriguing possibility
exists that the Goldberger- Treiman relation may
be, in fact, quite accurate.
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