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From a dual-resonance model with currents included through the minimal gauge interaction,
the deep-inelastic electron scattering is considered. It gives the Bjorken scaling for vW~

while W& vanishes, a property which is common among the models where the current is
coupled to bosons. Scaling occurs because of the existence of a current-algebra fixed pole.
Deep-inelastic electron scattering with one detected final-state particle is also considered
which, following Mueller, is connected with the discontinuity of a six-point amplitude. In a
special kinematic region, three out of four structure functions scale because of a fixed pole,
while outside this region the fixed pole cannot be responsible for scaling anymore. Then a
speculation of Pomeranchukon assignment does show the scaling. Inelastic Compton scatter-
ing is also considered which, in the parton model of Bjorken and Paschos, scales and is
proportional to vW2. This property is satisfied in the present model. Electron-positron
annihilation into hadrons is considered without renormalization whose cross section falls off
as s ~, It is suggested that a proper dual renormalization for the self-mass diagram of the
photon may change this result.

I. INTRODUCTION

There exists the possibility that the dual-reso-
nance model (DRM)" may finally provide us with
a theory of hadronic processes. The unitarization
program to treat the model as a Born term' puts
it on the same footing as a field-theory expansion.
Further, besides some quantitative agreements of
the model with the data, it reproduces some qual-
itative features of the hadronic inclusive reac-
tions" such as the Feynman scaling law, ' pioni-
Eation, limiting fragmentation, v small transverse
momentum of the produced particles, etc.' How-
ever, notice that these limiting distributions are

obtained when one puts the intercept of the rele-
vant Regge trajectory eo equal to unity, i.e., the
Pomeranchukon is exchanged, while in the case of
the usual Regge trajectories with o.o1 exchanged,
one gets scaling (generalized) only for the ratio of
the differential cross section to the total cross
section. " The above-mentioned successes of
DRM in purely hadronic exclusive and inclusive
reactions are certainly interesting both theoreti-
cally and phenomenologically.

In the processes where currents are involved
there exists a "similar" kind of scaling behavior,
namely the one originally predicted by Bjorken'
for the deep-inelastic electroproduction structure
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functions for inclusive reactions and its generali-
zation for quasi-inclusive ones.

Besides the parton model, 'o which has a trans-
verse momentum cutoff as its ingredient, the only
field-theoretical model which gives the scaling of
at least the structure function vW, is the sum of
ladder graphs in A, cp theory. " But this is because
the Ay' model is a superrenomalizable theory and
has good convergence properties. All the other
models, "including the field-theoretical txeatment
of the parton model, "also need a transverse mo-
mentum cutoff in order to obtain scaling. When '

no cutoff is imposed Bjorken sealing breaks down.
Even the sum of an infinite set of renormalized
graphs in fieM theory" does not possess scaling.
Another approach" based on a DRM point of view
for the parton model has been used for the case of
the deep-inelastic region. Here too, the normal-
mode expansion for the hadronic string is cut off
from the start. There exists, however, no theor-
etical background whatsoever for justifying the
crucial assumption of a cutoff in the above-men-
tioned approaches.

On the other hand, it is known that the DRM has
a cutoff of the exponential type in the transverse
momentum4' (see also Ref. 16). This fact already
gives a hint that a current amplitude which has the
same property as the DRM for its strong part may
have a good chance to give scaling; in this case
the analysis of Bloom and Gilman, '7 which indi-
cates that the resonant component of the structure
functions does show the scaling property, could be
most naturally understood.

A vast number of prescriptions on how to in-
clude the currents in DRM has been proposed,
each having its own shortcomings. Among them
we intend to use the one which has the least free-
dom. One such model is the prescription of in-
cluding the currents as the minimal gauge inter-
actions 8„-8&-i'.„, proposed by Kikkawa and
Sato. '~ Once the minimal gauge prescription is
accepted, in principle everything is fixed and
there is no freedom left. The only ambiguity is
the one due to the renormalization of dual loops. "
Nevertheless, if one takes the model seriously
then it may restrict the ambiguities in the dual-
loop renormalization. Throughout the present pa-
per we renormalize in the manner of Neveu and
Scherk. ~'

One of the shortcomings of the present model
used here i,s that its Born term has only one sin-
gle pole, say in the s channel, and therefore has
no duality property between s and t channels (see,
e.g. , Ref. 21). But since we are interested in in-
clusive reactions and therefore in the discontinu-
ities of the graphs, we shall ignore the above
shortcoming since those graphs simply do not give

a contrlbutioQ to the discontinuities, and therefore
the whole treatment of the present paper is dual
iQ this sense,

The DRM with currents is the next step towards
the construction of a theoretical frame where one,
e.g. , using Mueller's analysis, "can study all the
relevant limits in the same manner as in 4, 5, and
8 for purely hadx onic reactions, investigate the
existence or absence of fixed poles in the ampli-
tudes with currents, and, in case such amplitudes
satisfy the Bjorken scaling, find its "dynamical"
origin. It turns out, for instance, that such am-
plitudes satisfy Bjorken scaling and that the exis-
tence of a current-algebra fixed pole for the am-
plitudes with two currents is responsible for this
scaling (see a similar situation in Landshoff and
Polkinghorne, Ref. 12). This is contrary to a
"similar" situation in purely hadronic processes
where only Pomeranchuk exchange is responsible
for the Feynman scaling law and the limiting dis-
tributions, "'while the usual Regge trajectories
give vanishing contributions in these limits. This
fixed-pole responsibility for Bjorken scaling, in
the language of light-cone expansion, +ould prob-
ably mean that the Regge trajectories have no-
thing to do with the degree of singularity on the
light cone.

In Sec. II we consider the two structure func-
tions 8', and vS', of inelastic electron scattering.
In the model, vW, scales while 5', vanishes. This
is a property of all the other models where cur-
rents are coupled to spin-0 particles. When a
proper DRM for fermions is constructed, we sug--
gest that the same minimal gauge interaction
which now would couple the current to the tower
of fermions will restore the scaling for 5', .

In Sec. III we consider the inelastic electron
scattering where a final-state hadron with momen-
tum p' is detected, i.e.,

e+ hadron (P)- e'+ hadron (P') + anything.

Following Mueller, we connect this process to the
discontinuity of a forward six-point function,
which we then study. It appears here, too, that
in the Bjorken limit a fixed pole is responsible
for the scaling behavior of three out of the four
structure functions vR'2, vR'3, vN'4, and the van-.
ishing of 8'„which is reminiscent of the same
situation in Sec. II that was suggested to be due to
the coupling of currents to the tower of bosons
rather than to the tower of fermions. Notice, how-
ever, that this fixed pole can be responsible for
the above scaling only in a special kinematical re-
gion of p p'=fixed and not large, i.e., when the
detected hadron is very near to the forward dixec-
tion in the center-of-mass system or is slowly
moving in the lab system. Beyond this kinemati-



CRl region) 1.8.) here p ' p ls large~ the fixed
pole cRQ no longer be responsiMe fox' the SCRllng.
IQ this ca.ee, only with the speculation of assign-
ing the Regge trajectory to a Pomex'anchukon with
the intercept o.o= 1 does one get the above scaling.
This is very similar to the purely hadronic case~'
where limiting distributi, ons axe obtained by put-
ting Ao= 1.

In Sec. IV we study the inelastic Compton scat-
ter1ng

photon ()'d) +hadron {p)-photon (k') +anl(thing.

This reaction is interesting since, fx'om the pRx'-

ton model of Bjorken and Paschos, '0 thex e should
be a similar scaling law for the structuxe func-
tions where the scabng variable now is (I(, -k') p/
O'A', and, m addhtm. on, from the same parton mod-
el one concludes that the present reaction should
be propox'tional to the electron scattering of Sec.

II, for partons of unit charge and spin 0 ox ~.
Both these x'esults Rx'8 Rlso VRlid ~ithin the model
of the present paper, which may suggest a deeper
analogy v6th the parton model,

Finally, sec. V is devoted to the study of the
high-energy behavior of electx on-positron total
annihilation into hadrone. It turns out that this
cross section falls off like s '~2. This result is
incompa, tible with the results of othex' models. In
evaluating the above high-enex'gy behavior me have
not renorma3. i,zed the amplitude fox' the self-ener-
gy of. the virtual photon which ha.e the exponential
divergence of the dual loops. It may happen that
a dual renormalization changes the above high-
energy behaviox'. We hope to study this question
fur thex'.

Throughout the paper only one leading diagram
fox' eRch process is VTrrltten down Rnd discussed
Rnd dots mean nonleading diagrams.

Consider the virtual Compton scattering averaged and summed ovex' the spine of hadrons corx"esponding
to Fig. I,

The notatt. on is the usual onem~:

Mq„(v, t; k~, km ) = PpP„A~+ +gq~A~D,

Wm= —II@,(v, k, = 0~ = k),

t=(k, -k,P,

a(s) = o.'s+no, no&0, a(m ) =0, o."=2 ~

The contribution of the last diagram of Fig. 1, aftex' the dual-loop renormalization in the manner of Neveu
and Scherk, 20 is

M„e'd fd'(dsxd(=„'=(n(V Q'(f dgdddd(d ' '((-m)' '(( —('(' '((-d'(

t -lng lm lny lm ~ V"+ u"
2 lnW 2 lnW ~~ n(i —W")

in/ lQQ kg + k'2 in/ lnXZg (It'g A'j lIK g lQQZQ

~ ~
1QQ I
lnR@r P Il lngr gPP

lnu ln(W/u) ~ 2W" -g" —{W/s)"
2 lnW ~ n(l —W")

p(u, W)= — sin v, f'(W)=Q(], Wd).
in%' . lng

lnR'
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Disc. = Di + s ~ n AP Disc.

P~

U

2
=P2

+ s ~ ~

FIG. 1. The dual diagram used for the study of Bjorken scaling. Thick lines are the tower of boson resonances;
dots mean nonleading diagrams.

Whenever needed, we can use for the loop integrations (with the Wick rotation) the following formula:

f d 'Q exp(--,' lnW Q') = {w/-', lnW)' .

For the large values of a variable a of a function cp(s, . . .) we use the Mellin-transform technique

d)((). . ) f, W. (=s. . .)s ' 'd, s;

Then the right-most singularity of (})(P,. . .) in the plane of the Mellin transform variable p defines the lead-
ing high-s behavior of the function (t)(s, . . .).

From (2.3) for the v- -~, t= fixed behavior of the invariant amplitudes defined in (2.2) after the use of
the Mellin transform, we find„for the A, amplitude a singularity at p= -1 (coming from y=1) corresponding
to a fixed pole at J= 1 in the angular momentum plane, and another at P= ct{t) -2 (coming from the u =1 re-
gion) corresponding to the usual Regge pole. Hence

ddt~ ~ { + p(t) V~~') 2. (2.5)
p ~ ()o V

The residue of the fixed pole at J = 1, i.e. , E(t), coincides with the expression for the form factor corre-
sponding to Fig. 2, and hence the Fubini-Dashen-Gell-Mann sum rule is satisfied. The expression for the
form factor of Fig. 2 is

1
n(S)=sd J d'Qssn(- —', )nWQ ) d dnds W " '(1 —s*) '(1 —n)"

~[f(w)] ([)J)(u, W)] —[(t)] ](1 —W)(lng/lnW)

lnxlnz 1 ~ (~z)w+~w

RlnW ld, n(l —W") }' (2.6)

with TV=@us, and its high-t behavior is -t ' ~ ln g, which is the singularity in the Mellin transform
variable coming from the region of integration (1 —x)z(1-M) =1 or x(1-z)(l -u) =1. Analogously, the A»
amplitude has p= -1 and P = o((t) singularities corresponding to a fixed J = -1 pole and the usual moving
pole.

In the Bjorken scaling limit we put k, = k, = 0 and find the Mellin transform with respect to -k, keeping
2v/-k~ = (d fixed. The right-most singularity for both 4, and A„ is at P = -1, coming from the region y= 1,
i.e., exactly where the current-algebra fixed pole in (2.5) came from. Therefore we get

1

vg, (v, k')-e'g' O'@exp(- —,'inWQ') dxdaduw "0 '(1-u)"0 '(1 —xz} 0 '(1 —W)[f(W)] '
Bj 0

where S'= @au, and an analogous expression for A.~0.
Finally, for the structure functions we get

vw2(v, k )- E2((d)),
Bj

W,(v, u') -—,Z, (co),I2

(2.8)
0

P] P2

FIG. 2, Form factor corresponding to the last diagram
of Fig. 1 through the Fubini-Dashen —Gell-Mann sum
rule.
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w() "=g 1'~q.~( i wq)f' dd~. w"-(i-.)-"-(i-:)"-(i-w)[f( w)j-

«ge(~, w)I"-fNI~)(' )s(~-'" ), w=x~u

(2.10)

There seems to be a similarity with the parton model if X= 1/&u = Ing/In(xzu) (~1) is interpreted as the frac-
tion of longitudinal momentum carried by a parton in an infinite-momentum frame. As was already men-
tioned in the Introduction, the scaling of vW, and vanishing of W, is typical for the models where the cur-
rent is attached to bosons rather than to fermions.

III. BJORKEN SCALING OF QUASI-INCLUSIVE PROCESSES

Consider reactions like

(S.l)

or

e + hadron -e'+ hadron+ anything . (3.2)

Using Mueller's analysis, vie connect these reactions to the discontinuity of a form'ard six-point reaction
as shoran in Fig. 3. For these processes there are four structure functions 8'„S'„8"„W4analogous to
the two functions in deep-inelastic electron scattering. The differential cross sections for the above reac-
tions are proportional to the tensor W&„, vIthere

(S.S)

and Wpy= DlscM~py where M~~ 18 the for%'ard six-point amplitude of Fig. 3

In a certain region of kinematical variables

l

kP' A, P' kP (S.4)

from the analogous original considerations of Bjorken, 25 one would expect to have scaling for all four
structure functions, namely, that W„(k p)W„(k p')W„and [(k p)(k p')j'~'W, should all become func-
tions of the ratios -k'/k p, k p'/k p and p p'/k p. The purpose of the Section is to study the above
scaling in the aspect of DRM considered in the present paper.

k k

~~ ~

I
=D!5C, - P = Di C.

P. I P P

—
P + Disc

X= Disc.
w

P

P

Py
k y+ Disc. ~
P

~pl
~k+4w ~

'Y

w
P

FIG. 3. Diagrams considered for the study of Bjorken scaling in deep-inelastic electron scattering with one
final-state hadron detected.
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The dual amplitude of Fig. 3(a) gives the following contribution:

x(l —W)[ j(W)] '([y(MVN, W)]@-[y]q([q(v, W)]~ '-[(p(e, W)]~

l,ny In(w//y) lny Inuvw k, lny Inv
2ln+ ln+

, &ns&n(W/cimu& ~(& -u"&[& —(xV&&"&(u"+~"&

IlnW ~ n(1 —W )

in+ ~I""
4 In'(uvw ) 4 ln'v

-ln'@ ~~p" -ln'V ~I'~'

41nvln(un'), , 1 4»y 4»'y
k k [ (8 6

lnW ln'W &' " j'
where W = xyzutne. .

Consider the Regge limit p=k p, A p - -~, and the other variables fixed. After a Mellin transform we

get a P = -1 singularity coming from the region y= 1 of integration for all four invariant amplitudes:

(8.6)
Regge

i.e., there is a fixed pole in the angular momentom J' plane.
For the special case of a scaling limit, namely

kPkp'
Bj . -k —~, ~, 2, p p'=fazed, (3.V)

again the same region y = 1 as in (8.6) gives the singularity P= -1 and one gets the behavior

M'„'~~g„„(k'} '+p„p„(k') '+ '„p'p( k)m'+(p„p'„+p„p'„)(k') ',
Beg

exactly because of the same fixed pole as in the Regge limit. Therefore, in the limit of (3.V),

W, -(km)-'E, (~, ~ ),
vw, -E,((d, ~'),
&/'Ws- Es(m, ((&'),

(vv')2W, -E,((di, ((&'),

where

(3.8)

(8.9)

In the scaling limit of (3.4} or

Bj: -k -~, (d, (d, and 2- = g fixed, .'a 2 / p p-'= (8.10)

the above fixed pole is no longer responsible for the scaling and the region of integration xyz = I becomes
important~ one gets-

M' -g (k') 0 'I +p p (k')"0-'M-+p'p'(k')"0-'m +(p p +p p')(k')". -'M
Bj

(3.11)

k'

=Disc, k

p p

= Disc. " k + "=Disc

IU~
y

x'

P

~g

U y + ~ ~ ~

'V

P

FIQ. 4. Dt,a@ram for inelastic Compton Scattering.
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Expression (3.11) shows that only putting nq= 1, i.e., the assignment of the Regge trajectory with a Pom-
eranchukon, can give the scaling of the structure functions.

The responsibility of the fixed pole for scaling in the region (S.V) and the disappearance of its effect in
the region (3.10) are interesting both theoretically and perhaps experimentally. First of all, since the
fixed pole is due to existence of the currents in the amplitude, it is not clear why its effect should depend
on the variable p «p', which is entirely in the strong part of the amplitude. Other more detailed models
such as the parton model or even the light-cone expansion technique may shed some light on this question,
and then perhaps the origin of fixed poles will become more clear. Experimentally it may be interesting,
since it predicts that if some analysis similar to the one done by Bloom and Gilman" will become possible
in the future, then in the region (3.10) the resonance component of the structure functions will not show
the scaling property, contrary to the case of deep-inelastic electron scattering.

The diagram of Fig. 3(b) has no fixed pole in the Regge limit and, correspondingly, no scaling property
coming from the fixed pole. In the Regge limit, say p=k p--~, other variables fixed, we get

»)tu = 8)tpv +p')tpt)v q +ptt&uv 0+(p)tptt+ppptt)v q

Regge

ln the scaling limit of both (S.V) and (3.10) we get

M~„'~ - g„„(k') () 'M, +P„P„(kq)"() Mq+P'„P„'(k') t) q», +(PqP„'+P„P'„)(k') q 'M
Bj or Bj'

Again, with n, = 1 we get scaling for vW, and v'W, and vanishing of W, and (vv')'~'W, .

(3.12)

(3.13)

Consider the reaction
IV. INELASTIC COMPTON SCATTERING

photon (k) +hadron (p) -photon (k') +anything.

The expression from the dual diagram of Fig. 4 in the general case of 0', 0"aO, is the following:
1

tera „„(t',e", . . ) e'e'jd'qe. m=( '. tnteq') pe=pep*dados tp-"-

(4.1)

x(1 —W/w)"o '(1-w)"o '(1 —W)[f(W)]-'[[q(ge, W)] [(t)]

inyzu ln(W/you) „ inc In(W/z) im() luau
21nW 2 lnW lnW

)lie tne, )lie to(tp/)tae)
lnW lnW

1 in'u)
ttW ln2W P))P))P)t Pt) (l)tt/g)t t) gt/Jt g)tt) 8(t )t gtt tt )

where 8'= xyzuzev. lf we define the decomposition of the amplitudes as

M P P p p P]1PzpPP Pgy~M2 +

(4 2)

(4.3)

8'2 = DiscM, ,

from the parton model of Bjorken and Paschos, "it is seen that (for the case of real photons k' = k" = 0)

e'W, = (a factor not ttepentttng on t) Q p(tt) pf (t)(rq;)„, (4.4)

&=-t/2v, t=(y-I )'=-2n }t' v=(u-0'). p (4.5)

is satisfied for large values of t, v, and k.p, with their ratios fixed. In other words, for large values a
scaling law is satisfied for the structure fuction v W, with the scaling variable x= -f/2v, where x is the
longitudinal fraction of the parton momentum in the infinite-momentum frame. From the same parton
model' one gets for the vS'2 structure function of deep-inelastic electron scattering an expression
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vW, (v, k')=QP(N)xf (x)(rQ,.')„, (4.6)

with the scaling variable x= 1/(d = -k'/2(d. By looking at expressions (4.4) and (4.6) one sees that the struc-
ture functions of inelastic Compton scattering have the same analytic dependence, as a function of x™,that
the structure function of deep-inelastic electron scattering has as a function of x in the case of parton
charge Q,.= 0, 1.

It would be interesting to study the same question in the DRM of the present paper in order to reveal a
deeper analogy with the parton model. By putting k' = k" = 0 in (4.2) and finding M, from the definition
(4.3), we find the Mellin transform with respect to k ~ k', keeping k p/k ~ k' and k' ~ p/k ~ k' fixed. There
is a pole at P= -3 coming from you =1, and we get the limit

1

ill, -e'g'(k k'l 'J d'Qexp(--, lnWQ') dxdvdwW . '(1 —xv) '(1-w)"
0 ~3

&&(I-w)[f(w)]-'([y(~, g)] '
[(f,] 'j — +1

(4 7)

where W = xvw. Surprisingly enough, the variables k p and k' p in the complicated expression (4.2) com-
bine in just such a manner as to give (4.7) depending only on 2v/(-t) with v=(k —k )p. By iooiong at (2.7)
and (4.7) one sees that the two expressions are indeed very similar, provided one changes g z and gg

Furthermore, assuming the analyticity of the discontinuity of SI, in a proper region of variables v and ex-
cluding the end points of the scaling variable x= -t/2(g=iruu/Inxvw, i.e., xg0 and I (where the 5 function
of these end-point values and. their derivatives appear), and with the use of

2

8', =DiscM = Disc — — --A
2 gP 1

28—Disc A.gBv X~X~V~V

28—W'
2 2

—g-g-, V-V

one can convince himself that the two structure functions are indeed proportional to each other.

V. e e+ ANNIHILATION INTO HADRONS

The total cross section of e-.e' annihilation into hadrons is 6

1 16g~N2
2)Q P( ),

where

M, „(k') = (g,„—„', ')p(k') .

(5.1)

In the dual model of the present paper the calculation of M „,(k ) is approximated by the discontinuity of
the self-energy diagram of the virtual photon, as illustrated in Fig. 5, and its contribution without renor-
malization is

M „(k')=e'fd'Qexp(- —,'lnWQ') dxdpW " '(1 —W)" '[j(W)] exp k' g „+'.),0
(5.2)

W=xy.
The singularity of the Mellin variable is at p= ——,

' and, therefore,

p(k') —(k') "',
o(k') - 1/(k')'~'.

(5.3)

This is a kind of fixed-pole behavior independent
of the trajectories exchanged. The result (5.3) is
incompatible with the results of the other models.
Notice, however, that the expression (5.2) has the

2 =n'. .~~.
k k k

FIG. 5. Diagram for the electron-positron
annihilation into hadrons.
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exponential divergence of the dual loops and has
not been renormalized. In the evaluation of (5.3)
we have, in fact, applied a simple cutoff of the
type e(2 —e —x —y). We suggest that a proper
dual I enormalization of the self-mass diagram of-
the photon may change the result (5.3). We hope

to study this questi. on further.
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