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%e derive a dispex'sion 1elation fox' direct-channel reactions of the type g +Q ~g+d %1th

m~ =m„, e.g. , yN xN, which involves contributions from both forward and backvrard scat-
tering of the direct channel and backward scattexing of the crossed channel but no contribu--
tion from unphysical regions of the direct channel. In particular, the integral involving the
direct-channel contribution is evaluated along the boundary of the physical region. Our re-
sult, in the case of elastic scattering, i.e., ~~=my, reduces to the familiar backvrard dis-
pex'sion rel8tion.

I. INTRODUCTION

The value of dispersion relations fox the anal-
ysis of experimental data in the low- to medium-

energy range has been firmly established. ' The
usefulness of a.given dispersion relation is, how-

ever, dependent on the choice of the dispersion
variable x. Dispersion relations essentially relate
the real part of the amplitude for R given value of
x, via Cauchy contours, to integrals involving the
discontinuities of the amplitude in the x plane. In
using such xelationships to extxact model param-
eters, one is faced with the problem of evaluating
these integrals, using data whenever possible.
Thus, a choice of the dispersion variable which
involves contributions from regions where the dis-
contlQulty 18 unknown ls of limited VRlue. Such
contributions can arise from the introduction of
kinematic singularities in x, dynamical cuts which
do Qot correspond to physical reactions, or to
sltuRtlons whel"e dynRmlcRl cUts Rx'e Qot, mapped
onto the real x axis, forbidding the simplificati. on
resulting fx'om the real analytic properties of the

amplitudes.
Early recognition of these facts helped lead to

the establishment of today's conventional Mandel-
stam variables' in terms of which, it is assumed,
one can find amplitudes with simple analytic
structux'e. IQ R foux'-body reaction» fox' exRIQple»

of the two independent Mandelstam variables, one

(usually the squared momentum transfer, f) is
held fixed while some analytic function of the other,
e.g. , v'=(8-I)/4m of Chew, Goldberger, Low,
and Nambu (CGLN),"is adopted as the dispersion
variable. These "fixed-t" relations have been
widely used to study photoproduction of pions' and
pion-nucleon scattering. ' Such dispersion' rela-
tions, except for one value of f, p' m(/m-+p) and
zero for the respective reactions, involve con-
tributions from unphysical regions. Thus, their
usefulness at general values of I; depends on the
accuracy of analytic-continuation procedures used

in estimating such contributions. '
In oxder to avoid this problem of unphysical re-

gions altogether, dispersion relations have been
written for fixed values of the (s-channel) scat-
tering angle 8,. This has been done with consid-
erable success for vN- vN at 8,= v (Ref. 8) and the
formalism has been worked out by Biahwski and
Jurewicz (BJ)' for yN- wN at general angles. For
these reactions, the dispex sion variaMe was taken
to be the square of the mN center-of-mass momen-
tum, P,~. In the former case, this is equivalent
to dispersing in I;, and no serious problem is in-
c ed. Inthelatt ease, -howe e, th s sele t
of dispexsion variable introduced, even for 8,= m,

three kinematical bx'aneh points at P &'= -m', -p, ',
and 0. To eliminate contributions from the asso-
clRted klQemRtlcRl cuts» 8J wrote R dispersion
relation involving the amplitude on Rll four kine-
matica, l sheets, which resulted in an involved nu-
merical problem indeed.

Such complications point out the importance of
proper selection of fixed and dispersion variables
and of amplitudes in using dispersion relations to
study the phenomenology of particle scattering.

In this pRpex'» we show thRt R lRrge simpllflcR-
tion oeeurs, at least for cos'0, = j., fox' reactions
of the type eb- cd with m~=m„when I;, rather than.

P,„', . is chosen as the dispersion variable. In par-
ticulax, with I; as the dispersion variaMe, it i.s
easy to define amplitudes which are free of kine-
matic singularities and for which the dynamical
cuts map in a simple manner onto the real t axis.

II. NOTATION AND BASIC IDEA

A. Notation

For this paper it will be useful to introduce the
following variables.

The e-channel, g5 cd, initial and final center-
of-mass momenta p, Rnd p,', xespectively:

p,'= [s —(m. +m,)'][s -(m. -m, )']/4s,

p,"=[s —(m, +m, )'][s —(m, -~)']/4s.
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Cosine of the scattering angle 8, in the s channel:

Z, =coss, = [s(t- u) + (m,
' -m, ')(m, '-m, ')]/4sP, P,' .

The t-channel, cc- bd, initial and final center-
of-mass momenta P, and P,', respectively:

P,' = [ t (m. +-m, )'][i- (m. -m, )']/4f,

P,"=[f- (m, +m, )'][t- (m, -m, )']/4f.

Cosine of the scattering angle 0, in the t channel:

Z, =- cos8, = [t(s —u) + (m,
' —m, ') (m,

' —m„')]/4 tp,p,'.
(4)

Since we restrict ourselves to reactions with
m, =m„=m, we ean simplify the last two expres-
Slons:

Pg Sf + +tp
p2 2

Z~ = v/4p~pe ~

where v =—s —u. A final useful quantity is

Z =s+ t+u=m, '+mq +m, +m~ .
B. Invariant Amplitudes

Dispersion relations are generally written for
the Lorentz-invariant amplitudes, A(s, t, u), since
these functions contain only dynamical singulari-
ties in s, t, and u. By selecting t as the disper-
sion variable and fixing cos~„which is a nonanal-
ytic function of s and t, we introduce into the am-
plitudes

A(t, s(t), Z, ) =A(s, t, u)~~

kinematic singularities since the expression s(t)
contains kinematic branch points in t. 'In the fol-
lowing it will become clear how new amplitudes A
can be defined which are free of such kinematic
singularities and thus amenable to dispersion re-
lations involving only dynamical singularities.

We will, for simplicity, assume dispersion re-
lations can be written without subtractions. In the
case of inelastic reactions, this is a quite rea-
sonable assumption since inelastic reaction am-
plitudes in general vanish more rapidly than elas-
tic amplitudes. For the elastic reactions, e.g.,
nN- mE, it is not certain whether subtractions are
necessary. ' In any event, the procedures for in-
troducing subtractions'are well known and can be
easily applied once the form of the dispersion re-
lation is known.

s = (& + &u)' = —,"(Z + 4p,'+ 4«u),
t= -2p,'(l —Z,) = -4p,',
u = Z —s —t = (8 —(u)' = —,'(Z +4p,' —4E(o),

where E and ~ are the nucleon and pion center-of-
mass energies, respectively. Since here, P,'= -4t,
P,' and t are analytically equivalent variables.
One can also write

s=-2(~ - t-4p~p, '),
u = —,'(Z —t+ 4p,p,'),

where P, and P,', the initial and final center-of-
mass momenta for the t-channel reaction mm- NN,
and Z are defined in Sec. IIA. In these equations
for s and u the phase of P,P,' is chosen to be such
that P,P,' & 0 for t «0.

If we express the CGLN invariant amplitudes, '
defined by"

T'=-A'(s, f, u)+-,'y (p„+p„)B'(s, t, u)

as functions of the variables t and v,

4PgPt

(recall we are still at &,= w), the crossing rela-
tions are

A'(v, f) =~A'(-v, t), B'(v, t) =+8'(-v, t) . (l0)
A' and B, which are even under v- -v, must con-
tain only even powers, of P,P,' and therefore are
free of kinematical singularities. Because A. and8' must vanish at v=0, the functions A /v and
8'/v are also even functions of P,P,' and thus free
of kinematical singularities. Consequently, dis-
persion relations which involve only dynamical
singularities can be written for the amplitudes
A', A /v, B'/v, and B .

The mapping of the dynamical s, t, and u cuts
onto the two-sheeted t plane, or, equivalently, the
P,' plane, has been discussed often in the litera-
ture. " In particular, while the t dynamical cut
maps onto both sheets, the s cut maps only onto
the first t sheet, where p,pt&0 (for t-~), and the
u cut maps only onto the second t sheet, where
P,P,'&0 (for t-~) (see Fig. l).

Because 8,=0 corresponds here to a fixed value
of t, i.e., zero, one cannot disperse in t, and the
6),=0 dispersion relations are just "fixed-t" dis-
persion relations. This of course is the unique
value of t for which there is no contribution from
the dynamical cuts outside of the physical region.

C. The Reaction mN~mN D. Choice of Dispersion Variable

Before proceeding to the general situation,
m, &m„ let us review the ease of the elastic reac-
tion mN-m¹ For 8,=m, we have

In the more general case, where ~, & m„ t and
P,' are no longer analytically equivalent variables
at 8,= m. One must now decide which is the more





shows that g-channel singularities map only onto
sheets for which P,P, &0 as I,- . Similarly, s-
channel singularities map only onto sheets for
which P, P', &0 as t- . The KSF amplitude A is,
however, the same on all sheets; we therefore
need only consider one sheet, which we take to be
the physical t sheet on which both P, and p', are
positive as I-~. Because Eq. (8) describes the
physical boundary of the s channel (except for the
t = 0 part in the elastic case) and the boundary of
the physical region in the forward direction either
is t = 0 or approaches t = 0 asymptotically, it is
evident that the s-channel dynamical cut maps onto

-~ & t~0. The cut structures for mN-zN and yN
-mN are shown in Figs. I and 2.

Since both the forward and backward directions
for physical s-channel reactions map onto the
region -~ ~ t &0, it is interesting to see how a
fixed Z, '= 1 dispersion relation involving only
physical s-channel regions can be written. Con-
sider for example a dispersion relation for Z, = -3..
(In the following, we discuss the inelastic case
since in the elastic case Z, =1 corresponds only to
one value of f, i.e. , zero. ) Designating the Born
contribution by A~, we have

'Od, imA(t', s{f')) 1 Od, ImA(t', s(t'))
zs=-

where I;, is the t value for which s=s~„~,~d.

%hereas for Z, = -1, I;& t, corresponds to physical
scattering, t, & t&0 does not. In fact, to maintain
Z, = -1 as t increases through to, one must slide
through the kinematical s cut to the second sheet
where P, P,' is negative [cf. Eq. (2)]. However,
since reversing the sign of both Z, and P,P,'
leaves I, invariant, and A is the same on all kine-
matical s sheets,

A(s, P, P,' & 0, Z, = -1)=A(s, f) =A (s,p, P,' & 0, Z, =+1),

we can replace the ImA(t', s(t')))@, evaluated on
the second s sheet by its value on the first s sheet
evaluated at Z, =+1. Thus, the final two integrals
can be combined into one involving the discontinu-
ity of A along the boundary of the physical region.
The superscript Z, = -I is unnecessary for the in-
tegration over the dynamical I; cut since the path
of integration is along Z, = -1 for both Z, =+l.

Similarly, if we had begun by writing a forward
dispersion relation, we would have found the path
of integration again changing kinematical s sheets,
but, again by using the fact that the value of the
amplitude is the same on both s sheets, we would
have obtained the same expression. Consequently,
we can write our dispersion relation,

A is defined by Eq. (11), and the second integral
is evaluated along the boundary of the physical 8
channel. This relationship, which holds for the
general reaction ab- ed with m~ = m~, geduces in
the case of rn, = yg, to the familiar backward dis-
persion relation. Figure 3 illustrates the path of
integration for pion photoproduction.

8. Dispersion Relations for Zq4-1

The dispersion relation obtained in Sec. IIIA
involved Z, = -l. %e saw in Sec. II D that as long
as v=—s-u is proportional to P,P'„A is free of
kinematical singularities. For v ~-4P, P, the in-
tegrations over the dynamical s cut will involve

1 ' d, ImA(t', s(t'))
I,"-t

where

I'IG. 3. Path of integration for the reaction yN mN.
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only contributions from physical regions. In such
a case the dispersion equation would be the same
with s(t) given by

where we have included the Born terms symboli-
cally in the integral. The dispersion relation can
also be evaluated at t„s(tp) = sd, „d,„d,

with c) l. However, the integration over the dy-
namical t-cut values of c = -Z, ) 1 would always be
outside of the physical crossed-channel scattering
region. The-evaluation of the t-channel integrand
by, say, partial-wave expansions would therefore
be questionable.

IV. CONCLUSION

We have developed a dispersion relation for
analysis of reactions of the type ab -cd where

m, = rn, . The integral involving the direct channel
includes no contributions from unphysical regions,
but requires a knowledge of the scattering ampli-
tude at physical energies for both forward and

backward scattering.
There may now be enough data for yN- nN at low

and medium energies to allow evaluating the inte-
gral, assuming of course the existence of at least
moderately successful high-energy models for for-
ward and backward production. " The advent, in the
near future, of meson factories may also provide
sufficient data for the evaluation of the integral
for pion-induced reactions such as nN- pN, mN-&¹As is usual in such analysis, the t-cut inte-
gral may be approximated by a sum of nearby t
channel poles. Consequently, assuming the direct-
channel integral can be reasonably approximated

.by data and high-energy fits, one may determine
parameters for the t-channel poles, e.g. , p in yN- mÃ. Calculations of this nature are being pursued
by the authors and will be reported later.

By judicious choice of the t value, one may also
hope to derive sum rules for particular amplitudes
from which low-energy parameters can be ex-
tracted or high-energy models tested. In particu-
lar, sum rules which involve Regge amplitudes in
the forward and backward directions may provide
interesting insight into mechanisms employed to
retain behavior when Z, = 1.' By realizing that
for inelastic reactions t= 0 corresponds to infinite

s, one obtains the sum rule

(17)

s4(i'Ps Sthreshold) =~ (~or Sthreshotd)+
~ po

t' —to

1 "d, Im A(t ', s(t '))
(1&)
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to give a sum rule for the combination of scattering
lengths that remain when the amplitude is evalu-
ated at threshold.

One could subtract a boundary dispersion rela-
tion from a fixed-u, u=0, dispersion relation,
which, having the same contribution for t- +~,
would reduce the asymptotic t contributions. " For
each value of u which intersects the forward di-
rection and for which a fixed-u dispersion relation
can be written, one has a sum rule relating the
more rapidly converging integrals to crossed-
channel poles.

Similarly, one could consider comparing the

expression for A obtained from a fixed-t disper-
sion relation evaluated on the boundary to that

from our bouridary dispersion relation. Probably
the most interesting point for such a sum rule
would be at t= t, where the fixed-t dispersion re-
lation would not involve unphysical contributions.

Generalizations of this dispersion relation to
fixed values of Z, other than -1 may also be of
some value, although it is not clear how the t-
channel contributions can easily be evaluated. In

particular, with large Z,') 1, higher partial waves
become important. A Regge-pole model will not

suffice for positive t since little is known-about

the discontinuities of Regge residues and trajec-
tories.

In conclusion, it appears that the new dispersion
relation obtained in this paper will become another
useful tool for analyzing data.
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From a dual-resonance model with currents included through the minimal gauge interaction,
the deep-inelastic electron scattering is considered. It gives the Bjorken scaling for vW~

while W& vanishes, a property which is common among the models where the current is
coupled to bosons. Scaling occurs because of the existence of a current-algebra fixed pole.
Deep-inelastic electron scattering with one detected final-state particle is also considered
which, following Mueller, is connected with the discontinuity of a six-point amplitude. In a
special kinematic region, three out of four structure functions scale because of a fixed pole,
while outside this region the fixed pole cannot be responsible for scaling anymore. Then a
speculation of Pomeranchukon assignment does show the scaling. Inelastic Compton scatter-
ing is also considered which, in the parton model of Bjorken and Paschos, scales and is
proportional to vW2. This property is satisfied in the present model. Electron-positron
annihilation into hadrons is considered without renormalization whose cross section falls off
as s ~, It is suggested that a proper dual renormalization for the self-mass diagram of the
photon may change this result.

I. INTRODUCTION

There exists the possibility that the dual-reso-
nance model (DRM)" may finally provide us with
a theory of hadronic processes. The unitarization
program to treat the model as a Born term' puts
it on the same footing as a field-theory expansion.
Further, besides some quantitative agreements of
the model with the data, it reproduces some qual-
itative features of the hadronic inclusive reac-
tions" such as the Feynman scaling law, ' pioni-
Eation, limiting fragmentation, v small transverse
momentum of the produced particles, etc.' How-
ever, notice that these limiting distributions are

obtained when one puts the intercept of the rele-
vant Regge trajectory eo equal to unity, i.e., the
Pomeranchukon is exchanged, while in the case of
the usual Regge trajectories with o.o1 exchanged,
one gets scaling (generalized) only for the ratio of
the differential cross section to the total cross
section. " The above-mentioned successes of
DRM in purely hadronic exclusive and inclusive
reactions are certainly interesting both theoreti-
cally and phenomenologically.

In the processes where currents are involved
there exists a "similar" kind of scaling behavior,
namely the one originally predicted by Bjorken'
for the deep-inelastic electroproduction structure


