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meromorphie function in a domain enclosing the
unitary eut with possible poles on the cut. The
main point of the argument is that the discontinuity
across these poles is irrelevant as far as the defi-
nition of t'~(+) is concerned. As a consequence the
two-particle Heitier equation (3.19) in the three-
particle space is satisfied identically whether or
not we take into account the Dirac-5-Nnetion piece
of these poles. Therefore, it appears to be entire-

ly consistent to retain only the principal-value
part of these poles when defining the two-body E
matrices on the three-particle space.
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Some aspects of the connection between trilinear and bilinear equal-time commutation
relations are clarified. Locality requirements satisfied by the generalized fields under dis-
cussion are examined in some detail. Using algebraic arguments it is shown that for repre-
sentations of operators satisfying the generalized trilinear equal-time commutation rela. —

tions either the half-integral- or the integral-spin fields or both satisfy conventional statis-
tics. IQ connectloQ with a. question raised previously lt 18 shown that the hadlonlc schemes
considered suggest which fields should in each scheme be associated with the (hypothetical)
intermediate bosons. It is shown that the discrepancy in physical content between the vari-
ous particle classification schemes discussed ean be substantially reduced, if not elimi-
nated, by the introduction of a new selection rule in addition to the selection rules derived
from locality and self-adjointness 'of the Lagrangian. The new selection rule is not unrelat-
ed to locality considerations and is also related to the metric. The question of the metric
in the context of the generalized fields is briefly considered.

I. INTRODUCTION

It is well known that the bilinear equal-time com-
mutation relations between distinct fields have im-
phcations bearing on the interactions of the fields
concerned, on the selection rules they satisfy,
and on their vacuum expectation values. ' " It is

also known that TCP invariance requirements do
not uniquely determine the bilinear equal-time com-
mutation relations between distinct fields. '
It is therefore of interest to inquire whether from
first principles" it is possible to derive a set of
fields which has the property that the bilinear
equal-time commutation or antieommutation re-
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lations are specified for each pair of kinematically
independent field variables contained in the set.
Qlllte apart from any mtr1118ic mterest, such a set
of fields can conceivably serve as a classification
scheme fox elementary particles. It is assumed
from the outset that all spinor, vector, etc., com-
ponents of a field have identical equal-time com-
mutation behavior with all othex fields belonging to
the set."

In connection with the specification of bilinear
equal-time commutation relations between distinct
fields the following trilinear equal-time commuta-
tion relations"-" ""have been studied:

(+.,~(x), I.xs, ;(y), x„',,(z)l l = &(x -y)(~,').8~'x,', ,(z)

—~(x - )(~.').,~x, ,, (y),

(la)

I@,, (x),tx„.(y), x,',.(z)l. l =f&„,&(x -y)&'x,', „(z)

+ 7'h~p 6(x —z)Ãy„„(y),

(lb)

where Greek subscxipts denote spinor indices and
Latin subscripts (i, . . . , n) denote integer values
from a finite range, which depends on the partic-
ular representation of "generalized fields" [oper-
ators satisfying Eqs. (1)]being studied. In the
subsequent discussion Greek subscripts (spinor
indices) will sometimes be suppressed when no
misunderstanding is likely to occur.

Equations (la) and (lb) are assumed to be simul-
taneously valid, and in keeping with a notation de-
veloped earlier" ""each field operator in Eqs.
(1) denotes, '

independently of the other fields,
either a field variable or its canonical conjugate.
Moreover, any two field variables in Eq. (Ia) may
be kinematically related or unrelated. The same
applies to Eq. (lb).

The space-time independent "undetermined mul-
tipliers" M, M', N, and N', which implicitly de-
pend on the field operators in whose trilinear
commutation relations they occur, can be nonvan-
ishing only when the fields being contracted are
canonical conjugates of each other, i.e., they have
the same Latin subscript s ox' lt,

' Rs the cRse IQRy

be. The relevant Kronecker 5's are assumed to
be absorbed in M, M', N, or N' or in y,'and 5„„
respectively. "'"'"

In the derivation of the commutation relations
(1) from the action principle, " "the fields 4,.
differ from the fields 4~ in that the generators of
the infinitesima1 transformations are Rntisym-
metrized in the former and symmetrized in the
latter case. The symmetrization of the generators
of the X fields is Qot specified in the derivation,

and the generator of any particular X may there-
fore be either symmetrized or antisymmetrized.

The commutation relations (1) are a natural gen-
eralization of a set of trilinear equal-time com-
mutation relations first discussed by Green" in
coIlnectlon with RQ attempt to .geQex'Rlize quaQtum
statistics. A related issue had earlier been
raised by signer. " In recent years, particulax'ly
since the contributions of Volkov, "there has
been a growing interest in these generalized sta-
tistics. 'A representative sampling from the lit-
erature is given below. Discussions of statistical-
mechanical aspects of generalized statistics can
be found in Refs. 25-32; Refs. 33-37 contain ref-
erences to lecture notes and review articles;
suggestions, pertinent comments, and references
to generalized statistics can be found in Refs.
38-45; discussions of the subject in the context of
second quantization, field theory, particle physics,
quantum mechanics, Rnd quantum statistics can
be found in Refs. 20-23, 46-93; Refs. 94-113
contain references to discussions of possible ap-
plications of generalized statistics to quark and
related models.

As far as is known at the present time there
appears to be no compelling empirical evidence
indicating that any elementary particle obeys sta-
tistics other than Bose-Einstein or Fermi-Dirac. "~

In this discussion and in previous investigations
on the subject" " ' "the point of view has been
tRkeQ that the trllinear coIQmutRtlon x'81Rtions
should be generalized to the form (1), and that
they contain information concerning the bilinear
equal-time commutation relations between dis-
tinct fields satisfying ordinary stRtlstlcs. Ther 8
have been other attempts to deemphasize the gen-
eralized statistical aspects of higher-order com-
mutation relations. "'

II. TRILINEAR AND BILINEAR
COMMUTATION RELATIONS

With the aid of trilinear algebraic identities it
is possible to deduce from the commutation rela-
tion (la) that it has symmetry properties in the
canonically conjugate variables being contracted.
These symmetry properties can symbolically be
expressed Rs

~(+., ;, +8, , x)(r.').8
= M(+8„, +..,.x)(r.')8.

~(@ .;, @g„,x)(x,') =~'(+8, ;, + „x)(7,')

where X is any field variable belonging to the rep-
resentation being considered. Similarly, the com-
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mutation relation (lb) implies Rntisymmetry rela-
tions 111 caxlonical vRx'1Rbles:

x(e„„ll„„x)5,„=-+(Il„„c„„x)5„„

H'(cq „II„;,x)5q, = N'-(ll„, ;,4q „x)5„„. (3b)

Equations (2) and (3) of course, respectively,
mean that the commutation relation (la) is sym-
metric and the commutation relation (lb) is anti-
symmetric under exchange of canonical variables.
The symmetry properties (2) and (3) also imply
that, for each representation of the generalized
fields, a generalized fieM and its canonicaQy con-
jugate momentum have the same equal-time com-
mutation behavior with respect to all the other
generalized fields belonging to the representation.
Thus, although tilis discussion is based on the
Lagrangian formalism and not on the axiomatic
formulation of quantum field theory, the commu-
tation relations (1) imply that, for each represen-
tation of the generalized fields, Dell'Antonio's
theorem'" is satisfied a6 iniNO.

With the aid of the symmetry properties (2}and
(3), the following equal-time commutation rela-
tions are obtained from Eqs. (1):

[c;(x),@,(y)@,'(z)] =0

[@,.(x), 4 I(y)41{z)] = 0,
vrhere again each field operator denotes indepen-
dently of the other fields eithex a field variable or
its canonically conjugate momentum. For any rep-
resentat10n Eqs. (4) Rl'8 valid fol' Rll VRllles of the
subscripts i, j, and k.

For a representation of the generalized fields
for which there is one integral-spin field 4&

vrhich, for equal times, coInmutes arith one half-
integral-spin field 4,. belonging to the same rep-
resentation, i.e.,

[4'&(x), +,(y)] =o, (5)

Eqs. {4)imply that the commutation relation (5) is
valid for Rll fields 4,. and 0,. of the representation
considered,

EqllRtioll (5) togetllex wltll tile con11111ltRtl011 18-
lation (1b) then implies that

[@,.(x), @){y}]

[4'f„,.(x), 11,„(y)] X(z) =kI'5„, ~(x-y)~'(@;, ll;, X)X(z).

(7}

For any representation of the generalized fields
and for any value of the subscript I', Eq. (7}is, as

a consequence of Eqs. (1) and (5), vaiid for aU.
field variables y kinematically unrelated to the in-
tegral-spin field C;. Hence Eq. (I) suggests that
if Eq. (5) applies, one should look for representa-
tions for which for all values of the subscript i

[4„;(x),II„,.(y)] =-,'I'5„„5(x-y)Ã(C„II,. ). (8)

If instead of Eq. (5}the two fields concerned
satisfy equal-time anticommutation relations,

[c,.(x), ~,.(y)], =o,

Eqs. (4) imply that for the representation under
consideration, Eq. (9) is valid for all values of the
subscripts i and j.

Ill BIIRlogy to Eqs. (6), (I), Rnd (8) 0118 t11811 ob-
tains from the commutation relations (1) and (9)
the following three equations:

[f;(x),+,'(y)l. =O, (lo)

[+., ;(x), ~8, ; (y)],x(z)
= —,'5(x —y)(y,')„,~'(e, 4,, X)X(z),

(»)

[e„,(x), %, , (y)], = —,'5(x —y)(y,')„,I'(e, , 0,.) .
(12)

The quantization scheme (8) is, of course, also
compatible anth the trilinear commutation rela-
tions obtained when in Eq. (1b) all fields are as-
sumed to be kinematically related. The same ap-
plies to Eq. (12) and the commutation relation
(la). However, the commutation relations (1) and
their derivation from the action principle preclude
the possibility of quantizing the 4' fields by means
of commutators and the 4 fields by means. of anti-
comIQutators,

For representations for &which the generalized
fields satisfy either the condition (5) or (9) some
of the multipliers M or N are, of couxse, auto-
matically determined.

In the above an attempt has been made to show
that the commutation xelations between distinct
fields [Eqs. (1), (5), or (9)] imply that the 0 fields
are to be associated arith fermions and the 4 fields
arith bosons. Actually it is possible to arrive at
these conclusions under assumptions somewhat
less restrictive than Eqs. (5) or (9).

The commutation relations (1) imply that

[+„„(x)q',;(y)+ @, (y)@,;(x)]4'(z)

-[+., I (x)C (z)@8,&(y) + @8,&(y)4'(z)@„,&(x)]

= 5gx —y)(y, )„~MC (z)

(13a)



406 H. SCHARFSTEIN

[4„,.(x)II„,.(y) —11, , (y)4„,.(x)J@(z)

+ [4„(x)4'(z)II, , (y) —II, , (y)4(z)4 „;(x)]

= i5„„5(x—y)N4'(z) .
(13b)

relations

4, (x)4,'(y)+4,'.(y)4, (x) =0,

and

4„(x)4,'(y) —4,'(y)4 (x) =0, 4,'oil, .

(17a)

(17b}

The two bracketed expressions on the left-hand
side of Eq. (13a}are separately symmetric, and
the two bracketed expressions on the left-hand
side of Eq. (13b) are separately antisymmetric
under exchange of canonical variables.

Disregarding the possibly singular character of
quadrilinear products of generalized field opera-
tors, Eqs. (13a}and (13b) are, respectively, mul-
tiplied by generalized field variables as follows:

[@„;(x)48;(y)+%8,(y)@,(x)]4(z)@ (u)

—[@„,(x)4'(z)4', , (y)+ 4, , (y)4 (z)4. ,(x)]4"(u)

=5(x -y}(y,) BM4 (z)@'(u)

(14a)

[4„,(x)11, , (y) —11, , (y)@„,(x)]4 (z)4 '(u)

+ [4~,.(x)4(z)II, , (y) —II, , (y)4 (z)4„,. (x)]4 '(u)

= id~, 5(x —y)N4 (z)4'(u) .
(14b)

Using the trilinear commutation relations, Eqs.
(14) i&ply that

[4. ,(x)4,~, (y)+ 4', , (y)4'„,(x)][4'(z), 4"(u)]

=5(x -y)(y4)„~M@(z)4"(u),

(15a}

[4„,.(x)II, , (y) —11,(y)4„,.(x)j[@(z),4'(u)],
= i5„,5 (X —y)N4 (z)4 '(u) .

(15b)

Since M and N are space-time-independent factors
one can conclude from Eqs. (15) that

@„,(x)%8,.(y) +%~,.(y)4 „,.(x)

= 5(x —y)(y4) 8 x (space-time-independent factor)

(Isa)

and

4„,.(x)II, , (y) —II„,.(y)4„,. (x)

=i5&„5(x—y) x (space-time-independent factor),

(16b)

unless 4 and 4" commute or 4 and 4 ' anticommute
for equal times. However, these two cases were
discussed previously.

In an entirely analogous manner one obtains, the

Equation (17a) follows as above unless 4 and 4"
commute, while Eq. (17b) follows unless 4 and 4 '

anticommute.
The conclusion therefore is that the commutation

relations (1) preclude any esoteric statistics ex-
cept in the following three special cases:

(1) Only fields of one type (i.e., only 4's or
only 4's) are considered in a particular theory.

(2) All 4's commute for equal times with all
4's, in which case all the 4's of the representa-
tion considered are bosons, but a separate argu-
ment has to be made to exclude generalized sta-
tistics for the 4 fields. Distinct C's commute for
equal times but distinct 4's do not necessarily
have to satisfy bilinear commutation relations
with each other.

(3) All 4's anticommute for equal times with all
4's, in which case all the 4 's are fermions, but
a separate argument has to be made to exclude
generalized statistics for the 4 fields. Distinct
4's anticommute for equal times but distinct 4's
do not necessarily have to satisfy bilinear com-
mutation relations with each other.

These conclusions are reasonable because it is
Known that representations of the generalized
fields that give rise to generalized statistics are
compatible with Eqs. (1) when the validity of each
one of these commutation relations is restricted
to the kinematically related case. -

If none of the above three special cases apply,
i.e., for a representation for which no 4 satisfies
a bilinear equal-time commutation relation with a
4, all the generalized fields obey ordinary sta-
tistics, distinct +'s anticommute and distinct 4"s
commute for equal times.

Thus, with the possible exception of the above-
mentioned three possibilities, one is justified in
referring to the 0 fields as fermions and to the
C fields as bosons. Taking the conventional con-
nection between spin and statistics for granted,
the 4's are half-integral-spin and the 4's are in-
tegral-spin fields, as has been anticipated above.

As is well known, ' ' locality requirements and
right-left symmetry of the positions of the varia-
tions obtained in the process of deriving the equa-
tions of motion from Lagrangians imply that two
fermions entering into a trilinear interaction with
a boson field must both commute with the boson
field if they anticommute with each other for equal
times, and they must both anticommute with the
boson field if they commute with each other. Anal-
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III. REPRESENTATIONS

The representations of the generalized fields of
interest in this discussion are of the form" "'"

and

4;(x) =A,. xy(x), %,(x) =A,'. xy(x)

4,.(x) = B,. xP(x), II,.(x) = B,'. xII(x),

(20a)

(20b)

where the A s and B s are numerical space-time-
independent matrices. These matrices and the
bilinear equal-time commutation relations between
the various "component fields'"" g and Q (as far
as they necessarily satisfy bilinear commutation
relations} are determined for any particular (ir-
reducible) matrix representation by the commuta-

ogous selection rules are obtained for higher-
order interactions. '"

The commutation relations (1) permit another
possibility for trilinear interactions, or ~ore
generally for interactions of even order in fer-
mion fieMs, provided the interactions are suitably
symmetrized. Suitable symmetrization means,
for example, that all interactions should be anti-
symmetrized pairwise in fermion fields, as in-
dicated by Eq. (la). With such a symmetrization
it is apparently possible to satisfy all locality re-
quirements and right-left symmetry, even if dis-
tinct fermions neither commute nor anticommute
for equal times, provided Eqs. (1) and (5) are
satisfied. Indeed, with these assumptions the
commutation relations (1) permit not only the
"weak" locality requirement"

[H,(x),H, (y)] =0 for x-y spacelike (18)

to be satisfied, where H, and H, are any two (suit-
ably symmetrized} Hamiltonian densities of gen-
eralized fields, but also the stronger locality
statement

[~(x),H(y)j =0 for x- y spacelike, (19}

where g is any generalized field of a representa-
tion under consideration.

It is, of course, possible to make Klein trans-
formations"' "' from one set of fields to another
set satisfying "normal'"' or some other equal-
time commutation relations. Homever, one must
be mindful of the fact that any physics contained
in the equal-time commutation relations should be
Klein-transformation-invariant. ' The normal case
appears to be distinguished from other cases by
the complete absence of selection rules or "sym-
metries" due only to equal-time commutation
relations (assuming "reasonable" interactions,
i.e., interactions of even order in half-integral-
spin fields).

tion relations (1) for suitable choices of the un-
determined multipliers M and K The subscripts
of the component fields are assumed to be implied
by the matrix with which each component field is
associated. Some algebraic aspects of the nu-
merical matrix equations, obtained from Eqs. (1)
under the assumption that any two component
fields satisfy bilinear equal-time commutation
relations, have been studied previously. "

If the generalized fields (20}satisfy ordinary
statistics, then

=k 5rx -y)(r,'). SA; A', «(~&, +;)

(21a)

C = ", C2= ", C3= . 22

There is then the problem of the division of the
matrices obtained from the generators (22) into
sets (A's and B's). In this connection it is expe-
dient to consider the four sets of linearly indepen-
dent 4 ~4 matrices,

G= (I, C, C~C, CS, C,C~, C~CSC2C~),

K= ((C,C~+ C3C, ), (C,C, + C,C,)),
A= (C~, C„C~C,C„C~C2C,),
B= (C„C,C, C„C,C2C„C,C, C,) .

(23)

c „,rx)li„, ry) 11„,ry}e„,rx)

5„,5'(x —y)B B,' x 5(4,, 1I,),
(21b)

i.e., &; and && commute and so do B& and B,'. .
The operator Kronecker 5's 6(+;, 4;) and 5(4;, II,.)
have been introduced previously" in order to en-
sure that in the quantization scheme presented
here both sides of Eqs. (21) have the same equal-
time commutation behavior with respect to all
generalized fields of a representation being con-
sidered.

Representations for which A; and At (and B;
and B,') anticommute would give rise to a para-
doxical situation where a generalized field and its
associated component field would satisfy opposite
statistics. Such representations mill not be con-
sidered in this discussion.

As a trivial example one may consider a rep-
resentation based on the unit matrix. Another
simple representation can be obtained from the
Pauli matrices. The simplest representation of
possible physical significance can be obtained
from the Dirac y matrices or more conveniently
from the three generating matrices"
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An example of a representation for which no +
satisfies a bilinear commutation relation with a 4
is obtained when the matrices in set A are asso-
ciated with fermions and those in set Bwith
bosons or vice versa. For such a representation
all bilinear commutation relations between the
component fields can be determined if two com-
ponent fields g and P either commute or anti-
commute for equal times.

If it is desired to consider a representation
which utilizes all the matrices (23}, it is obvious
that the matrices in sets G and E must be asso-
ciated with integral-spin and those in sets A and
8 with half-integral-spin fields or vice versa, if
distinct component fields either commute or anti-
cornmute for equal times, the reason being that
no matrix in set A, commutes or anticommutes
with a matrix in set B. These examples show that
the use of matrices which neither commute nor
anticommute renders the division of the matrices
into /8 and B'8 more or less unique.

For a possibly physically relevant representa-
tion it is desirable to satisfy the locality require-
ments (18) and (19). This means that, as has been
discussed above, Eq. (5) should apply, and that
not only for reasons of locality but also because of
phenomenological considerations (cf, below) the
matrices in sets G and K should be associated with

bosons.
If Eq. (5) applies, separate arguments have to be

made to determine the statistics of and the bilinear
commutation relations between distinct 4 fields.
If it is assumed that the @'8 satisfy Fermi-Dirae
statistics, a component field with matrix in set A.

commutes ox' antlcoIQIQutes fox' equal times with

component fields whose associated matrix is in
set K Vice versa, if component fields with ma-
tx'ix in set A satisfy bilinear commutation rela-
tions with component fields whose associated ma-
trix is in set B, the 4'8, as a consequence of
Eqs. (1), satisfy Fermi-Dirac statistics.

A self-consistent set of bilinear equal-time
commutation relations for the 4 8 can be obtained
if it is assumed that they are fermions and if,
furthermore, distinct 4 s with matrix in the same
set, A. or B, anticommute for equal times. Though

this may not be the only way of determining the
bilinear commutation relations for the component
fermions, it will be adopted for the representation
to be considered.

If the bilinear commutation relations are deter-
mined as outlined above, then the symmetry of the
coIQponent bosons, as exp1688ed ln thell b1lineax'

commutation relations, is different from the sym-
metry of the component fermions. 14

The structure of the Lagrange function deter-
mines which generalized fields are related by

canonical conjugation. In this discussion the cus-
tomary relationship between a field variable and
its canonical momentum is maintained. This pre-
sentation departs from the conventional Lagrangian
formalism in that, for the representation discussed,
each term in the Lagrangian density is the direct
product of a 4 &4 matrix and component fields.

It is instructive to consider a Klein transforma-
tion of the form

where @; is a field of the form (20b} with matrix
coefficient either in set G or E, and +; is a field
of the form (20a) with matrix coefficient either in
set A or B. For a representation for which Eq.
(5) applies the bilinear commutation relations of
any boson component field with all the other com-
ponent fields are determined. It is understood
that these bilinear commutation relations are not
affected by the transformation (24). The sets (23)
are individually invariant under multiplication by
the Hermitian matrix i C, C,C, C, (up to possible
phase factors). The transformed fields satisfy the
commutation relations

The transformed fields satisfy the condition (9}
but not generally the condition (10), because a ma-
trix in set A neither commutes nor anticommutes
with a matrix in set K Hence the transfox med
fields do not constitute a representation of Eqs.
(1) if distinct component fermions satisfy bilinear
equal-time commutation relations. The conclusion
is that fox' the transformed fields the matrices to
be properly considered instead of (23}are, for
example,

B'=((C~+ C, C, C,), (C,C2C, + C, CSC2)) .
(26)

Since it is more convenient to work with matrices
any two of which satisfy bilinear commutation re-
lations, the matrices (26) instead of (23) will be
used in the subsequent discussion. The bilinear
commutation relations between distinct component
fields are determined by means of Eq. (27).

As far as bilinear equal-time commutation re-
lations are concerned, the same results are ob-
tained whether one uses the matrices (23}together
with the above prescription for determining the
bilineax commutation relations, or whether one
uses the matrices (26}together with

[@;(x},@,'(y)l = [c;(x}pj(y}1 = [@;(x),@,'(y}l, =o,
(27)



SOME ASP ECTS OF FIELD SYMMETRIES. III 409

It is a simple matter to construct higher-order
representations of generalized fields. "

IV. FIELDS AND PARTICLES

Qnly couplings which are at least formally local
will be considered in this discussion. For a cou-
pling to be allowed it is required that not only the
generalized fields entering the interaction but also
the associated component fields, disregarding the
matrix structure of the Lagrangian, have equal-
time commutation behavior consistent with local-
ity, Eqs. (18) and (19). Deferring the discussion
of the metric, it is also required that all Lagrang-
ian densities be self-adjoint. The self -adjointness
requirements apply to both factors of the direct-
product densities, i.e. , to the matrix factors and
to the products of the component fields.

Using these selection rules and relying heavily
on phenomenological considerations, such as the
knowledge of the existence of certain particles
and their observed interactions, the representa-
tion of the generalized fields under consideration
has been used in an attempt to classify the ele-
mentary particles. " In this connection it is de-
sirable to remove some ambiguities" and to clar-
ify some considerations and to motivate the in-
troduction of another selection rule in addition to
the selection rules derived from locality and self-
ad jointness.

In the present attempt to construct a classifica-
tion scheme, observed processes should in general
be consistent with and unobserved processes
should in general be inconsistent with locality and/
or self-adjointness requirements ("or" applies
only to inconsistency).

TABLE I. Particles and fields {scheme A). This table summarizes a particular correspondence between fields and
particles. To each.particle corresponds a generalized field operator, which consists of the direct product of a numer-
ical (space-time-independent) matrix and a component-field operator. E.g. "C2ef x p: n ~" means that in scheme A the
positive (negative) pion is described by the generalized field C2cf xf1) (C2Cf xpf). The bilinear equal-time commutation
relations between ft) g&g) and other component fields occurring in the table are obtained from Eq. (27). As usual a free-
field generalized operator is assumed to annihilate particles and create antiparticles or vice versa. It is understood
that the same numerical matrix is associated with a particle and all its higher-spin recurrences.

Octet Decimet

-C3Cf C3x 0:
C2x+.

i(Cf C2C3 —Cf e3C2) x +:
(C3 —Cf C3Cf) xC: Y
(C3+Cfc3ef) x+: Z-
i (Cf C2 C3+ Cf C3C2) x 4: Z+

C3C2C3XC: p
Cfx+: p

-C3C2C3X 4: =+

ef x+:

(C3 —Cf C3Cf) x 0: Z+

m (Cf C2C3 —Cf C3C2) x 0'.
m(CfC2C3+Cf C3C2) x4:
(C3+CfC3Cf) x%: Z

e3ef C3x +: n

C2XC: n

(C3 —Cf C3Cf) x 4':
i(Cf C2C3 Cf C3C2) x 0':

+

-C3Cf C3x 4:
-C3Cf C3x 4:
C2x+:
(C3+CfC3Cf)X%: Zf
i(Cf C2C3+ Cf C3C2) x +:
i (Cf C2C3 —Cf C3C2) XC:
(C3 —Cf C3Cf) X4 Zf

(C3+CfC3Cf) x@: Zf *
z(ef C2C3+Cf C3C2) x +:
Cf x+:
C3C2C3x 4:
C3C2C3 x+:
Cf x4:
Cf x%:
C3C2C3 x 4: &f+

(
C3C2C3x 4:

X 4'. +1

(C3+CfC, C,) xy: @+2

0 f i (Cf C2 C3 + Cf C3C2) x 4:
—C3C2C3 x +:

&ac

pgCfx@:
-C3C2C3 x 4:
(C3 Cf C3Cf) x 4: Z+2*

Zg
* m (Cf C2C3 —Cf C3C2) x 4:

Zf* i{cfC2C3+efC3C2) x+:
(C3+ f C3Cf) x 4: Z2*

(C3 —Cf C3Cf) x O'. Z2
*

i (Cf C2C3 —Cf C3C2) x +:
C3efC3x+: 5+2

C2x 4:
C2X 0:
C3efc3X +: g2
C3Cf C3x +:

cra�xe:

C2x C: b2
C3efc3X C'. ~+2+

2
pg

Z2

Me sons

z(C2C3 C3C2)xf: K
(C2C3+C3C2) x tt): K+

(CfC3+C3Cf)XQ~: KP

i(Cfe3-C3cf)xp: K

C2cfxp: 7r+

Ixg:

Intermediate bosons

(C2C3+ C3C2) xp~: W
—i (C2C3-C3C2) x p: W+

m(Cf C3 —C3ef) x@: W

{CfC3+ C3Cf) x Q: W

Cf C3C2C3x p:
Cfe3efe3xy~': W p

Cf C3cfC3X y: W'

Other nonstrange bosons

{C,C, +C,e) X4: B,
i(CfC3 C3Cf) xfI5: B2
{C2C3+C3C2) x p: B3
i(C2C3 —C3C2) xft): B4
Ixg: y, g

Leptons

ef x+: 1f
Cf x 4'. 1f
C3C2C3x 4". 1f
C3C2C3X 4: 1f
C2X +: 12
C2x4: 12

C3Cf C3x 4: 1'
C3Cf C3x +: 12

Some spinor and vector indices and normalization factors 1/~ have for simplicity been omitted.
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Using the representation of the generalized
fields under discussion, a set of fields to repre-
sent particles can be constructed, essentially by
matrix multiplication, using phenomenology as a
guide, by starting from a suitable choice for the
generalized fields representing the neutral and
charged kaons, the proton, neutron, and their
antiparticle s."

In order to observe regularities, similarities,
and differences, if any, it is instructive to com-
pare two schemes A and B (Tables I and II) which
are constructed in the same manner, as outlined
above, but which differ in some of the basic fields
just mentioned, i.e. , in the generalized fields rep-
resenting the neutron and the charged kaons. Pos-
itive-strangeness baryon resonances, for whose
existence there is inconclusive empirical evi-
dence, '" have not been included in Tables I and
II, but the possibility of including such resonances
in the schemes presented here has been discussed
previously. "

Generalizing a definition of Gell-Mann"' the Y

and Z fields occurring in Tables I and II are de-
fined as

and

Z —=a'A+O'Z,

(28a)

(28b)

where a, b, a', and b' are suitably normalized
complex number s. A reasonable correspondence
with the Wentki-d'Espagnat Hamiltonian can be
obtained if particular values are assigned to these
numbers. "

In the multiplet construction, as outlined in
Tables I and II, it is tacitly assumed that the me-
sonic interactions of baryons are trilinear, but
the exact form of the couplings is not specified.
The same statement applies to interactions of
higher-spin recurrences of baryons and mesons.
4'bile four-fermion couplings cannot in general be
ruled out on the basis of the selection rules dis-
cussed, an examination of Tables I and II indicates
that it appears impossible to devise a set of al-

TABLE II. Particles and fields (scheme B). See the caption of Table I for an explanation of the symbols.

Octet Decimet

Cs C2Csx 4:
Cfx+

(Cs —Cf C3Cf) x +: Y
i(Cf C2C3 —Cf C3C2) x%: Y
(Cs+ Cf C3Cf) x O'. Z

i (Cf C2 Cs + Cf Cs C2) x 0: Z+

Csc2csx+: P
Cfx+: p

C2X+: +

C3Cf CsxC:

(Cs+ Cf C3Cf) x 4: Z+

~ (CfC2C3+ CfCscp) x+':
(Cs —CfC3Cf) X +: Z
m(Cf C2C3 —Cf Cscg) x 4:

C&x+: n

CscfcsxC: n

(Cs —Cf C3Cf) x 4: Qf
i(Cf C2C3 —Cf C3C2) xC:
C2 X 4'.
-C3Cf Cs x%:

~QQ,
CsC2C3X 4:
Cf x+: ™0
(Cs+ Cf C3Cf) X%':

i (CfC2Cs+ Cf CsCg) x4'.
(Cs Cf C3Cf) xi:
s (CfC2C3 —Cf C3C2) x 4'.
(C, +C,C,C,) X4:
i(Cf C)C3+ Cf Cscp) XC:
Cf x+:
C3C2C3 x 4:

(
-C3Cf Cs x 4: Ef
C2X+:
Cf x%:
Csc2csx 4':
-C3Cf Csx 0:
C2XC:

ZQ+
f

(C, -C,C,C,)x@: 0+,

m(CfC2C3 —Cf C3C2)X9:
C2x+:
Cscf Csx+:
-CsC2Csx C: ~04

Qg

(Cs+ Cf C3Cf) X4: Z2+*

i(cfC2cs+ Cf CsC2) x g:
(C, -C,C,C,)X%: Z,'*
m(cf C2Cs Cf C3C2) x 4:
(Cs+CfCsCf) x+: Z2 *
-i(e,c,c,+c,c,c,) x e:

(
Cg x+: Bf
—Csc,csxe: a,—
C3CfCsxi:
C2X 4:

(
Cf x%:
-CsC2C3 x 4: 8+2

C3Cf Csx+:
C&x@: 4f+

ZQ+
2

Me sons

i(cfcs- Cscf)xp'. K
(cfcs+cscf) xy: z+

(CfC3+ CsCf) xQ: gQ

i(cfCs —C3Cf) x fIt)

Cf C3Cf Csxp:
Ixy: 7tQ

intermediate bosons

m (Cf Cs —C3Cf) x IIt): W

(Cf Cs+ C3Cf) x III): W+

(Cf Cs+ CsCf) x p: W
L (Cf Cs C3Cf) x (t): W

i Cf Cscf Csx f: W'*
—Ixgt-

W'

Other nonstrange bosons

(Cf Cs+ CsCf) x Q:Bf
i (Cf Cs —Cscf) x P: Bg

(C,cs+Csc,) xy: Bs
i(C2Cs C3C2) xft): B4
Ixg: y, g

Leptons

Cfxt: 1f
Cfx+: 1f
CsCf Csx g: 1f
C3Cf Csx 4'.
C2x 4: 12

C)x +: 1)
C3C2Csx 4:
Csczcs x 4: 1&

Some spinor and vector indices and normalization- factors 1/~ have for simplicity been omitted.
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W'0= C,CsC, Csx y
zS=O

W'0 = C~csc~cs x yt
(29a)

W"= C,C,C,C, x y, ~s = 0

W'= (C,C, + C,C, ) x y/W2 zS =~1
W' = -i(C,C, —C,C, ) x y'/W2

(29b)

(29c)

w'= -i(c,c, -c,c,) x y/~2
~S =+1, ~S = ~Q.

W- = (C,C, + C,C,) x y'/W2

The corresponding fields for scheme B are

(29d)

Wio=fxy
aS=O

W" = -Ix pt
(30a)

lowed four-fermion couplings which could even
qualitatively account for the symmetries exhib-
ited by weak interactions.

An inspection of the tables shows that there are
in addition to the pions and kaons (and their higher-
spin recurrences) four other pairs of bosons which
can cause ~h S~ & 1 transitions among the baryons
by means of trilinear interactions.

For scheme A, these fields are

changing leptonic decays of baryons this rule ap-
pears to be well satisfied.

Disregarding such considerations as universality,
the spin of the W fields (0 or 1), the relative mag-
nitude of their possible couplings, and the precise
form of any trilinear interactions with baryons and
trilinear or higher-order couplings to bosons the
8'fields may enter into, it is tempting to associate
the 5"fields with the hypothetical intermediate bo-
sons, though the question as to why they have not
been observed is left open.

In both schemes A and B no baryonic first-order
transitions mediated by pions or kaons can be me-
diated in first order by any of the W fields. For
example, the fields in Tables I and II enclosed in
large parentheses cannot be reached from the octet
by pionic, kaonic, or electromagnetic transitions,
but they can be reached from the octet by first-
order transitions mediated by suitable S' fields.
In spite of the difference in interactions mediated.
by them, there is a close correspondence between
the matrix structure of the mesons (pions and ka-
ons) and that of the Wfields, as indicated by the
tables. Moreover, there is also a correspondence
between baryonic transitions respectively medi-
ated by mesons and by W fields.

The observations made above imply that the (vir-
tual) transition

W" =iC,C,C,C, xy, ~S =0 (30b) s -p+W' (or W ) (32)

W = -i(C,C, —C,C,}x y/v 2
aS =, +1

W = (C,C3+ C,C, ) x yt /~2
(30c)

B,-B,+ 5", (31)

satisfy the ~S = ~Q rule as far as the baryons B,
and B, are concerned. At least for strangeness-

W' = (C,C, + C,C,}xpH2 sS =+1, aS = sQ.
W = -i(C,CS —C~C, }xy /W2

(30d)

ln Eqs. (29) and (30) the changes in strangeness
~S refer to the baryons among which. transitions
are induced by the S' fields.

If the classification schemes discussed are even
remotely related to physical reality, it is legiti-
mate to inquire whether there are any particles
which on the basis of phenomenology and selection
rules could conceivably correspond to the fields
(29) and (30). The answer appears to be negative.

Leaving the question of the possible decays of
the W bosons open, all first-order (virtual} bary-
onic transitions induced by the strangeness-chang-
ing charged 8' fields in both schemes A and B
[fields (29d} and (30d), respectively],

l,(l, ) + l,'(l,')

l, (l, ) +T,
' (l,' ) .

(33)

Instead of selecting the generalized fields repre-
senting the leptons as in Tables I and 0, it is a
prio possible to choose these fields in such a
manner that instead of the process (33) the strange
charged Wfields [Eqs. (29d) and (30d), respective-
ly] can decay either into electronic or into muonic
leptons. This can be accomplished for scheme A
if the fields representing the leptons are, for ex-
ample, chosen as follows:

cannot occur in first order but must, if possible,
proceed via suitable intermediate processes.

The requirement that in the context of the selec-
tion rules discussed baryons and leptons, and sim-
ilarly electronic and muonic leptons, cannot be di-
rectly (trilinearly) coupled does not specify unique-
ly the generalized fields selected in each scheme
to represent the leptons. "

The fields in Tables I and II representing the lep-
tons have been chosen in such a manner that the
nonstrange charged W fields [ Eqs. (29b) and (30b),
respectively] can decay either into electronic or in-
to muonic leptons:



I, =C, xy, I', =C,C,C, xy,

l, =(C, +C,C3C,)xg/~2,

l,'= f(C,C,C, +C,C,C,)xq/~2,

l, = i(C~C, C, —C,C,C,)x p/&2,

I,'=(C, -C,C,C,)xy/~2,

(34)

I, =C, xg, l,'=-C,C,C, xg.

An analogous assignment ean be made in scheme
B.

Some arguments as to why a ehoi. ce for the fields
representing the leptons as given in Tables I and
II appears to be more reasonable than the one of-
fered in Eq. (34) will be outlined below.

Regardless of whether one considers for the lep-
tons the assignment given in Tables I Rnd II or in
Eq. (34), the leptons differ in their allowed inter-
actions with the 8; fields (and their higher-spin re-
currences). The conjecture has been advanced"
that this possible difference of leptonic interactions
with nonstrange massive bosons could conceivably
remove the electron-muon degeneracy. In this
connection it is of interest to note that there has
been a report raising in a very tentative way the
possibility of electron-muon universality break-
down at the amass. "'

According to Tables I and II the 8, bosons cannot
be coupled trilinearly to baryons. If one-of these
bosons represents the q resonance, for example,
the clR881flcRtlon scheme px'oposed ln th18 discus-
sion would differ from SU(3). Different model-de-
pendent attempts"' to fit the observed differential
and total q-production cross sections by partial-
wave analysis, for example, give estimates for the
magnitude of the q-nucleon coupling constants vary-
ing over a considerable range. In a pure SU(3)
scheme, this coupling constant depends of course on
the D/E ratio. In any event the empirical indica-
tions are that the q-baryon coupling constants are
considerably smaller than the pion-nucleon cou-
pling constant. There also are indications that the

Q meson is decoupled from nonstrange hadrons. "
As indicated in Tables I Rnd II there are for each

possible set of quantum numbers two decimet fields,
differing in their interactions and therefore conceiv-
ably also in their respective masses. No claim is
made that for any deeimet of baryons of particular
half-integral-spin value (disregarding the compli-
cations encountered in the quantization of higher-
spin fields) and parity all decimet fields given in

Tables I or II should be physically realized or ob-
servable. However, in this connection it is of in-
terest to note that in recent years there have been

persistent reports in the literature about baryonic
(or more generally hadronic) resonances with
ldent1cR1 quantum numbers but dlffex'lng in mass
and decay modes. "'

In Tables I and II there are some bosons for
which the field and its charge conjugate are as-
sociated with the same anti-Hermitian matrix.
For these non-Hermitian fields, particles and
antiparticles can be expected to be distinguishable.
Yet 81nce the same matrix 18 Rssoc1Rted wMl the
field and its charge conjugate, any transition medi-
ated by the relevant particle can also be mediated
by the antiparticle, unless the field eoneerned is
endowed with R physical characteristic which is
conserved and which distinguishes particle from
antiparticle. The fields associated with the
charged pions in Tables I and II and in schemes
previously considered" are an example of the case
being discussed: In all schemes the matrices re-
spectively associated with the char ged-pion field
and its charge conjugate are equal, and they always
turn out to be anti-Hermitian. In the case of
charged pions, particle and antiparticle are, of
course, distinguished by a conserved quantity
(charge). This distinction is lacking in the case of
the W" and W" field variables [Eqs. (29a) and
(30a) and Tables I and li]. In their interactions
with baryons and bosons the nonstrange 8'" and

5 '0 fields may therefore conceivably enter as
linear combinations. This is analogous to the pre-
viously discussed" "interaction of the K -K'
system with other bosons. The same consideration
applies to the possible coupling of the 5 '-5 ' sys-
tem [Eqs. (29c) and (30c), respectivelyJ to other
bosons. As has been pointed out, ""such linear
combinations may turn out to be singular if the
relative phase of particle and antiparticle is 0 or
w. In addition to the problem of the relative phase
there is also the problem of the relative normali-
zation of the fields entering the superposition. In
Rny pRx'tlculRx' cR86 the llneRl 8upex'position IQRy

consist only of particle and antiparticle or con-
ceivably of other particles as well. "' These
questions and more generally the allowed inter-
actions into which only bosons enter, particularly
in connection with weak decays, are presently
being studied.

V. DIAGONALIZABLE LAGRANGIANS

As is to be expected for R reasonable classifica-
tion scheme, Tables I Rnd II are very similar in
physical content, although the matrices associated
with cox'r'espondlng fields R1 e not necessRrily iden
tical: For each field in scheme A there is R cor-
responding field in scheme 8 Rnd vice versa.
Moreover, the selection rules derived from local-
ity and self-adjointness of the Lagrangian general-
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ly allow or forbid corresponding transitions. There
are some exceptions: Disregarding other possible
inhibiting factors, a trilinear coupling of charged
pions to any of the B; fields, for example, is al-
lowed in scheme B but forbidden in scheme A by
the selection rules undex' discussion. In order to
remove this discrepancy between the two schemes
and for other reasons to be mentioned below, it is
expedient to introduce another selection rule. A
set of interactions is allowed if in addition to local-
ity and self-adjointness requirements the following
condition is satisfied: For each field the free-field
matrix (i.e., the matrix associated with the free-
field Lagrangian density) and all the interaction
matrices (i.e. , matrices associated with the inter-
action Lagrangian densities) of interactions into
which the field enters should all commute with
each other, i.e. , they should form a commuting
set of matrices. Although this condition is re-
quired to be satisfied by each field, the condition
is weaker than the requirement that all free-field
and interaction matrices of all fields form a com-
muting set. In the case of 4&4 matrices there
are, of course, four nonsingular, linearly inde-
pendent matrices contained in any maximal com-
muting set. ' '

Assuming that pions can be directly coupled to
baryons, the "diagonalizability rule" introduced
precludes txilinear couplings of charged pions to
the B, fields also in scheme B. Morever, the rule
precludes the direct decays of B, bosons into only
neutral pions in both schemes. "~ However, a tri-
linear coupling of charged kaons to some of the
B; fieMs is consistent with the new rule in both
schemes. "~ Generally the diagonalizability con-
dition is useful in sorting out allowed and forbid-
den couplings of only boson fields. For example,
in both schemes this rule would forbid a direct tri-
linear coupling of only pions to the Ko-K sys-
tems.

Applying the new rule to the electromagnetic
field a.ssumlng m1nlmal coupling and drawing
upon the empirical knowledge that some baryons
and some leptons carry charge, it becomes obvi-
ous that the leptonic assignments given in Tables
I and II are consistent with and the leptonic assign-
ment (34) is inconsistent with the diagonalizability
condition.

This condition therefox e not only substantially
reduces, if it does not actually eliminate, the dis-
crepancy in physical content between the two
schemes A and B, but it is also of heuristic value
in selecting fields to represent particles, and it
reduces the a pmoxi ambiguity in the construction
of allowed interactions. For example, according
to the diagonalizability condition the nonstrange
charged 5'fields, 5"",and not the strange charged

%fields, TV', can, in the present context, be di-
rectly trilineaxly coupled to leptons.

An inspection of Tables I and II shows that in
each scheme all free-field matx"ices and all inter-
action matrices of allowed trilinear baryonic cou-
plings form a commuting set. Because of the com-
mutativity of these matrices, the locality condition
(18) is applicable not only to the corresponding gen-
eralized Hamiltonian densities, but also to the com-
ponent-field densities obtained from the general-
ized Hamiltonian density when the free-field and
interaction matrices are disregarded. Allowed di-
xect, trilinear couplings of the B; bosons to kaons
or to leptons, for example, if such couplings in
fact occur, would give rise to interaction matrices
which do not commute with all free-field and inter-
action matrices of the other fields in the tables.
Thus, when the interaction matrices of the mas-
sive, nonstrange bosons are also considered, the
free-field and interaction matrices of all fields in-
cluded in each scheme no longer form a commuting
set, although the diagonalizability condition is still
satisfied for each field.

To summarize: For the representation of the
generalized fields considered the locality condi-
tions (18) and (19) are satisfied by all the general-
ized fields and all their free-field and interaction
densities. The conditions (18) and (19) are also
satisfied by each component-field variable and the
component fr ee -field and 'lnteractlon: Hamj. ltonlan
densities into which the component field enters.
The diagonalizability condition is therefore related
to the locality requirement (18), when this require-
ment is applied to component-field Hamiltonian
densities.

VI. METRIC AND RELATED .CONSIDERATIONS '

The generalized canonical commutation relations
(21) differ from the conventional commutation re-
lations formally only by the factors ~A,.A',. x 8(4;.,g, )
and 28;Bf x5(C„II—;), which, respectively, modify
the right-hand sides of Eqs. (2Ia) and (21b). The
formalism permits A. , and A-,' to be different, al-
though they are required to commute. The same
is true for B; and B,'. It turns out that in order to
phenomenologically match generalized fields with
particles (Tables I and II) it is necessary to rely
on the freedom offered by the fox'malism and to
choose A,- 4A', for each baryon and B& 4B,' for the
strange bosons. The question then arises how this
px'ocedure affects the metric. Although in the px'es-
ent context the modification of the right-hand sides
of the canonical equal-time commutation relations
arises naturally, this is of cour se Qot the first at-
tempt at such a modification. Since the investiga-
tions by Dirac"' there has been a growing litera-
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ture on the subject of the indefinite metric, parti-
cularly in connection with efforts to eliminate the
divergences plaguing quantum field theory. The
Inodiflcatlon of the 1ight-hand sides of the canoni-
CRl commutation relR'tlolls Rs given 111 Egs. (21) ls
of course, different from mere multiplication by
a factor of -1.

For the correspondence between fields and par-
ticles considered in Tables I or II all the factors
A,A,'. x5(4, , 4, ) and 8,B,'x 5(.4, , II, ) commute not on-
ly with each other but mith all the generalized
fields associated with the representation being
discussed. The factors A,A,'. and B;8,' all turn out
to be Hermitian and diagonal, and their squares
are equal to the unit matrix. Hence the eigenval-
ues of all these matrices are ~1.

It seems reasonable to require that for the in-
coming and outgoing stable particles it should be
possible to simultaneously choose corresponding
positive eigenvalues of all the matri. ces associated
with their generalized free-field energy densities.
Furthermore, for all stable particles the compo-
nent free-field energy densities should commute
with each other for spacelike separations. It turns
out that these requirements are satisfied for all
known stable particles included in Table I or II.
More than that: For all the stable particles Dell'
Antonio's'" theorem, as applied to canonically
conjugate field variables, is satisfied not only by
the corresponding generalized fields but also by
their component fields, i.e. , two component fields
respectively associated with canonically conjugate
generalized fie1d variables of any stable particle
have the same blll11ear equal-time commutation
behavior with respect to any component field asso-
ciated with another stable particle. The state-
ments just made concerning simultaneous positive
eigenvalues of the generalized free-field energy
densities of stable particles, -the commutativity
of their component free-field energy densities for
spacelike separations, and the app1icability of
Dell'Antonio's theorem to component fields asso-
ciated with generalized fields representing stable
particles, are not valid for scheme A if instead of

the assignment for the leptons made in Table I the
generalized fields representing the leptons were
chosen as in Eq. (34), for example.

The diagonalizability condition introduced in
Sec. V does not only guarantee that appropriate
locality conditions are satisfied, but also ensures
that for each field it is possible to simultaneously
diagonalize (by means of a unitary transformation,
if necessary) its free-field matrix and ali the inter-
action matrices of allowed interactions into which
the field enters. Hence for each field these Ina-
trices have simultaneous sets of eigenvalues.

The question of the connection between Heisen-
berg's equations of motion and equal-time commu-
tation relations betmeen fields mas already raised
by signer. '~ This question was in fact the origi-
nal motivation for the consideration of tI ilinear
commutation relations. " In the present context,
Heisenberg's equations of motion can be obtained
for each component field by forming its commuta-
tor with the free-field and interaction component-
field Hami. ltonians into which the field concerned
enters, wi.th the understanding that a simultaneous
set of eigenvalues of the free-field and interaction
matrices concerned is being considered.

In the previous paper of this series" a prelimi-
nary application of the 8-matrix formalism to gen-
eralized fields was outlined. In this connection it
mas demonstrated that essentially because of con-
siderations related to the metric there is a possi-
bility of canceling out some divergences occurring
in quantum field theory, and in the process to ob-
tain relationships involving masses and coupling
constants. A more detailed investigation of per-
turbation theory and 8-matrix formalism as ap-
plied to generalized fields, in particular in connec-
tion with problems related to the metric, will be
considered in a future discussion.
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In this paper we discuss the problem of covariance of one-loop diagrams in a canonical
formulation of Yang-Mills theory. We show that one-loop diagrams to all orders can be
made covariant provided they satisfy certain Ward identities. Verification of these Ward
identities to second order in the coupling constant shows that one must introduce renormal-
ization counterterms into the theory.

I. INTRODUCTION II. PROOF

Using the methods of canonical quantization, the
present author has recently obtained' the nonco-
variant Feynman rules for the Yang-Mills field in
both radiation (s,b,. =0) and axial (b, =0) gauges. It
has also been proved' that in both cases the tree
diagrams to all orders and one-loop diagrams to
order g' can be described by a covariant set of
rules that follow from the above-mentioned non-
covariant rules through use of Ward-type identities
on tree graphs. Remarkably enough, the covariant
scalar loop discovered by many authors' (Feynman,
DeWitt, Faddeev and Popov, Mandelstam, Frad-
kin and Tyutin, and others) using other approaches
to quantum field theory, was also found to exist
within the canonical formulation (at least to lowest
order). The aim of the present paper is to show
that the one-loop diagrams to all orders can also
be made covariant, provided they satisfy certain
generalized Ward identities described in the text.
The scalar loop is found to exist to all orders. We
further investigate whether the Ward identities are
really satisfied and, to lowest order (g'), we find
that they are violated by a quadratically divergent
term, and one has to renormalize the theory to
satisfy the identities. Just such a program for the
one-loop case has been recently carried out by
t'Hooft' and therefore, using t'Hooft's result, we
can prove the covariance of one-loop diagrams to
all orders.

We will work in the axial gauge where the prop-
agator is given by'

where $„=6» in the frame in which we are working
and vertices are given by the following interaction
Lagrangian:

Hl = L~ = ~gg~„-(b~xb,)+ ~g (b~xb,) ~ (b~xb„),

where b„denotes the isovector gauge field and

g,—B„b,-B,b„,

If we can show that for the one-loop diagram all
g„-dependent terms can be dropped, then we have
proved our assertion. We will do this in three
steps.

Step I In this part, w. e will show that the k„k,/
k'(k $)' term in the propagator can be dropped,
thereby making the effective propagator look like
(for the one-loop case)


