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The realization of the three-body E-matrix formalism in terms of Faddeev-type scatter-
ing integral equations is established. A prescription is suggested for handling possible reso-
nance;pole singularities in the two-particle K matrices which enter as input into these equa-
tions. As an application of the formalism a fully unitary impulse approximation is developed.

I. INTRODUCTION II. GENERAL E-MATRIX FORMALISM

The usefulness of the K matrix as a unitarization
device needs little commentary. What is remark-
able is that integral equations of the Faddeev type
for determing this quantity in nonrelativistic three-
particle scattering theory have apparently not been
developed except in special cases."We will es-
tablish such a set of equations and discuss their
possible applications.

In Sec. II we present a general characterization
of a variety of K-matrix formalisms. This will
illustrate the essential features of these techniques
unencumbered by the detailed realizations of the
various operators as solutions of well-defined
scattering integral equations. The last topic is
taken up in Sec. III, where we develop a detailed
formalism for constructing fully unitary approxi-
mations in three-particle scattering.

Recently Cahill' has proposed a unitary formal-
ism which is similar in spirit and in execution to
that contained in Sec. III. However, it is not,
strictly speaking, a formalism for the K matrix
itself. The differences between our approach and
results and those of Cahill are also examined in
Sec. III.

Section IV contains a detailed exposition of the
simplest application of the general formalism of
Sec. III. In nucleon-deuteron scattering this ex-
ample amounts to the full unitarization of the im-
pulse and one-nucleon-exchange graphs. It is pos-
sible that this particular case will turn out to be
the most useful in practice.

In Sec. V we will comment upon a difficulty which
seems to have been overlooked in previous three-
particle formalisms' ' ' which involve two-parti-
cle K matrices as input into three-body equations.
We refer here to the interpretation of the possible
resonance-type pole singularities which may ap-
pear in the two-particle K matrices for positive
parametric energies. We will suggest a practical
procedure for handling these singularities when
exploiting a typical K-matrix formalism.

It will prove very useful to consider first the
K-matrix formalism in a general context with no
concern about the detailed realizations of the vari-
ous relevant operators in terms of elementary in-
teractions. We shall do this in the Heisenberg
picture. Also, we will have in mind throughout
this paper the standard three-particle nonrelativ-
istic scattering problem. Namely, there exists no
true particle production; the asymptotic two-parti-
cle states consist merely of a free particle plus a
(two-body) bound-state configuration of the other
two. We have, of course, the possibility of a tran-
sition either to another two-particle state or to a
three-free-particle state; finally, we have transi-
tions from three-free-particle states to states of
the same type or to two-particle states.

The unitarity of the scattering operator S,

T —T~ = -2&i T~T = -2mi TTt . (2.l)

We define the (full) K operator as the solution of
the equations

K =T+iwKT = T+imTK. (2.2)

If we were to regard K as known with T determined
by (2.2), we see that T will satisfy Eqs. (2.1) if and
only if K is Hermitian.

However, more than just the Hermiticity of K is
required if it is to yield a correctly structured
transition operator. The crucial constraint, be-
sides unitarity, is that T yield a correct discon-
nected structure for the amplitude corresponding
to the 3-3 process. We will investigate later in
detail what structure K must have in order to en-
sure this property of T.

It is often very convenient in applications" ' to
introduce a reduced K operator, K~, defined by

S = 1.-2&iT,

implies that the transition operator T satisfies the
unitary constraints
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Kp = T +i&TPKp

= T +imKpPT, (2.3)

ods of applying the K-matrix formalism to obtain
the latter projections of T. First, one can use
Eq. (2.2) directly to obtain

where P is a projection operator. Equations (2.1)
do not imply that K~ is Hermitian but, in fact,
that'

PTP = PKP —i w(PKP)(PTP) —i &(PKQ)(QTP),

(2.7a}

Kp —K~ = 2wiKpQ-Kq~

= -2miKp~QKp,

where

The connection between K~ and K is given by

(2 4)

QTP = QKP —i w(QKP)(PTP) —i v(QKQ)(QTP),

(2.7b)

which are two coupled integral equations for the
desired quantities.

The second method exploits the K~ formalism.
In this case we obtain from Eqs. (2.3) and (2.5)

Kp -—K —zwKQKp

=K —i&K~QK. (2.5)

PTP =PK~P —im(PK~P)(PTP),

QTP = (QK~P)(1 ivPT-P),

(2.8a)

(2.8b)

We now specialize the preceding general formal-
ism to the situation appropriate to the nonrelativ-
istic three-particle problem in the case in which
any pair of particles can form a bound state. For
the sake of notational simplicity we will assume
that there is no more than one bound state per pair
of particles. The channels in this problem are
then designated by the asymptotic configurations
of a noninteracting two-particle state comprised
of a particle o. (= 1, 2, 3}moving freely and a bound
state of the other two or (n =0}a state of three
noninteracting particles.

The in (+) and out (-}states corresponding to the
asymptotic channel n will be denoted by IP~'~(q„)&

where g refers to any other labels which are
needed to specify the asymptotic configuration.
One choice for P is

(2.6a)
IX &0 7}p(

where

PK~ P = PKP —in(PKQ)(QK~ P) (2.8c}

QK~P = QKP —iv(QKQ)(QK, P). (2.8d)

We observe that the K~ method is in effect a tech-
nique for uncoupling Eqs. (2.7). With Eqs. (2.8}
one has only one difficult, but uncoupled, equation.
to solve, namely, (2.8d). Equation (2.8a) reduces
to a set of algebraic equations after a partial-wave
decomposition. All other quantities are computed
by quadrature. The practical K-matrix formalism
to be developed in Sec. III is based upon Eqs. (2.8).

Next let us consider the disconnected. structure
of QTQ and QKQ. Let us. imagine, for the sake of
simplicity, that there are no two-particle bound
states so that the only possible physical process is
the 3-3(soQ=1). Let us write

so that T =Td+T, (2.9)

(2.6b)

where we have omitted all single-particle states
(including any possible three-particle bound states)
from Q since the T and K operators have a null
effect on these states by virtue of the stability con-
dition on S.

The choice (2.6a) seems to be most convenient if .

one is interested in reactions initiated from a two-
particle asymptotic state. '' Another choice in
which the roles of P and Q as given by Eqs. (2.6)
are interchanged has been proposed in Ref. 1. This
latter case does not appear to possess any practi-
cal advantages. In what follows we will assume
that P and Q are given by Eqs. (2.6).

If we are solely interested in the transitions
n - P where n e 0, then we need only obtain the op-
erators PTP and QTP. If, in addition, K is re-
garded as known, there are two alternative meth-

2+zT nf Ta
d d ' (2.11)

Let us suppose that we decompose K in a manner
similar to Eqs. (2.9) and (2.10). Substituting these
decompositions into Eq. (2.2) and equating the con-
nected and disconnected parts, we find

where T, (T,) is that portion of T which consists of
disconnected (connected). diagrams when one con-
siders matrix elements of T with respect to states
Ig,"(g)& labeled by the three free-particle momenta.

T„,of course, decomposes into the sum
3

T~= QTg, (2.10}
tX 1

where T» gives rise to the disconnected diagram
with particle u noninteracting. Products such as
T„T»etc. will still be disconnected. The T, sat-
isfy the two-body unitarity constraints

T„—Td —-2&zT» Td
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T, =K,(1 —i FTHM)
—in[KiT„],—ivKT,

T, =K„-iv[K,T„],.
Here

[KeTo~a =Q Ku Te

(2.12a)

(2.12b)

Similarly,

(2.16)Te (Kp)8 i g (K~)8~Dy Ty
yAD

Equations (2.15) and (2.16) should be regarded as
on-shell equations sandwiched between the states
($8(ye, E) I and I p (q„,E)). Finally, we remark
that the Hermiticity of K implies that

[K„T,],= gK,"5„8T,8,

where

5„g=1 —6„g.

Ksa Kn&

for the interaction-picture operators.

III. E-MATRIX INTEGRAL EQUATIONS

(2.17)

Equation (2.12b) obviously implies that

y fx Kfx g+Kcxycx (2.13)

go that the disconnected parts of K must be re-
lated to those of T by a two=particle Heitler equa-
tion. Equations (2.11) and (2.13) imply that

K'=K~~,
d

so that

K, =E~

as well.
The part of K that is arbitrary, apart from the

Hermiticity requirement, is evidently K,. We can
imagine a model for the 3-3 process which is ob-
tained by taking K, =-O. The connected part of T in
this instance is determined from

T=-»QK ,&& &t& —rK)„T,
fX, Q tX

It is clear from (2.3) that the disconnected parts
of 7'. and K~ must be identical. This has been
pointed out previously. '

For the discussion of Sec. III it will be conve-
nient to introduce the counterparts of T, K, and
K~ in the interaction picture. The connection be-
tween the two types of operators is defined, for
example, by

5(+8 +n)(48( 1B&Ee) I Te. I t.(n.& &.)»
(2.14)

for states of well-defined energies. The channel
states I Pg for u = 1, 2, 3 refer to a noninteracting
two-particle state comprised of a particle e mov-
ing freely and a bound state of the other two; I P,&

corresponds to a three-particle plane-wave state.
We can rewrite Eq. (2.2) in terms of interaction-

picture operators as

We will now determine off-shell extensions of
the operators Te, Ke„,and (K~)e„which are de-
termined via Faddeev-type scattering integral
equations. Our starting point will be the Alt,
Grassberger, and Sandhas formalism in which
the scattering operators U(z) satisfy

U(z) = 5G, (z) '+'Et(z)G, (z)U(z)

= 5G,(z) '+ U(z)G, (z)f(z)5, (3 1)

where we have employed the usual matrix notation
with respect to the channel indices. ' That is, U(z)
represents the 4&&4 matrix whose elements are the
operators Ue„(z), t(z) is a diagonal matrix whose
elements are the two-particle operators (defined in
the three-particle Hilbert space) t„(z),for u 0 0
and t, (z) = 0, and 5 is the matrix with elements
1- 58 . The free three-particle propagator is de-
noted by G,(z) where z is the (complex) parametric
energy. For Eq =E and e- 0+,

&48(ne Es)IT8 14 (n & )&

=(ee(ne ~8)IU8 (& +i&)lk (n

(3.2)
Now U(z) is an operator analytic in the z plane

cut from the lowest scattering threshold to positive
infinity except for poles corresponding to three-
body bound states at energies below any scattering
threshold. The discontinuity relations for U(z)
across the cut are related to the physical unitarity
constraints (2.1) as we will show below and is also
well known. The unitary cut has a composite
structure consisting of the cuts generated by the
two-particle bound-state poles and the three-parti-
cle scattering cut. The rationale of the develop-
ment to follow is- to construct scattering operators
which are continuous across one or both of these
two classes of subcuts.

We recall' that
Te~ ——Ke~ —i+KeyDyTy~ &

y
where

(2.15)

and

i(z) =f(z*)

Go(z)' = G,(z*),
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so

U(z) = U(z*). (3.3)

state poles. ' ' ' In order to do this we decompose
t(z) into the sum

In connection with the last relation we point out
that the adjoint operation includes a transposition
with respect to the channel indices; thus for the
individual components of U(z) (3.3) implies

Uq„(z) = U„s(z*).

t(z) =t(z)+t, (z). (3.8)

Here [t,(z)] is that part of the bound-state pole
contained in t„(z)which gives rise to a Dirac 6
function when z =E+fe; the form of [t,(z)]„for ar
bitrary z is given in Ref. 9. Then using the tech-
nique of Alt et al s, s we find that

If we define

(3 4)

n, U= U(+) —U(-) = U(+) —U(+) (3 5)

where E is real and above the threshold for scat-
tering, the discontinuity &U of U(z) across the uni-
tary cut in the z plane is given by

U(z) = U(z) + U(z)G~(z)t~(z)GO(z) U(z)

= V(z) + U(z)G, (z)t,(z)G, (z)U(z),

where U(z) satisfies

U(z) = 6G, (z) '+ Et (z)G, (z)U(z)

=KG (z) '+ U(z)G, (z)t(z)5.

(3 9)

(3.10)

The notation introduced in Eqs. (3.4) and (3.5) will
be employed for operators other than U(z). Actu-
ally it will, perhaps, be more consistent to use the
adjoint form of (3.5) because some of the auxiliary
operators we will introduce are not necessarily the
boundary values of operator-analytic quantities.

The unitarity constraints on the two-particle
transition operators can be written in the form

n. t = -2it(+)D, t(+}+At~, (3.6)

where 4t~ represents the contribution to 4t arising
from the two-particle bound-state poles. If one
uses (3.6) and the fact that

= -2iD~,

it follows from Eqs. (3.4) that the on-shell discon-
tinuity equation for U is'

A U = -2iU(+)D U(v), (3.7)

where D is, of course, the diagonal matrix with
elements D 5 z Equations .(3.7}are entirely
equivalent to the physical unitarity constraints
(2.1) as follows by use of Eqs. (2.14) and (3.2).'

Next we will express U(z) in terms of an operator
U(z) which is continuous across the portion of the
unitarity cut generated by the two-particle bound-

For z =Saic we have'

[G,(+)t~(+)G,(+)] = viD„, n e 0

so that

Us~(+) = U8~(+) +s QUz)(+)Dye~(+)
y&P

U8 (+) + ~ Z Uay(+)DyUy (+) ~

y/p

If we compare Eqs. (2.16) with Eqs. (3.11) we see
that U8„(+)is an off-shell extension of (K~}8„.

Now t(z} satisfies'

(3.11)

n, t = -2it (+)D,t (v), (3.12)

which is the usual two-particle off-shell unitarity
relation with no bound-state pole contributions.
Using (3.12) one finds from Eqs. (3.10) that on
shell'

(n. U)z„—— 2i U~o(+)D,-U,„(v) (3.13)

which demonstrates explicitly that V(z) has a dis-
continuity only across the three-particle cut. The
U(z) equations correspond to a three-body scatter-
ing theory in which the only physical process is
the 3-3 transition.

Henceforth, we will require only the strictly on-
shell forms of Eqs. (3.7), (3.11), and (3.13), for
example,

(Az(n8 E) I [UB (+) —Ua. (+)] I p„(n., &)&

g (@g(ns, E)IUS„(+)lk,(n„,&y}&5(&„' E),(p„(q„,&-„')(&y (+))y (q, s)&.
y&0 qy, Ey'

(3.14}

It is evident then that if the Ua (on shell) are de-
fined in terms of the V8„(onshell) by (3.14) and if
the Vz„satisfy (3.13), then the Us„satisfy Eqs.
(3.7) and one has a fully unitary theory This is. ,

of course, already obvious from Sec. II once we
have made the identifications of TB„with U8 (+) and

(K~}8 with U&„(+)on shell.
Our next step is to define U(z), or equivalently
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K~, in terms of operators which are continuous
across the entire unitary cut and which are de-
fined in terms of the solutions of Faddeev-type in-
tegral equations. These operators will be shown to
be, essentially, off-shell extensions of the fully
matrix, Ea .

If we note that

t (z)G, (z)U(z) = r(z)5,

where

r(+) =k[1 +t(1+5)D r(a)]+k5Gr(+) .
Therefore

r(+) = z v i', (1 +'5)I (+)

and similarly

r(~) = g ~ ir(+)(1+ 5)D,~,
where K is defined as the solution of

K =k+k5GK

(3.21a)

(3.21b)

r(z) = t (z)+T(z)5G, (z)r(z)
= t (z}+r(z)'5G, (z) t (z), (3.15)

= k+ KG5k. (3.22)

If Eq. (3.20) is satisfied, then v is Hermitian or

then we can express U(z) as

U(z) ='5G, (z)-'+5r(z)5. (3.16)

We point out that r« ——I'so —-0 for all P. The discon-
tinuity of the auxiliary operator I' across the
three-particle cut is

~r = -2tr(+)D, (1 +5)r(+)

or, in component form,

(3.17)

(3.17')

(~U)s„=-2t[5r(+)5]„D,[5r(+)5],. (3.18)

Since Go(+) 'Do vanishes on shell, (3.18) is equiva-
lent to Eqs. (3.13). We have made no progress
thus far in obtaining an operator continuous across
the unitary cut. The operator I'(z} will, however,
prove to be a very convenient redefinition of U(z).

Ne next define two-particle E matrices as solu-
tions of the Heitler equations

k = t (+) + it (+)D,k

Let us suppose that U(z) is defined, on shell, by
(3.16) and that I"(z) satisfies Eqs. (3.17) on shell.
Thus, again on shell,

~U=5~r5,

which in component form becomes

Equations (3.21) and (3.22) are the central results
of this paper.

Henceforth we regard Eqs. (3.21) as on-shell
equations although not quite in the same sense as
(3.14}, for example. That is, Eqs. (3.21) are to be
considered as invoLving matrix elements of I'8 and
K&„with respect to states of energy E but not nec-
essarily of the form (Qs~ rs„~Q„}for instance. The
relationship (3.16) between U and r should be kept
in mind in connection with these remarks.

Thus, if we are given, on shell, any Hermitian
~, we find from (3.21}that Eqs. (3.17) are satis-
fied. This completes the chain. Namely, if we

specify the required K, we can generate via Eqs.
(3.21), (3.16), and (3.11) [or (3.14)], in that order,
a set of physical transihon amplitudes which satis-
fy full three-particle, unitarity.

%e observe that

5r(+)5= 5z5- t5&(1+5)D,r(+)5

or, zn component form,

[5r(+)5]S„-—(5z5)S„-i(5tc5) S,D,[5r(+)5],„.
(3.24)

Since (3.24) is to be interpreted as an on-shell
equation we can rewrite it as

= t(x)+ikD t(+).
As a consequence of (3.12) we find that

(3.19) Us„(+)=Ks~ —tKsoDoUo„(+),

where

(3.25a)

k~ =k. (3.20)
%e reserve until Sec. V the discussion of the in-
terpretation of Eqs. (3.19) and k itself when there
exist resonance-type poles in the two-body K ma-
trix; for the present discussion we will assume
that the use of k is entirely well defined.

If we decompose G,(x) into its principal-value (G)
and Dirac-5-function (viD, ) parts,

Go(+) =G+ iD, ,

we find using the Heitler expression (3.19) for t (+)
that

Ks„=5snGO(+) '+ (—5z5)sa ~ (3.26)

Similarly

Us„(+)=Ks —i Uso(+)DOKO„. (3.25b)

If we compare Eqs. (3.25) with Eqs. (2.5), we see
that Ee, can be identified as the complete K matrix
(in the interaction picture). Equation (3.23) implies
Eqs. (2.17).

Now
3

Koo= Q &sa ~

B,a=I
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If we write

where, if a is determined by Eqs. (3.22}, ~' is
given by

and is a connected operator, then

By virtue of the analysis of Sec. II we recognize
vea as the arbitrary portion of the E matrix. It is
constrained only to satisfy

ef' e
~8a ~n 8

and to be connected.
It is easily shown that if a is determined by

(3.22), t en

FB„(z)= G,(z)U8„(z)G,(z) .
Thereafter, the formulation is based upon the op-.
erators Ea„(z)and their discontinuity relations and
this appears to complicate matters, comparatively
speaking.

Since the present theory is entirely general, the
results of Ref. 3 should follow as a special case
upon imposing a further constraint on ~' which will
guarantee the structure (3.28) for the connected
part of the 3-3 amplitude. We conjecture that this
constraint is that a' have the form (3.27), but we
have been unable to establish this. It seems bkely
that under the assumption of only two-body forces,
in which case the structure (3.28) is valid, a uni-
tary approximation procedure which imposes such
a constraint will be superior to one that does not.

IV. FULLY UNITARY IMPULSE APPROXIMATION

where C is defined as the solution of

(3.27)
.Let us consider the simplest application of:the

formalism of Sec. III. Namely we set K =0. Then
Eq. (3.21) becomes

r = I —uD, (1+E}r, (4.1)

C is the primordial operator in Cahill's' formal-
ism. We note that C must satisfy

where we have omitted the (+) notation with the
understanding that z =8+i& throughout this sec-
tion. If we multiply (4.1) from the left by 1 —itD„
we obtain an equation

1"=t -itao5F (4.2)
in order to generate a unitary theory.

We will not explore in any detail the practical
utilization of the set of equations (3.11}, (3.16),
and (3.21) once one is given z except for the spe-
cial case to be discussed in Sec. IV. Cahill' has
shown that after a partial-wave analysis the most
complicated case [in the present formalism Eq.
(3.21)] reduces to a one-dimensional integral
equation.

We close this section with a discussion of
Cahill's' work as compared to that developed here.

. First of all, our general formalism essentially
consists of a hierarchy of only three basic equa-
tions involving U, U, I', and z whereas his in-
volves four. We point out in this connection that
the relationship between U and F is quite trivial.
Also as a consequence of employing the xeduced
K-matrix technique we have far less coupling of
integral equations than is encountered in Hef. 3.

The basic dissimilarities between the formalism
of this section and that of Ref. 3 appear to have
their origin in the following circumstance. The
development in Ref. 3 is committed at the outset to
the structure

entirely free of the two-particle K matrices.
With Eq. (4.2) we can derive an on-shell integral

equation for determining U in an especially simple
manner. If we define

U=5CO '+g.
From (4.2) we see that i; satisfies

/=at 5 —Hta f. (4 3)

&y, lg, „ling, ~~o

It is now possible to recognize the z'=0 case as
the complete unitarization of the impulse approxi-
mation (5t 5) plus the exchange term 5G, '. This
is the natural generalization of the Sloan approxi-
mation' which corresponds to taking the zeroth-
order iteration of Eq. (4.3).

If one is only interested in scattering processes
initiated from an initial two-particle channel, then
one requires only the on-shell matrix elements of
the form

t f (z)F8„(z)t„(z)
a

(3.28)

for the connected part of the 3-3 amplitude, where &4el&s. Ied,



The principal numerical problem involves the solution of (4.3) for the matrix elements of the first type
with pe0. These elements satisfy the integral equations

(4.4)

Cahill' has shown that an on-shell integral equation of the form (4.4) reduces to a one-dimensional integral
equation after a partial-wave decomposition.

The matrix elements (pz I gz„lp & for c1 xO which are needed to obtain the desired U amplitudes follow by
quRdratux'8:

Us1ng the amplitudes determined by (4.5) all physi-
cal processes except the 3-3 transition can be
computed by solving Eqs. (3.14). The latter for the
submatrix of nonbreakup transitions reduce to al-
gebraic equations after a partial-wave analysis.
Given these amy)itudes the breakup amplitudes
follow using (3.14) as a quadrature rule.

It is interesting to point out that the approxima-
tion described in this section is independent of any
ambiguities in interpretation of the possible singu-
larities in the two-particle K matrices. One can
easily show that both I" and g as defined by Eqs.
(4.2) and (4.3), respectively, satisfy the correct
discontinuity relations acx'oss the three-particle
cut.

We also remark that a computational program
based upon the approximation described in this
section will possess no essential limitations aris-
ing from the complexity of the two-yax'ticle inter-
Rctxons.

V. SINGULARITIES IN THE T%0-PARTICLE
EC MATRICES

Let us return to the problem of the definition of
'tile two-pal'tlcle K 111a't1'1ces 11y Eq. (3.19). Tile
definition of any two-particle oyerator such as
t (z) or k in the three-particle Hilbert space neces-
sarily involves an integration of the actual two-
body operator with respect to its parametric ener-
gy. That is, if I4& and I%& are two three-body
states corresponding to zero total lineax' momen-
tum, then

(e I t„(z)I4&

= dpi' dpi' 'I dqa

' &~ lp.', qd&p.'I t '."(z —~.) Ipd&p. , q. I ~&,

(5.1)

where the superscript (2) on t „'1refers to the fact
that it is defined in the appropriate two-particle
subspace. Also, p is the relative momentum of
the interacting pair and q and ~ are the momen-
tum and energy, respectively, of the free pax'ticle
in the three-paxticle c.m. frame. %8 recall that
e~ is proportional to q„~. %8 see then from Eq.
(3.19) that an integration similar to (5.1) will be
involved in the definition of k.

For negative parametric enex gies a"' and 7'" are
identical. For both then the integration (5.1) over
the bound-stRte pole singulRxlty is cRxxMd out Re-
cording to a px'incipal-value prescription. How-
ever, for poeiti. ve pax'ametric energies k~„'~ is iden-
tical with the oxdinary off-shell two-particle E
matrix and therefore may possess poles corre-
sponding to those two-particle energies for which
the phase shift is an odd-integer multiple of &&.
Our essential problem is how to interpret the inte-
gration (5.1) over these resonance-type singulari-
ties.

It is evident that the most convenient interpreta-
tion of such a singularity relative to the integration
(5.1) wouM be in the sense of a principal value.
This would preserve the reality properties of the
matrix elements of A„aswell as ensuring their
definition. We will attempt to justify this interpre-
tation.

The analytic pxoperties of A~„'~ are somewhat ob-
scux'ed prlmarxly Rs R consequence of the ueuRl
identification of this operatox, for positive para-
metric energies, with the solution of a singular' in-
tegral equation with a principal-value yrescrip-
uon. '0 If, however, unlike the case of t„'(z), we do
not necessarily identify &„'(z)with the solution of a
scattering integral equation except for positive en-
ergies (i.e., on the cut) it may be possible to de-
fine a continuation of 0~~2~ to complex z. A continu-
Rtlon bReed on off-shell un1tarlty hRS been pro
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posed by Mishima. " Such considerations may en-
able us to interpret the singulariti, es of k~'~ on the
eut.

In order to obtain an idea, of mhat is involved let
us consider the case of the on-She/l partial-mave
amplitudes of t'1(z} which we denote by I, (z). The
px'esence or absence of bound-state poles mill be
irrelevant to the following discussion so that there
mill be no need to distinguish between t and t. In
the on-shell case it is possible to define an on-
shell X matrix k, (z) which is meromorphic in a
region enclosing the unitary cut and mhich is real
a.nalytic,

k, (z)+ = k, (z+),

If me had an off-shell k~'~ with similar analytic
properties and relationship to f "(z), we could ex-
tend the preceding argument to this case and as-
sext that a resonance-type pole in k~'~ be regarded
in the sense of a principal value in the context of a
definition of the operatox in the three-particle
space by an integral such as (5.1). The work in
Ref. 1j. indicates that such a continuation exists.

I et us illustrate this by the foQoming heuristic
argument. %e denote the partial-wave amplitudes
of k" and t"'(+) by k, (p', p; E) and fI (p', p;+), re-
spectively. The full content of off-sheB unitarity,
time-reversal invariance, and the off-shell Heitler
equation is the statement that these tmo partial-
wave amplitudes have the structure"

k ( )-=( )(I —p( ) ( )1 '. (5.2)
tI (P', P'+) =f I (O', E}7'I(+}fI (P, E)+ftI(p', P; E)

(5.4a)
Here p(z) is a phase-space factor analytic in the
z plane cut from 0 to +~ and such that

p(-) = -p(+),

with p(+) real.
The most important feature of (5.2) for the pur-

pose8 of the present dj.scusslon 18 that the 46' px'e-
scl'lptloll fol' I'I (z) is contained elltll'ely ln tile
phase-space factor. For example, suppose that
k, (z) has the structure

k, ( )=~, ( )( -E.)-',
where E„&0and 8, (z) is a real analytic function
which is continuous across the eut. In the limit
z =E+ $6~ 6 . 0+~ we obtain tile saI1M TI(+) llldepell-
dently of whether we employ k, (z) or k, (z*), for
instance, in (5.2).

Also, if we mere to integrate the Heitler equation

k, (+) = I.
I (+}+iP(+)I.I (+)k, (+)

over an enex'gy intex'val which i.ncludes the point

Ez, we find using (5.3) that

Eg~ (+

Z~ dEf(E} .(+)~I(+)8II)
g

where 6' denotes the Cauchy principal value and

f(E) is some smooth function of E. Thus, at least
in the on-shell case we can regard the integrated
Heitlex' equation. as meQ defined mith a principal-
value prescx'iption at the poles of the K matrix.
Stated another may» the 1ntegrated He1tler equa-
tion is satisfied identically independently of wheth-

er or not me include the Dirac-5-function part of
these poles. These remarks indicate that in any

application of k, (E) which involves an integration
over E it is consistent to treat the resonance-type
singularities in the sense of the principal value.

k, (P', P;E)=f (P', E)k, (E}f,(P, E)+E,(P', P;E),
(5.4b)

f I (~&~ E)= I,
E,(p', WZ; E)=a, (WZ, p; E)=0.

I I (+}and k, (E) are related by (5.2)."Equation
(5.4b) implies that the entire resonance-type pole
content of k, (P', P; E) is contained in the on-shell
part.

For a rather general class of interactions, con-
tinuations of f, and BI exist to complex E which

are analytic in a domain enclosing a resonance-
type pole of k, (p', p; E)." " In these cases we can
define the continuations

fI(P', P; z) =fI(P', z)II(z}fI(P, )+IfI(p', P; z),

(5.5a)

kI(p', P; z)=fI(P', z)kI(z)fI(p, z)+&I(p', P;z),
(5.5b}

where again TI(z) and k, (z) are related by (5.2).
Equations (5.5) imply an extension of the off-shell
Heitler equation to z not on the cut. %e can, evi.-
dently, proceed through the same reasoning as in
the on-shell case to reach the conclusion that a
consistent definition of the tmo-particle E matrix
in the three-particle Hilbert space incorporates a
principal-value prescription in the integration over
any possible resonance-type poles.

The essence of the not exactly incisive 'discus-
sion of this section can be summarized as follows.
The existence of an analytic continuation in the
parametric energy ~ of the K matrix allows the in-
terpretation of this quantity as a real, analytic
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meromorphie function in a domain enclosing the
unitary eut with possible poles on the cut. The
main point of the argument is that the discontinuity
across these poles is irrelevant as far as the defi-
nition of t'~(+) is concerned. As a consequence the
two-particle Heitier equation (3.19) in the three-
particle space is satisfied identically whether or
not we take into account the Dirac-5-Nnetion piece
of these poles. Therefore, it appears to be entire-

ly consistent to retain only the principal-value
part of these poles when defining the two-body E
matrices on the three-particle space.
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Some aspects of the connection between trilinear and bilinear equal-time commutation
relations are clarified. Locality requirements satisfied by the generalized fields under dis-
cussion are examined in some detail. Using algebraic arguments it is shown that for repre-
sentations of operators satisfying the generalized trilinear equal-time commutation rela. —

tions either the half-integral- or the integral-spin fields or both satisfy conventional statis-
tics. IQ connectloQ with a. question raised previously lt 18 shown that the hadlonlc schemes
considered suggest which fields should in each scheme be associated with the (hypothetical)
intermediate bosons. It is shown that the discrepancy in physical content between the vari-
ous particle classification schemes discussed ean be substantially reduced, if not elimi-
nated, by the introduction of a new selection rule in addition to the selection rules derived
from locality and self-adjointness 'of the Lagrangian. The new selection rule is not unrelat-
ed to locality considerations and is also related to the metric. The question of the metric
in the context of the generalized fields is briefly considered.

I. INTRODUCTION

It is well known that the bilinear equal-time com-
mutation relations between distinct fields have im-
phcations bearing on the interactions of the fields
concerned, on the selection rules they satisfy,
and on their vacuum expectation values. ' " It is

also known that TCP invariance requirements do
not uniquely determine the bilinear equal-time com-
mutation relations between distinct fields. '
It is therefore of interest to inquire whether from
first principles" it is possible to derive a set of
fields which has the property that the bilinear
equal-time commutation or antieommutation re-


