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Employing Gupta's unitary expansion of the scattering operator, the exact one-pion-ex-
change (OPE) and two-pion-exchange (TPE) nucleon-nucleon scattering phase parameters are
evaluated at 18 energies in the elastic scattering range. These phase parameters are damped
relative to the OPE and TPE results previously presented. The damping effect is large for
values of L~ 3, and it improves the undamped results in a comparison with the phenomenolog-
ical values. The core phase parameters are drastically reduced and greatly improved by the
damping effect.

I. INTRODUCTION K =+K„, (2)

The exact form of the two-pion-exchange (TPE)
contribution to the elastic nucleon-nucleon scat-
tering matrix' has been analyzed in terms of par-
tial waves, ' 4 and it has been established that the
TPE contribution is a large correction to the one-
pion-exchange (OPE) contribution. Indeed, it has
been shown recently that TPE brings about rea-
sonably good agreement with the phenomenological
phase parameters for values of L ~ 2 when the D-
state phase shift that is coupled to the $-state is
excluded. ' It is apparent from these analyses,
however, that where the TPE contribution is large,
it is too large compared with the phenomenologi-
cal values.

This suggests that some mechanism for reduc-
ing the large TPE contribution might bring about
better agreement with experiment. It has been.
known for some time that damping should play a
significant role in the meson theory of nuclear
forces, ' and a covariant form of the damping the-
ory was given by Gupta. ' The exact relativistic
first- and second-order terms in the unitary ex-
pansion of the scattering operator were obtained
in Ref. 1. It is the intent of this work to determine
the exact damping effects of these terms oh the
OPE+ TPE contributions to the nucleon-nucleon
scattering phase parameters.

II. DAMPED PION CONTRIBUTION

TO THE N MATRIX

It is shown in Ref. 7 that if the scattering opera-
tor S is expressed in terms of the Hermitian oper-
ator K as

S = (1 ——,'iK) /(1+ —,'iK),

and K is expanded in powers of the pion-nucleon
coupling constant as

$ is unitary even if the expansion is terminated.
The term K„ is shown to contain all the nth-order
nucleon-nucleon scattering transitions which are
not made up of two or more real transitions. In
terms of the operator U=(S —1)/2i, Eg. (1) can be
written in the form

2U= -K —iKU,

which is the covariant form of the Heitler integral
equation.

The M and 8' matrices are related to U and K
as'

U = [(2x)'/p, ] t (p —p'+q —q')

x:y~+-(p') yg-(ii)M y~(il) y~ (p):,
(4)

K = [(2m)'/ca']5(p -p'+ q - q')

x:yg-(p')q~-(g')ll ttl($)yl'(p):,
for elastic nucleon-nucleon scattering, where p
and q are the incident and p' and q' the final propa-
gation four-vectors. The g~ are large-component
Pauli spinors. Center-of-mass coordinates are
used, where p=-g, p'=-ti', and po=po=q, =q,'.

The y and z directions are taken along pxp'/
~pxp'~ and p/~p~, respectively. Then, a real
state +,. may be characterized by the isotopic spin
of the system, p„8,, p, , Xt.'~, At&'~, where 8~ and

p,. are the respective polar and azimuthal angles
of the momentum of nucleon 1 in this state, and
A.
", and A,,' are the respective helicities of nucle-

ons 1 and 2. The matrix elements of U and K be-
tween normalized real states 0& and 4„may then
be expressed as

O',*Uq» = [(2v)'/po]5(p —p'+q q')M, », -

epKe» =[(2v)'/p, ]t(p —p'+q -q')W, .„



C. %. BOCK AND R. D. HARAC Z

with where dQ„= sin8„d8„dg„, and the sum is over the
isospin and helicities of the intermediate states.

W)~ = (po, 8, , @),Ai },Aq ~
W

~ po, 8~, p„, }I~„},d~}) .

The matrix element of Eq. (3) between the initial
4,. and final %~ scattering states is

-N PU%, = 4(K4,. + i+%'PK4 „O'„Uq, ,

where 4„ is a normalized real intermediate two-
nueleon scattering state. The sum is over all
such states, taking into account the identity of
the nucleons. On substituting Eqs. (5) into (7) and

making use of the |}functions, Eq. ('f) reduces to
the integral equation

III. DAMPED OPE+TPE PHASE PARAMETERS

The Heitler equation-has been treated extensive-
ly in the literature, "and both approximate and
exact solutions have been obtained for either spec-
ialized or first-order particle interactions. Des-
pite the extremely complicated form of 5' for the
relativistic QPE+ TPE contribution to the nucleon-
nucleon scattering interaction, Eq. (8) can be
solved exactly for the partial-wave amplitudes
of M in terms of the partial-wave amplitudes of
W by using the method of Jacob and Wick ll Nu

merical values of these latter amplitudes are
available at many energies from Ref. 3.

The real particle states are expressed in terms
of the eigenstates of the total angular momentum
J, its z component J„and the particle helicities
X~'& and X~'& as

~+y 1/2
le„g, y, i"', ~"'}=g Ip„z, w, 8",2*'}( n„', (y, e, -y),

JgN

where D~~(p, 8, -p) is the rotation-matrix element and X=8'}—d'}. Using the orthogonality relations for
the rotation-matrix elements and the fact that M and W are diagonal in J and J„Eq. (8) reduces to

&p„Z,M, ~,"},~,""jM+(p, /4sca)W)]p„J, -m, }',.}, ~e})

p
W

~ fg} y(2}

If the states of definite helieity are next expanded in terms of the eigenstates of J, J„L, and 8, where
the latter two operators are the total orbital angular momentum and spin, respectively, the above equation
further reduces to"

L= J'+S
S~LL —S~L ~L + ~ ~ S~L I S LL'

J' J ' +J
L=IJ-S I

where

lpI(J ~,l. ,s (~)z,~,I.', s&,

(z M r. s
(
w t J M I, s)

The matrix elements of M and 8" are independent of the quantum number M since the operators U and K
are rotationally invariant. Moreover, as U and K are also invariant under the parity transformation, for
a fixed value of J, the only nonvanishing matrix elements are

0 I=L =J' —0
GJ '= QJq

0nL=L = J =-0O. 'nL=L'= J =-'nJ
J' J' & J' J' p

1~L=L = J' -1 J 1~L=J 4l~L = JT1 —l~ l~L= Jpl, L '= JW 1 —l~
J~ J J~ J J 0

L= J'yl, L'= Jpl —1~Jul 1~L= Jkl, L = Jkl = 1~Jkl
J' J' ~ J' J'

Any approximation to the K operator leads to a unitarity S, and hence the damped partial-wave ampli-
tudes o. exactly satisfy the unitarity conditions
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1a, =
2 [.exp(2', ) -1],

'a~~ = —.[exp(2i'6~, ) —1],

lagtl ([I p 2]1/I[e~(2iSg/tl )] 1}
1

= —'
p exp[g(~ g

J'+ ' + s g~ ~ )]

where K~, '5~~, 'g~*'~, and p~ are the damped singlet, uncoupled triplet, coupled triplet phase shifts,
and the coupling parameter, respectively, in the Yale notation. If the operator K contains the QPE and
TPE contributions, the undamped partial-wave amplitudes are given by

Oa, =Z, (OPZ)+Z, (TPZ),
'a', ='6', (OPZ)+'6', (TPZ),
Iazal —8gjal (OPZ)+sgzt1 (Tpz)

'a~ = —,'[p~(OPE) + p~(TPE)],

where the quantities on the right-hand side are the undamped QPE and TPE phase parameters given in
Tables I and II of Ref. 3. If follows from Eq. (9) that the damped and undamped amplitudes are related by

0

Re = Re'J' I+(0 )2t z I+(I z)2

for the singlet and uncoupled triplet amplitudes, "respectively, and

l~gkl (ja )21az%1/[I + (lag%1)2]

I + (1 2'41)s+ (la )2([2 + (la )2 2lazal iazvl] j[I+ (la IT 1)2]}P

1Qg

[1+( a P aJ'- as+ ]+( z- + z+ )2/'[I+( —
)2 x-z-ax —J+x]

relate the coupled amplitudes. In these equations, "Re" means "the real part of."

IV. COMPARISON OF THE DAMPED

AND UNDAMPED PHASE PARAMETERS

The undamped partial-wave amplitudes a are
available from Ref. 3 at 18 energies in the elastic
scattering range, and these are used in Eqs. (18)
and (14) to evaluate the damped amplitudes a. The
damped phase parameters follow by inverting Eqs.
(11), and these pha, ses corresponding to OPE and
QPE+ TPE are presented in Table I for the iso-
triplet states and in Table II for the isosinglet
state. The phase shifts are in radians. The cor-
responding undamped QPE+ TPE phases, denoted
QPE'+ TPE' in the tables, are also given for com-
parison. All theoretical phase parameters are
evaluated using an average pion mass of 138 MeV,
an average nucleon mass of 938.903 MeV, and a
nominal value of 14.0 for the pion-nucleon coupling
constant. The Yale phenomenological phase par-
ameters are included, with their parallel-shift
uncertainties given in parentheses above the re-
lated group of phases. '4

It is first noted that, for the 5-state phase shifts

I

Ko and ' 9~„ the damping effect reduces the Q PE
+ TPE contribution by as much as an order of mag-
nitude at many energies.

The damping effect of the P-state phase shifts
'5~„'6~„K„and 'g~, is as large as 16% at the
higher energies, and there is definite improve-
ment at these energies. However, the j' state
is not well represented by the QPE+ TPE contribu-
tion, whether damped or undamped. Additional
effects, such as the vector and scalar resonances,
should play an important role here.

%hile the damping effect for the phase shift 'g~,
is negligible, the D-state triplet phase shifts '5,
and '0~, axe strongly damped, and the damping

p th l 1 ti t th Y 1 ph
The coupled phas~ shift '~~a is reduced by more
than a factor of 1.5 at the higher energies, and,
while there is still a large discrepancy with the
experimental values at the intermediate energies,
this phase shift is much more reasonable. The
singlet phase shift K, is slightly damped, and the
reduction is an improvement.

The damping effect becomes negligible for the



TABLE I. Damped OPE and TPE contributions to the phase parameters for the isotriplet (T =1) states. The un-
damped OPE' +TPE' phase parameters and the Yale phenomenological values with their parallel-shift uncertainties are
included for comparison. The phase shifts are in radians. The Yale parallel-shift uncertainties are given in parenthes-
es above the related group of phases.

OPE OPE+TPE OPE' +TPE'
Ep

OPE OPE+ TPE OP K'+ TPE'
3gP

p

10
30
50

70
90

110
130
150

170
190
210
230
250
270

-0.0773
-0.2306
-0.3457

-Q.4351
-0.5070
-0.5662
-0.6162
-0.6589

-0.6959
-0.7284
-0.7571
-Q.V828
-0.8059
-Q.8267

1.0752
1.2443
1.3080

1.3255
1.3421
1.3530
1.3604
1.3655

1.3691
1.3713
1.3727
1.3733
1.3732
1.3726

1.8498
2.9531
3.5748

3.9948
4.2964
4.5185
4.6830
4.8035

4.8893
4.9471
4.9816
4.9966
4.9951
4.9793

(0.0002)
1.0476
0.8322
0.6875

(0.0059)
0.5813
0.4912
0.4157
0.3460
0.2792

(0.0080)
0.2157
0.1588
Q.a027
0.0473

—0.0009
-0.0459

0.0773
0.2306
0.3457

0.4351
0.5070
0.5662
0.6162
0.6589

0.6959
0.7284
0.7572
0.7828
0.8059
0.8367

0.0976
0.296V
0.4300

0.5151
0.5680
0.5983
0.6119
0.6124

0.6018
0.5813
0.5514
0.5122
0.4639
0,4062

0.0979
0.3057
0.4586

0.5661
0.6381
0.6816
0.7018
0.7026

0.6868
0.6570
0.6150
0.5623
0.5003
0.4301

(0.0030)
0.0665
0.1660
0.2051

(0.0067}
0.2032
0.1808
0.1500
0.11S1
0.0862

(0.0134)
0.0538
0.0195

-0.0138
-0.0464
—0.0820
-0.1202

290
310
330
350

-0.8457
-0.8630
-0.8789
-0.8936

1.3705
1.3700
1.3680
1.3657

4.9512
4.9122
4.8637
4.8069

(0.0229)
-0.0863
-Q.a262
-0.1641
-0.1990

Q.8457
0.8630
0.8789
0.8936

0.3391
0.2626
0.1773
0.0842

0.3527
0.2688
0.1792
0.0844

(0.0246)
-0.1584
-0.1987
-0.2381
—0.2753

3gP
2

10
30
50

-0.0488
-0.1392
-0.2058

-0.0310
-0.0702
-0.0917

-0.0310
-0.0703
-0.0919

(0.0010)
-0.0441
-0.0993
-0.1436

0.0017
0.0099
0.0188

0.0177
0.0784
Q.1439

0.0177
0.0786
0.1449

(0.0009)
0.0147
0.0577
0.1065

70
90

110
130
150

-0.2585
-0.3021
-0.3394
-0.3719
-Q.4007

-0.1091
-0.1271
—0.1471
—0.1698
-0.1951

—0.1096
-0.1278
-0.1482
—0.1714
-0.1956

(0.0021)
-0.1840
-0.2201
-0.2527
-0.2835
-0.3107

0.0272

0.0423
0.0491
0.0554

0.2060-
0.2628
0.3141
0.3600
0.4Ql1

0.2090
0.2691
0.3249
0.3765
0.4242

(0.0016)
0.1487
0.1834
0.2aaa
0.2330
0.2492

170
190
210
230
250
270

290
310
330
350

-0.4265
-0.4498
-Q.4711
-0.4906
-0.5087
-0.5253

-Q.5409
—0.5554
-0.5689
-0.5817

-0.2228
=0.2529
-0.2846
-0.3179
-0.3524
-0.3876

-0.4234
-0.4593
-0.4951
-0.5306

-0.2266
—0.2583
—02925
-0.3291
-0.3677
—0.4083

-0.4507
—0.4946
—0.5400
-0.586V

(0.0067)
-0.3372
-0.3619
-0.3851
-0.4066
—0.4256
-0.4431 .

(0.0150)
-0.4598
-0.4756
-0.4902
-0.5040

0,0612
0.0668
0,0720
0.0769
0.0816
0.0860

0.0903
0.0943
0.0982
0.1019

0.43VS
0.4706
0.5001
0.5265
0.5503
0.5717

0.5911
0.6086
0.6244
0.6388

0.4682
0.5089
0.5466
0.5815
0.6138
0.6437

0.6715
0.6972
0.7210
0.7431

(0.0040)
0.2616
0.2695
0.2742
0.2765
0.2771
0.2VVQ

(0.0098)
0.2767
0.2764
0.2764
0.273V
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TABLE I (Continuecg

(Mev)
OPE+ TPE OPE' +TPE'

P2

OPE OPE+ TPE OI Z +TPZ
X2

Ya1e

10
30
50

-0.0073
-0.0358
-0.0621

-0.0073
-0.0360
—0.0619

-0.0073
-0.0362
-0.0626

(0.0014)
-0.0091
—0.0511
—0.0746

0.0027
0.0121
0.0193

0.0031
0.0161
0.0301

0.0031
0.0161
0.0301

(0.0003)
0.0035
0.0205
0.0354

70
90

110
130
150

-0.0844
-0.1034
-0.1199
W.1344
-0.1473

-0.0825
-0.0987
-0.1115
-0.1216
-0.1296

-0.0844
-0.1025
-0.1176
—0.1305
-0.1414

(0.0022)
-0.0845
-0.091V

-0.0963
—0.098V

—0.0997

0.0245
0.0284

' 0.0313
0.0335
0.0353

0.0441
0.0580
0.0717
0.0851
0.0983

0.0441
0.0581
0.0718
0.0853
0.0986

(0.0019)
0.0486
0.0616
0.0739
0.0852
0.0964

lvo
190
210
230
250
270

-0.1590
-0.1697
-0.1794
-0.1884
-0.1968
-0.2046

-0.1358
-0.1408
-0.1447
-0.1477
-0.1501
-0.1519

-0.1508
—0.1588
—0.1659
-0.1719
-0.1772
-0.1818

(o.oo4v)
-0.0997
-0.0993
-0.0986
-0.0973
-0.0956
-0.0933

0.0367
O.O3VS

O.O38V

0.0394
0.0400
0.0405

O.llll
0.1235
0.1356
0.1473
0.1587
0.1696

0.1115
0.1242
0.1365
0.1484
0.1600
0.1712

(O.OO31)

0.1069
0.1lv5
0.1277
0.1374
0.1473
0.1569

290
310
330
350

-0.2119
-0.2187
-0.2252
-0.2313

-0.1532
-0.1542
-0.1548
-0.1552

-0.1858
-0.1892
-0.1922
-0.1948

(0.0141)
-0.0908
-0.0883
-0.0858
-0.0834

0.0409
0.0412
0.0414
0.0416

0.1801
0.1903
0.2001
0.2096

0,1821
0.1926
0.2028
0.2127

. (0.0101)
0.1659
0.1749
0.1840
0.1927

10
30
50

0.0002
0.0026
0.0061

0.0002
0.0027
0.0064

0.0002
0.0027
0.0065

(0.0017)
0.0002
0.0024
0.0059

70
90

110
130
150

170
190
210
230
250
270

290
310
330
350

0.0100
0.0139
0.0177
0.0214
0.0245

0.0284
0.0316
0.0347
0.0377
0.0406
0.0433

0.0460
0.048 5
0.0510
0.0533

0.0104
0.0143
0.0181
0.0217
0.0251

0.0282
0.0311
0.0337
0.0361
0.0382
0.0401

0.0417
0.0431
0.0443
0.0453

0.0107
0.0150
0.0191
0.0231
0.0269

0.0304
0.0336
0.0366
0.0393
0.0417
0.0439

0.0457
0.0474
0.0487
0.0498

(0.0027)
0.0087
0.0102
0.0108
0.0112
0.0114

(0.0061)
0.0113
0.0110
0.0105
0,.0097
0.0088
0.0078

(0.0099)
0.0066
0.0056
0.0047
0.0037
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TABLE II. Damped OPE and TPE contributions to the phase parameters for the isosinglet (T =0) state. The un-
damped OPE'+ TPE' phase parameters and the Yale phenomenological values with their parallel-shift uncertainties are
included for comparison. The Yale parallel-shift uncertainties are given in parentheses above the related group of
phases.

OPE OPK+ TPE OPE'+ TPE'
sg8

Yale OPE OPE+ TPE
Pg

OPE'+ TPE'

10
30
50

70
90

110
130
150

170
190
210
230
250
270

290
310
330
350

-0.0772
-0.2283
-0.3395

-0.4252
-0.4946
-0.5527
-0.5984
-0.6452

-0.6836
-0.7176
-0.7511
-0.7752
-0.8017
-0.8226

-0.8430
—0.8619
—0.8796
-0.8957

1.3821
1.4562
1.4785

1.4901
1.5073
1.5024
1.5061
1.5090

1.5114
1.5133
1.5148
1.5162
1.5173
1.5183

1.5191
1.5198
1.5205
1.5211

5.2359
8.6797

10.7950

12,3516
13.5809
14.5904
15.4404
16.1688

16.8009
17.3548
17,8439
1S.2781
18.6656
19.0125

19.3241
19.6044
19.8572
20.0853

{0.0024)
1.7984
1.3034
1.0458

(0.0064)
0.8750
0.7499
0.6496
0.5632
0.4859

(0.0710)
0.42Q3
0.3620
0.31Q9
0.2662
0.2259
0.1883

(0.0872)
0.1525
0.1180
0.0859
0.0561

0.1925
0.4792
0.6288

0..7147
0.7686
0.8047
0.8299
0.8472

0.8625
0.8733
0.8814
0.8886
0.8944
0.8990

0.9029
0.9062
0.9090.
0.9116

0.0196
0.0279
0.0243

0.0205
0.0169
0.0139
0 .Q115
0.0095

0.0079
0.0069
0.0060
0.0054
0.0050
0.0047

0.0046
0.0046
0.0046
0.0047

0.1266
0.2442
0.2684

0.2619
0.2444
0.2237
0.2034
0.1853

0.1702
0.1586
0.1506
0.1462
0.1455
0.1482

0.1542
0.1636
0.1759
0.1912

(0.0171)
0.0404
0.06S2
0.0792

(0.0220)
0.0862
0.0904
0.0927
0.0947
0.0975

(0.1151)
Q.1Q21
0.1088
0.1179
0.1289
0.1418
0.1559

(0.1321)
0.1707
0.1859
0.2009
0.2155

10
30
50

70
90

110
130
150

170
190
210
230
250
270

290
310
330
350

-0.0603
—0.1353
-0.1706

-0.1898
-0.2012
-0.2082
-0.2126
-0.2153

-0.2168
—0.2175
-0.2176
—0.2173
—0.2167
-0.2155

-0.2148
-0.2137
-0.2124
—0.2111

—0.0468
-0.0943
-0.1121

-0.1219
-0.1303
-0.1398
-0.1513
-0.1652

-0.1815-
-0.2001
-0.2208
-0.2433
—0.2674
-0.2929

—0.3195
-0.3470
-0.3752
-0.4039

—0.0468
—0.0946
-0.1126

-0.1225
-0.1310
-0.1407.
-0,1525
-0.1668

-0.1836
-0.2028
-0.2244
-0.2482
-0.2740
-0.3016

-0.3308
—0.3616
-0.3939
-0.4273

(0.0085)
—0.0450
-0.0956
—'0.1224

(0.0194)
—0.1515
—0.1860
-0.2254
-0.2689
—0.3145

(0,1045)
-0.3599
-'0.4050
-0.4505
-0.4950
—0.5408
—0.5866

(0.0910)
-0.6318
-0.6798
—0.7278
-0.7745

—0.0078
—0.0341
—0.0495

-0.0556
—0.0560
-0.0532
—0.0 524
—0.0436

-0.0372
-0.0314
-0.0227
—0.0204
-0.0166,
—0.0105

-0.0062
-0.0021
0.0018
0.0053

-0.0067
—0.0631
—0.].472

—0.2405
-0.3349
-0.4260
-0.5114
-0.5900

—0.6614
-0.7256
-0.7833
-0.8349
-0.8811
-0,9225

-0.9596
-0.9930
-1.0232
-1.0505

-0.0059
—0.0615
—0.1466

-0.2409
—0.3470
-0.4530
—0.5606
—0.6691

-0.7779
-0.8868
-0.9959
-1.1040

102 121
-1.3197

-1.4268
-1.5334
-1.6394
-1.7448

(0.0074)
-0.0122
-0.0662
-0.1189

{0.0044)
-0.1651
-0.2016
-0.2285
-0.2478
-0.2638

(0.0970)
-0.2802
-0.2983
-0.3174
-0.3397
-0.3629
-0.3881

(0.0584)
-0.4152
—0.4432
-0.4720
—0.5015
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TABLE II (Continued)

OPE OPE+ TPE OPE'+ TPE'
3gD

OPE OPE+TPE OPE'+TPE'
3gD

Yale

10
30
50

0.0140
O.0733
0.1318

0.0153
0.0856
0.16O4

0.0153
0.0858
O.1618

(o.oo73)
0.0150
0.0911
0.1858

-0.0005
-0.0055
-0.0131

0.0001
0.0016
0.0062

0.0001
0.0016
0.0062

(o.oo35)
0.0004
0.0033
0.0072

70
90

110
130
150

0.1833
0.2284
0.2682
0.3036
0.3353

0.2295
0.2916
0.3471
0.3967
0.4411

0.2336
0.3001
0.3617
0.4189
0.4722

(0.0078)
0.2552
0.3053
0.3443
0.3776
0.4056

-0.0214
-0.0299
-0.0382
-0.0462
-0.0539

0.0136
0.0232
0.0342
0.0462
0.0589

0.0136
0.0231
0.0341
0.0461
0.0587

(0.0037)
0.0116
0.0168
0.0230
0.0301
0.0379

170
190
210
230
250
270

290
310
330
350

0.3640
0.3901
0.4140
0.4360
0.4564
0.4752

0.4928
0.5091
0.5245
0.5389

0.4811
0.5170
0.5496
0.5791
0.6060
0.6305

0.6529
0.6736
0.6925
0.7100

0.5220
0.5686
0,6125
0.6539
0.6929
0.7298

0.7648
0.7981
0.8296
0.8596

(0.0784)
0.4274
0.4436
0.4553
0.4627
0.4661
Q.4665

. (o.os6o)
0.4644
0.4602
0.4546
0.4478

-0.0613
-0.0683
-0.0750
-0.0815
—0.0877
—O.G 936

-0.0943
-0.1047
-0.1100
-0.1150

0.0719
0,0852
0.0985
0.1119
0.1250
0.1380

0.1501
0.1633
0.1756
0.1876

0.0717
0.0848
0.0981
0.1113
0.1244
0.3.374

0.1502
0.1628
0.1751
0.1871

(o.o405)
0.0460
0.0541
0.0620
0.0698
0.0768
0.0834

(0.0248)
0.0895
0.0951
0.1002
0.1048

70
90

llo
130
150

170
190
210
230
250
270

0.0029
0.0273
0.0586

0.0891
0,1171
0.1425
0.1656
0.1866

0.2057
0.2232
0.2394
0.2543
0.2682
0.2810

0.0029
0.0271
0.0577

0.0871
0.1139
0.1380
0.1597
0.1794

0.1973
0.2136
0.2286
0.2424
0.2552
0.2670

0.0029
0.0271
0.0577

0.0873
0.1143
0.1388
0.1610
0.1813

0.1999
0.2171
0.2331
0.2480
0.2621
0.2753

(Q.0266)
0.0031
0.0292
0.0625

(o.oos5)
0,0899
0.1080
0.1237
0.1408
0.1584

(0.0826)
0.1755
0.1915
0.2057
0.2182
0.2287
0.2376

290
310
330
350

0.2931
0.3043
0.3149
0.3249

0.2780
0.2883
0.2979
0.3069

0.2878
0.2996
0.3109
0.3217.

(o.o53o)
0.2449
0.2506
0.2553
0.2591
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phase parameters corresponding to L &2 with the
exception of the coupled phase 'g~, . It is damped
by 10% at the higher energies and thereby im-
proved.

As seen from Eqs. (14), the damping effect on
the coupled phase shifts and the coupling param-
eters is rather complicated in form, and the re-
sults of damping are not evident without making
the calculation. For example, the coupling para-
meter p, given in Table II is drastically reduced
relative to the undamped QPE+ TPE values, and
this reduction provides better agreement with the
Yale values, especially at the lower energies.
Both p, and p, are slightly improved and reduced
by damping.

A comparison of the damped QPE and QPE
+ TPE contributions reveals that TPE significant-
ly improves upon QPE in a comparison with most
of the phenomenological values. This is in
marked contrast with the undamped calculation
of the core-dependent phase parameters Ko
'6» and p, . Here, TPE so strongly overcorrects
QPE that the comparison with the phenomenologi-
cal values is worsened considerably. A rough
estimate of the improvement of QPE+ TPE over
QPE in the damped calculation can be achieved
by evaluating

I6 —6(E)j'
X ~ A6(E)2

E

for each core phase parameter, where 5 is the
theoretical value, 6(E) the Yale value, and A6(E)
the p'arallel-shift uncertainty in the Yale value.
The ratio )t'(OPE)/y'(OPE+ TPE) is 20 for Ã„40
for 'g» 50 for p„and 0.9 for '6, . The last
phase shift still suffers from a TPE contribution
that is too large at the intermediate energies. Ex-
cluding the core-dependent phase parameters,
the damped and undamped results are close
enough so that the conclusions of Ref. 5 apply.
That is, OPE+ TPE is in reasonable agreement

with the phenomenological values for L ~ 2.

V. CONCLUSION

The covariant form of the Heitler equation is
solved exactly for the QPE and TPE contributions
to elastic nucleon-nucleon scattering. This leads
to a damping effect on the previously determined
QPE and TPE phase parameters that is found to
be large for the lower values of L. Although the
damping effect is negligible in the region L & 5

where QPE dominantes the interaction, it is as
large as 10% for the phase shift '8~, and 20$ for
'5, . In the range L~2, excluding 0 „damping
improves the already reasonably good agreement
with the phenomenological values. The damping
effect on the P-state phase parameters is as large
as 16/p, and it improves the undamped values in
a comparison with experiment. For the core pa-
rameters K» 'p» '9» and p» the damping ef-
fect is as large as an order of magnitude of the
undamped values, and it produces a TPE contribu-
tion that is reasonable and a definite improvement
over the OPE contribution, in contrast with the
undamped results.

Certainly, damping does not compensate for a
more complete determination of the scattering
matrix. The omission of the higher-order pion-
nucleon and other boson-exchange effects remains
a serious error. However, it is evident that the
QPE+ TPE approximation is substantially im-
proved by requiring it to satisfy unitarity through
the addition of the real intermediate processes.

It is further noted that since such additional ef-
fects as the one-vector-meson-exchange contribu-
tions are most important for the lower values of
L, these effects should be strongly influenced by
damping. Therefore, the parameters of pion and
resonance models of nucleon-nucleon scattering
may be expected to be significantly affected by
damping.
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Recently published data on ep en'+ near m =2 GeV and 0.0& (k ~
& 1.0 GeV are investigated

using (i) the model-independent Chew-Low extrapolation technique and (ii) fixed-t dispersion
relations. The data are not accurate enough to allow the Chew-Low fit to give an unambiguous
determination of F~. Using fixed-t dispersion relations we obtain F (k ) =1/(1 —k /0. 5 QeV ).
The effect of resonances other than the P33 is small.

I. INTRODUCTION

It is well known that single-&' electroproduction
ej- en&' could in principle determine the pion
form factor for spacelike values of the photon mass
squared (k' & 0).' ~ However, attempts to deter-
mine I"„ from electroproduction data in the first-
resonance region' 4 have not produced results
sufficiently accurate to distinguish between I'„
given by the p-dominance model or Il, =G~ (the di-
pole form factor).

Recently, data have been published at se = 2 GeV
(Refs. 5-7) and it has been shown' that such data
could give a much better determination of E„, in
particular ruling out the choice I' „=G~.

Frazer' suggested in 1959 that the Chew-Low ex-
trapolation technique could be used on eP- en&'

data to give a model-independent determination of
E„. In this paper we have tried to apply this tech-
nique to the data.

All the attempts to determine E, from electro-
production data have used fixed-t dispersion rela-
tions. We examine this approach and explain why
the region zu =2 GeV is a good place to look at I"„.
We also give a critical discussion of the uncertain-

ties in the dispersion relations, im particular those
arising from resonances other than the first reso-
nance and from a subtraction term.

II. CHEW-LOW EXTRAPOLATION

The assumption required for this approach is
that the pion pole will dominate the cross sections
for small t. If the pole denominator is multiplied
out of the experimental cross sections then the re-
sults should lie on a smooth curve which can be
extrapolated to the pole position in t and hence
give the residue of the pole. If the coupling con-
stants involved are known, the pion form factor
can be determined in principle.

Figure 1 defines our kinematic variables and de-
tailed formulas are given in Appendix A.

From these formulas we can calculate the resi-
due of the pion pole in the differential cross sec-
tion [formulas (A9), (All), and (A12)j. Notice
that as written the differential cross section has a
term involving sine (the scalar-transverse inter-
ference term). This must be removed in some way
before the extrapolation is attempted as it has a
square-root branch point in t.


