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- It is demonstrated that there exists the possibility of defining scale and eonformal transfor-
mations in such a way that these constitute exact invarianee opexations of the Schrodinger
equation. Unlike the relativistic case there is only a single eonformal transformation and the
usual eleven-parameter extended Galilei group is consequently enlarged to a thirteen-parame-
ter group. The generalization to the case of Gelds of arbitrax'y spin is carried out within the
framework of minimal-component theories whose interactions respect scale and eonformal
invarianee. One finds that the bare-internal-energy term can be used to break these addi-
tional invarianee operations in much the same way as the mass term in special relativity.
The generators and conservation laws associated with all space-time symmetries of minimal-
eomponent Galilean-invariant field theories are derived, it being shown that, in analogy to the
relativistic ease, the operators which appear in these equations can be redefined so as to al-
low the formulation of scale and conformal invariance entirely in terms of those operator den-
sities relevant to the transformations of the Galilei gx'oup.

One of the most actively pursued areas of re-
search in particle physics at the present time con-
sists of the investigation of the possible relevance
of scale invaxiance in high-energy interactions.
Thus one asks that, given the absence of any in-
trinsic mass or dimensional coupling constant in
a given physical system, what inferences can one
make concerning fundamental processes and, sec-
ondly, what axe the possible consequences of terms
rvhich explicitly break dilatation invariance. In
consequence of this considerable emphasis upon
the absence of dimensional parameters in order
that one be able to discuss scale invarianee, the
prospect of studying this particulax symmetry in
the nonrelativistic limit might at first sight ap-
pear to be vix'tually nil. More specifically the ex-
plicit appearance of the mass m in the Schr5dinger
equation for the field operator. (or wave function) g,

(Z -p'/2m)g =0,

would seem to preclude any possible relevance of
scale transformations to systems described by
(1.1). On the other hand, one can note that the ab-
sence of the velocity of light as an available pa-
rameter in the Galilean limit means that 1/~ un-
like the relativistic case, is not dimensionally
equivalent to a length. Consequently one can imag-
ine the possibility of scaling in the space and time
coordinates while at the same time retaining quan-
tities such as the mass which have inequivalent
dimensions and no sealing properties. In order to
implement this suggestion one observes t6at if x;
is scaled such that

(1.2)

then the invariance of (1.1) under (1.2) can be as-
sured by the additional scale transformation of the
t1me eoord1nate

t 8
y

i.e., by scaling t "tvnce" as much as x;. This to-
gether with the demonstration of the existence of a
conformal transformation which preserves (1.1)
comprise in the simplest possible terms the es-
sential obsexvation which underlies this paper.

Inasmuch as Galilean relativity has largely been
superseded in particle physics by special relativity,
it is perhaps appropriate to pause before proceed-
ing with any further development of this topic in
oxder to assess the possible value of such a study.
Thexe appear in fact to be at least three good rea-
sons for pursu1ng th18 investigation.

(i) The question of the full invariance group
compatible vrith Galilean relativity is of intexest
in its own right.

(ii) The Gaiilei group is an entirely consistent
group of space-time transformations which in some
1espeets possesses a more complex structure
than the Poincard group. Thus there emerges the
possibility of examining whether the intimate con-
nection between the usual space-time transforma-
tions and scale and conformal transformations as
found by CaQan et aE. ' is invariant with respect to
the choice of the underlying kinematical group or
is largely accidental.

(iii) The recent widespread use of perturbative
methods in discussions of scale invariance could
quite profitably be incorporated within the frame-
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work of Galilean relativity for the very good rea-
son that the perturbation series always terminates
in the Galilean case.

With the foregoing brief defense of the present
study one can now resume the main development
of this paper. In Sec. II the properties of the Gal-
ilei group essential to this discussion are pre-
sented and explicit calculation made of the gen-
erators of the transformations of the extended
Galilei group including dilatation and conformal
transformations, in the case of a spin-zero field.
Section III briefly reviews the structure of theo-
ries of arbitrary spin before proceeding to the con-
struction of the eleven generators and associated
conservation laws which follow from Galilean in-
variance. Section IV presents the corresponding
results for scale and conformal transformations.

II. THE SPIN-ZERO CASE

In order to properly discuss the dilatation and
conformal transformations within the context of
Galilean relativity it is essential to summarize
briefly some well-known properties of that group. '
To this end one recalls that the proper Galilei
group consists of all space-time transformations
of the form

x'=Rx+vt+a,

t =t+6

where R is a 3 x3 orthogonal matrix. The ten-
parameter element which describes a given trans-
formation can be denoted by g= (b, i, v, R) and is
readily seen to satisfy the group law

(b', a', v', R')(b, i, v, R)

= (b+ b', i'+R'a+ bv', v+R'v, R 'R) .

(2 1)
Making use of this result one can infer that the
Lie algebra is described by the commutation rela-
tions

where M commutes with all operators of the group,
and retaining without modification all the remain-
ing commutators in (2.2). Using these structure
relations the eleven-parameter element g= (8, g)
of the extended group can be shown to have the
multiplication law

g V;= (8'+ ~+ 5.(g', g), dg),

where

&„(g', g) =m(-,'bv" +v' R'i)

is an exponent of the group, and we have written
M =mI, with I being the identity element. It is to
be noted that the enveloping algebra has a three-
dimensional center including, in addition to M, the
invariants U—= H —(1/2M)P' (the internal energy)
and S' —=[J—(1/M)K &&P]' (the square of the intrin-
sic spin).

In order to avoid at least temporarily the not in-
considerable complications associated with spin,
this section will restrict consideration exclusively
to physical representations of the Galilei group
which correspond to zero spin. Thus one writes
the Lagrangian of a spin-zero field' which has the
customary form'

~= l[4'&0 (R0')e-l —U.e'0+
2

(Pe'). (Pe)+~. ,

(2.3)
where the term proportional to U, is a bare-inter-
nal-energy term. Inasmuch as we allow for the
possibility of (nonderivative) local couplings 2„ it
is to be understood that, in general, the free
Lagrangian consists of a sum over a number of
fields of different masses and internal energies.
The interaction is assumed furthermore to be in-
variant under all operations of the extended Gali-
lei group which requires among other things that
cognizance be taken of Bargmann's superselection
rule on the mass. This stipulates that for an in-

teraction of the form

[Jg, J;]=su„»J'», [J(,K,] =te;l»K»,

[Jfi Pi] = t'ai»P»i [KiiH] = tPi i (2.2)

A+ B+ ~ ~ -A'+ B'+ ~ ~ ~

one must have the condition

[J;,H] =[K;,K,] =[K;,P,] =[P;, P, ]=[P;,H] =0,

where J;, I';, II, and K; are, respectively, the
generators of rotations, space translations, time
translations, and pure Galilean transformations.

The physical representations (and the ones with

which we shall be concerned here) are those which
are representations of a central extension of the
Galilei group by a one-dimensional Abelian group.
This extension can be obtained by making the re-
placement of the [K„PJ]commutator in (2.2) by

[K,, P,.] = tv, ,M,

y'(x', t') = e' '" ". y(x, t),

where

f(x, t)=mv R x'm+e't,

(2.4)

the total Lagrangian (2.3) is invariant under all
Galilean transf ormations.

In order to display explicitly the conserved
quantities in this theory, one considers separately

mg +my + ' ' ' =my +my + ' ' ' .
It is now straightforward to show that for the trans-
formation law
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the various transformations which comprise the
extended Galilei group. Simplest of these is the
phase transformation

eim8
4

the introduction of which leads for infinitesimal
56} to the form

5N= m4-'y 5e—,'[y-'-py (p—y )y] V5e.
&t

From this, one infers the conservation law

The expr8ssions for P; and J& now follow imme-
diately as one obtains

and

cfog
= ' d x E]gl,x py ~

3

4

Time displacements are handled in an analogous
fashion and are seen to imply

(2.5)

and the generator

M=m d'sit~ p,

where we have defined

m=myty,

t = 2[a'pe (pe') -el

Equation (2.5) is, of course, more commonly
written in nonrelativistic quantum mechanics with-
out the factor of m and referred to as the conser-
vation of probability. '

Spatial translations and rotations are conveniently
handled by using the rules

5(d'ddt}=d'ddt V 5x,

where

f = l[~'E~ (E~'-) ~]

and

~'=-2 [u e')Ee (E~'u el,

with the total energy being given by

As a consequence of (2.4) pure Galilean trans-
formations are slightly less trivial. In this case
(2.6) and (2.7} become

5(d'x dt) = d'x dt t V ~ 5v,

5 —= — —5x V

5 —— 5x~ V~,

(2.6)

and

5 —=-5v V —t —5v V,

5 =-t 5@~ V),

and the fact that for a local variation

5/=0.
This leads to

(2.7)
5P = imx 5vg .

Using these relations one finds after straightfor-
ward calculation

gg = d'xdI; SV,.dx, +-,' 'P,
4 &

(mx' —ty')+V, (x;}i,—tT'i) =0, (2.9)

where

—q~i8', . i'~V, ii+8',.i')V, y)lv, a*),

d'ddt Z.

the consistency of which may be directly verified
using (2.5) and (2.8). The conserved operator'K,
is thus of the form

d g IIIX. —SPY .
4

The resulting conservation law is thus

—y'+ v r"=0
at (2.8)

It may be noted that upon using the equal-time can-
onical commutation relation

[P(x, t), y (x', t)] = 5(x —x'),

with the symmetrical tensor T" being given by

T"=&5"-2 [(P;e')P, &+V;e')P;el.

the global operators I, P&, J;, 0, andK; can be
easily shown to provide a representation of the
Lie algebra of the extended Galilei group.

Having thus displayed the explicit Galilean in-
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variance of the Lagrangian (2.3) one can now turn
one's attention to the dilatation operation. The
transformation law for p corresponding to the
scale transformation described by (1.2) and (1.3)
18

P'(x', t') = e "P(x, t)

or

(2.10)

where d, the dimension matrix, will be found tobe
& times the unit matrix independent of the spin. '
Using (2.10) and the asserted value of d, one can
easily demonstrate the invariance of 8' for con-
stant 5v. provided that the scale-breaking term in-
volving Uo is discarded and Cl assumed to be dila-
tationally invariant. Upon generalizing to the case
in which 57 is allowed to have space-time depen-
dence one finds

5W=J~d'ddt(T'xV +x y
——

R. tl-
at Rt

[%(y'y)j V —2tli '0) lie
4m

and the conservation law

Bt
—(x.g —2ttt)+V, x&T"-2tlt'+ ~V, m =0.4'

The generator of scale transformations

18 consequently seen to satisfy the commutation
relation

( - a
[D, y(x, t)]=i~ xV+2t —+d P(x, t).

It is noteworthy that in much the same way as in
Ref. 1 one can define a new tensor

the validity of which can be verified by direct cal-
culation.

In addition to the invariance of (2.3) under dila-
tations, one finds that of the four conformal trans-
formations of special relativity there is one which
remains a symmetry in the nonrelativistic limit.
This is of the form

x,'=x;(1 —ct} ',
t'=t(1 —ct) ', (2.13)

where c is an arbitrary real parameter. ' The in-
finitesimal version of this,

which may be solved to yield

( )
1 mx'c
2 1 —ct

is a symmetry of (2.3) provided that (i) P has the
transformation law'

5$ = (~i mx —dt) Qoc

and (ii) the interaction Lagrangian is local, scale-
invariant, and of the nonderivative type. The form
of the finite transformation is readily inferred
upon writing

y'(x', t') = (1 —ct)' exp[irt(x, t)]y(x, t}

and demanding invariance of 8". This condition
leads to the set of equations

8q mcx;
Bx; 1 —ct'

1 ~'g

8t
—=(1 —ct) 'cx Vq—

2 tÃ Bx.

3
egj = T(;+ ~ (5)~V —V)V))m

such that

(2.11)

Proceeding now in the sty.ndard way one infers
from the action principle

—(tx y
-1}t'--'mx')

Bt

—(x $ 2trj)+V, (x,-e"--2tg') =0 (2.12} ++) Xy tT —2X' p + V~ifl —t - =o

and in terms of which (2.8) and (2.9), respectively,
become

—0'+v O'=0

8
—,(mx, —ty, )+V'(x,.y, —te, ,) =O.

The consistency of (2.12) is clearly seen to imply
the "tracelessness" condition

which, in terms of 6,&, reads

Bt
—(tx $ yt'--,' m)x+ -(V, x,te--', x'q' —t'}}')=0.

The generator of conformal transformations is
seen to be of the form

C = d'x(tx ~
y —-', m x') —t 'H

=tD+t H- q d xmx
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and satisfies the commutation relation

With this result one is now in a position to write
down the complete set of commutation relations of
C and D with the generators of the extended Galllel
group. These are given by

[J», C] =[J;,D] =[M, C] =[M, Dj =[K, C] = 0,

[P,, D]=II„[Z„D]=-W,, [e,D]=MS,

[z,, c]=-IK„[If,c]=ID, [C,D]=-2ic.
Upon making the identification

s, =-,'(p+c), s, =-,'(H-c), s, =-,'D,

the commutation relations of H, C, and D can be
brought to the form

[S„si]= -i',
[S„s,] = iS„
[s„s,] = is, .

This set Comprises an O(2, 1) algebra and serves
to illustrate the fact that because of the commuta-
tivity of J; and S; the conformal Galilei group has
O(3) x O(2, 1) as one of its subgroups. Such a re-
sult is, of course, to be expected from the exis-
tence of O(4, 2) as a symmetry of the conformally
invariant Poincard group. '

Gg=O,

where

6 =Ep( 1 + pi) + p»»7 ' p +III(1 —pi) ~

(3.1)

the two independent sets of Pauli matrices p; and

III. EXTENSION TO ARBITRARY SPIN

In order to determine the extent to which the re-
sults of Sec. II constitute general properties of
conformally invariant Galilean field theories, it is
essential to remove the restriction to scalar fields.
The basic ingredient for the construction of higher-
spin theories is spin. —, and we consequently review
here some properties of Levy-Leblond's Galilean
formulation of spin &.

' He has shown that the
equation for the four-component wave function (or
fleM opel'Rtol') $ llRs the fol'lll

0'; having been introduced to span the 4&&4-dimen-

sional spinor space. The equation (3.1) is covari-
ant with respect to the Galilei group provided that
the transformation law for ( is

y'(x', f') = e'/'" "Il»/'(v R)»j/(x t)

~'/'(v, ~)=, D"'(Z),1 0
0' v 1

with D'"(R) being the usual two-dimensional rep-
resentation of spin —,'. The decomposition

into two-component spinors»t» and X yields the
equations

E/t»+»/ pX=0,
I

»I pp+2mX=0,
thereby displaying the P; as independent compo-
nents with true equations of motion and the X; as
depelldeIlt VRrlRbles defllled ln 'tel'Bls of the»t);.

The problem of explicitly writing down a Gali-
lean-invariant theory of spin S which is of first
order in all derivatives can now be approached by
constructing the most general Galilean-invariant
Lagrangian for a totally symmetrized 28-rank
spinor g, ,. . . ,, . An important shortcoming of the
multispinor formalism, however, consists in the
fact that the equations of motion involve only a
small subset of the total number of components of

Ill 01'del' to deRl wltll tllls problem it 18.

convenient to project out of p, ,. . .,,~ a basis of
spherical-tensor fields g and X~', ~, , /, where g
transforms Rs 'tile (2S+ I)-dimensional 11'1'educible
representation of O(3) and X~', /, , /, transforms as
the Kronecker product of the 2S-dimensional and
2-dimensional irreducible representations of that
group This pr. ovides a (6S+ 1)-component repre-
sentation and defines what will be referred to here
Rs R BllllinlRI tlleol'y (i.e., lt 18 Ilot possible to
write down Galilean-invax'iant theories desexibing
spin-S particles which are of fix st order in all de-
rivatives with fewer than 6S+ 1 components). It
has been shown by the author' that in terms of
these spherical-tensor fields the most general
Lagrangian is"

haft't meS 48 04 $4 S 2~XS-1/2, »/2XS-1/2, 1/2

1
p $ f/' ]. P, ~g g

+ 6 (2S+ 1) Xs-»/2, 1/8 P S» rp 1» Qg

S —~ q I ~ r»t
r haft/r„x",-;„,„, +H:;I+2„

SZ P, v 82 (3.2)
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where we have made use of the three-j symbol and Wigner's" tensor notation for the O(3) group. Thus re-
peated upper and lower indices are summed while two repeated upper indices are summed, provided that
one is the adjoint of a contravariant field. %e note that the spherical components of the covariant vector
x„are given by

X„=+2 '/2(Z+iy), 2;, =S,

while for the contravariant vector P" one has

B .B, XBp~' ——2 ' +—+z— Pi Bx By
'

z Bz

Contravariant and covariant indices can, of course, be lowered and raised by means of the metric tensors

gs„.=(-l)" 6 „. and +mm' ( l)$-m6

As a consequence of the tensor notation one has the important simplification that the Lagrangian (3.2} is
manifestly invariant under rotations and the only nontrivial operation is to verify the asserted invariance
under Galilean boosts. A proof of this result making use of the transformation law

(ym)l(X» i») +if(x, /)ym(x i)

1 I
~ ~ f 12 12 2 v

(XS 1/2, 1/2) (X i ) S XS-1/2 1/2(X i) (2) (2S+ l) 1»»
~

1 1 V (Pg (Xs i)S-~ p, m" I~ p

is given in Ref. 12.
It is to be noted that in analogy to the spinless situation one expects to have the free Lagrangian consist,

in general, of a sum over fields of different masses, spins, and bare internal energies. The interaction
Lagrangian $1 which, of course, is taken to be Galilean-invariant and local, is assumed furthermore to
not explicitly involve derivatives even though the y field, if it appears in the interaction term, does give
rise to derivative-coupling effects. A detailed consideration of trilinear interactions including the case in
which the y fields are coupled is to be found in Ref. 12.

One can now carry through the derivation of the generators of the extended Galilei group in the nonzero-
spin case. The phase transformation

X-S™X
may be seen by inspection to yield

—m+9'm =0IJ (3.3)

where

and

n( ™y
1 j. 1

u ss (&+ &/ g& $ s» 1 ss XS-1/2, 1/2 XS-1/2, 1/2 s 1 1»» 1 $$
. P Sl 8 g p Ng g p

with the generator being given by

M =m J~ d 21 (Ps

We draw attention to the fact that the three-dimensional vector in (3.3}is denoted here by m„rather than

y„. That'this vector is not identifiable with the momentum density for nonzero spin is a result which will

be displayed momentarily.
The conservation law associated with invariance under translations and rotations follows upon applica-

tion of (2.6) (rewritten in a spherical basis) and the local variations

ss;=-!(slfslls)(s ',)s '""s.s»„
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m'
6X 2 1/2, 1/2 2 (~ 2II& ll~ - 2) g 1 r t XS-1/2, 1/2 + (2II~ II 2) 1 t t X S-l/2, 1/2 e +(26+8)

2 p P

where we have introduced the conventional notation (Sll& II&) for ~e reduced matr~ elemen«f the spin.
In much the same may as in Schwinger' s derivation' of the symmetrical energy -momentum tensor in spe-
cial re lativity, one finds

NV=JI d' d(x(t r dx +Tr il ilx"
p p

so that

(3.4)

vrhe re

rPr vtd—,. + —t' vx(d((d((d)d, (,)dr +H.x.

and the symmetrical tensor T""is given by

Tgdr g 2)/ 161/2(2g 1)l/2 ~m1 d (()( 2 2 / 2 m mg +

(2 f tB tX 8 PE V)
+Xs-1/2, 1/2~ I ()' 1 1 tt 1 1 42

2 2 38(„.~ m -', s m' v) X m" 1 s- (&II& ll»e P. X s-l/2, 1/2 g 1
X

1 1 1 g 4 28-2 Am" —, —, 8 Pm"
l I

m8(11 mg tÃ X a —2 2 1/) 2 tÃ 1 2 mr mrrr—(2II 112) P(2 4'2 &» 1 «1 r2 ttt XS-1/2. 1/2

1 p 1
(28( mt SEX $ —2 2 V) 2 Bl' 1 8 —2 rtr mt ~—(d — lid(lid —*)x "2 dt d, 1 „1 1 „, xt- r', r

In writing the above rve have used the notation

d4
"' =-'(d "'+x4"")

to denote the symmetrical part of a tensor as arel l as the customary definition

(-1)2+'+'[d4

for the He rmitian con jugate of spherical tensor A ~ ' The expre ssions for the total momentum and an-
gular momentum are now immediate consequences of (3.4) and (3.6), the results being

1~2 (f 2 ~mt &2 ~m (ld)2 ~mt) ~mj 2 g Ix

lI(' -& -,. ~" y",' y, e"""(~ll~ll'(~)—/Il",
' m 1 8

As in the spinless cs,se time translations are handled in exceedingly straightforward fashion and we are
consequently content merely to state that one finds the energy -conservation equation

(3.7)

with

&= '(42 &42-+'4S')4 "S] -&

1/2 m /pe I 2m, , yg
5)r 26 (2&+1) ps +li ~ t 1 tt X2 1/2, 1/2+X' 1/2, 1/2@ g 1 1 tt 1 'ting +H C. .
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Thus one has for the total energy the result

II = d'x( ,'[y,-'zy, (z-y, ') y,] -sj .

The treatment of Galilean boosts is the most technically difficult of the Galilean group operations largely
because of the somewhat intricate form of the field variations

~/1/s =imX, 5u Ps s

I
Pkf m m n 3 1//'2 m 2 S m 1 p, „m5)(,/, ,/, =im~, 5~ ~,/, , /, —(—,) (2S+1) S--, pm" ~ v-,

However, simplification ensues upon recalling that the asserted invariance of 4 means that one requires
only those contributions to 5W which involve a derivative of the boost parameter. This leads to the con-
servation law

1

n, m'p u m p S m' I p, m"
+ 9& -g ted@ — + Pt6 2S+ 1 ~~-&/t'2, &!2P S & st I & s--, JLt. m

1 1 1~g, mp'S —2 2 1 2 m', m"
PS P c & s s ii XS-1/2, 1/2

Upon adding and subtracting the term

—s'ss"'s (s „',)s (sllslls)I=o.

(3.8)

(3.6) can be brought to the form

6
(-mx"-f)")+v, -m&Z-fT~'+2 I-~ (s[(s()s)~~' y, , y, =0,

where the (nonsymmetrical) tensor T~' is given by
j. p I

T(s)(=g()vg —(6 / (28+1)1/2 m, m't Pv 2 OOPm''''

(3.9)

m 'S
S 2 m' (p, '1m" ' 2 Bt S~m

On the other hand, an examination of the coefficient of t in (3.9) clearly implies the consistency condition

V T" = V T"
u

a result which can alternatively be derived by direct calculation using the equations of motion. Thus (3.9)

assumes the form

~))")+'V n("&' f T"'+ 1 (~llsll~)s"" 4s I &Ps
at u 2 S ~S A. m'

and one has for the generator the result
/I

K"= — d'xmx' —tP".

(3.10)

It is to be noted that the consistency of (3.10) with (3.3) and (3.5) leads to the condition

m+ 1 cu guSSS s™ s (3.11)

a result which can easily be verified by use of the field equations. A number of comments are in order
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concerning Eq. (3.11). A somewhat trivial one has to do with the fact that since p' coincides with m in the
spinless case, the minus sign on the right-hand side of (3.11) might be considered suspect. This, however,
is merely a consequence of the form of the metric tensox and the fact that m„was ox'iginally defined in co-
variant form while y" was defined in contravariant foxm. Gf greater interest perhaps is the significance
of the spin terms in (3.11). Since without the 1/S term one has only the spin part which appears in the def-
inition of p", the 1/S contribution is obviously identifiable with the spin content of the operator m'. On the
other hand, iii" is essentially the electromagnetic current (as is easily seen upon introduction of minimal
coupling) and the usual g factor describing the magnetic-moment interaction with the magnetic field is
thus inferred to have the value 1/S, a result which is in complete agreement with an earlier calculation of
this same quantity. " However, inasmuch as this latter work also displayed the fact that the g factor can
differ from 1/S for nonminimal theories, one sees here a definite indication of model dependence in the
conservation law (3.10).

Kith the derivation of the complete set of conservation laws implied by Galilean invax iance in the gen-
eral-spin case one can now examine the situation which ensues upon imposing the further condition that
(3.2) be scale-invariant and consequently also conformally invariant. Inasmuch as the transformations
(1.2) and (1.3) imply that the dimensionality of a scale-invariant term in Z be minus five, the bare-inter-
nal-enex'gy term must be set equal to zex'o as in the spin-zero case. Although scale-breaking terms pre-
sent no conceptual difficulty and one could readily derive scale-breaking corrections to the conservation
laws, we assume here the simplest situation in which the scale and conformal operations are exact.

Using the rules

5(d'xA) = d'xd((Sex„V'+ 21 )Ã—
g —= -25m ——2 —5v t—— —57 xpV',

and the corresponding scale transformations on the fields
m

~4'8 4 8 ~~1 ~XS-i/2, 1/2 ( + 1)X8-i/2, i/2~~&

one readily verifies that for constant 5v the Lagrangian (3.2) is invariant for the choice (f = —, if 2, is."
Thus one finds from the coefficients of (8/bf)57' and V,57' in the expression for the variation of W that

+~((g i 6i/2(2S ~ 1)i/2 (((, m'+ iii a S iii 1 I" ~m"
2

In much the same way, as was done in the case of pux"e boosts one can manipulate the spin-type terms so as
to bring (4.1) to
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Inasmuch as T is multiplied by x„ the replacement of T""by the symmetric T"' is nontrivial in the pres-
ent case and requires the introduction of a number of counter terms. Doing this one finds the form

—(x, t)"- 2t&) +V„(-2t&"+x„T""+o'), (4.2)

where o, is the complex structure
1 1 1 q 1

6l/2I2~+ ~~1/2 + ~ 2 )S ~ I I +
v 2 1 1 Xs-1/2, 1/2 S 1 t1 ~xx 1

~
1 0 s As 3 1 ) + () ~s-1/2, 1/2—2 tB 2 V 2 2

X/2 1/2 ~+6 (2~+1)
2

t(3ll~ll&)~.~SXs"-'1/2, 1/2 g 1 g 1 I 1 3 I 4s
2 2

1 1 1 JmA S- —, —, n —, Pg' PS-2
+2( - all~ Ill- 2)~2(xsls ~ 1, ~, „~,, „, Xs-,'/2, ,/2+H. c.

while the generator of scale transformations is seen to be

The consistency of (4.2) with (3.5) and (3.7) obviously implies the condition

(4.3)

It is of interest to note that one can make contact with the discussion of Ref. I concerning scale traxnsfor-
mations by redefining the energy density as

1
2V "g()

a step which clearly involves no corresponding modification of the total energy H. In order to retain (3.7),
however, one requires a compensating change in the energy flux g, . To this end one writes

1 8fj=g+ ——oI/ II 2 g t It

so that (3.7) becomes

Using this result (4.2) assumes the form

—(x~))"-2tfj)+V (xST"'—2t)")= 0,

which implies the replacement of (4.3) by the "traceless" condition

T"„-2)=0.
Thus the main point of contrast with the result of Callan et al. in this case consists in the fact that they
found no such redefinition to be required in the nonzero-spin case in order to obtain the vanishing-trace
condition on the energy-momentum tensor.

Conformal transformations as described by Eq. (2.13) can be shown from the transformation laws

f y, =(-,'2mx' dt)y, tic, -
(4 4)

()x*' (. ,i, =(!(mx'-(&+()()xx „', ,„x~~ (-,*)"(»+))"(x, * „, , x'X,""()c,

to be an invariance of the Lagrangian provided that L is local as well as dilatationally invariant and the
coupling term does not explicitly contain derivatives. This calculation may be facilitated by making use of
the close resemblance between (4.4) and the corresponding expressions appropriate to Galilean boosts.
Upon performing the usual variation of S' one is led in the standard way to the conservation law
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» t —y
'

V-.'y —(X—/."y ')y
~

f-2) 2t-m-»2

+&" -t g -2» I„+»,tZ-5 (2~+1) t — X$-'1/2, 1/2» P
IX 2 & S 1/2 ~/2 ~ m m' f'm

& ~ (m'1 p
~S- —, p m"

I, —, v~
~+ ~~~~&~-~ ~ & s m m+ 4$»0(~ I g t t tt X$-1/2 1/2+H c'

p, v~
S '].

~+ tR p & p 2 1 2 2 $$ g m 1+ e$ ~, „„„X$-'1/.. 1/. »"(-~ll&ll&) ~~ 82.~0$ ~ „,e$

which by means of now familiar manipulations may be rewritten as

m"

Bt (»ttfP t ii 2m» )+~tt f 3 2» I +»1(f T + 22f5 (25+1) X$-1/2 1/2~ 1 ti 1 1 e$~ 8- — p, ~ — v—

, }22 i1 S--, „i
X2-'1/2, 1/2

' ~'» (3)ISIIS)@",
' &$'(

(4.5)

a result which implies the form

C =ED+I H-2 d xm

for the conserved generator of conformal transformations. Upon eliminating T"" in favor of T}'", (4.5)
becomes

—(» t'/}"-f )--'m)»+(t-f')"- '»'m"+» tT2-" +to"+ e "~»$$"—( j(II} 1-- =0
}tto

which by reference to (3.3), (3.5), and (3.V) is seen to require the conditions (3.11) and (4.3). Thus for a
local interaction, conformal invariance cleaxly gives no restrictions on the theory beyond those already
required by Galilean and dilatation invariance. It may be remarked that upon using the commutation (or
anticommutation) relations of the independent components

[$$(x, f), g X(x', f)], =5".5(x-x'),
one can verify that the commutation relations of the generators in the general-spin case are identical to
those found for scalar fields provided that both are written in a common Cartesian or spherical basis.

Inasmuch as it has been seen that conformal invariance in the Galilean case gives no information not
already implied by scale invariance, one expects the redefined operators g and g„ to allow one to cast
(4.6) 111to R soIIlewhR't si111plex' fol'111~ II1 fRct 0118 CRll 'tx'lvlRlly ver1fy tllRt 'tile equat1on

(tt„t" ttt —-'n}+—tt'tt' t-"--', t" +mtt t t+ t—tt- — t"'tet (S }}S}}s}ttt,)t z
--0

represents the desired reformulation of the condition for conformal invariance. This, however, still
leaves open the larger question raised in Ref. 1 concerning whether the sucessful imposition of a 2;ero-
trace condition necessarily implies finite matrix elements for the redefined operator densities which have
been introduced here. This point is considered in the following paper.
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