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A functional derivation is presented of relativistic three-particle equations in configuration
space. The equations are formulated in terms of two-particle attributes and the inhomoge-
neous terms are factorized in terms of the two-particle T matrix. The equations are further-
more exhibited in a practicable form in which the kernel is connected and the inhomogeneous

terms contain multiple-scattering contributions.

I. INTRODUCTION

The investigation of dynamical models® in sepa-
rable approximations and the formulation of Fad-
deev? have greatly extended the understanding of
the three-particle problem. These and subsequent
investigations have revealed a number of features
to which a three-particle theory should aspire and
a number of equations have been suggested parti-
cularly for treating the nonrelativistic three-par-
ticle problem.»3 Equations which define the three-
particle scattering amplitude in terms of the two-
particle 7 matrix and kernel are of particular in-
terest for they allow the introduction of pole ap-
proximations and justify the use of separable mod-
els. The relativistic three-particle theory®** has
been approached by relativistic equations in anal-
ogy to potential scattering or by graphical tech-
niques. The most useful applications are in the
scattering of particles from two-particle bound
states.! A derivation of relativistic versions of
the eikonal approximation for three-particle scat-
tering processes has also been given.®

In this paper a functional-derivative formulation
is given of relativistic three-particle equations
which are defined in terms of two-particle attri-
butes and which allow the description of a number
of processes involving composite particles. The
equations originate from a study of the radiative
decays® of composite particles. The paper is or-
ganized as follows: In Sec. II the functional-deri-
vative technique’ is introduced and employed to
derive two-particle equations and identities which
are required in the development of the three-par-
ticle theory of Sec. III, It is found that the tech-
nique lends itself to the derivation of three-parti-
cle equations of appropriate form in which the
clustering of the three-particle amplitude in terms
of two-particle attributes is exhibited. The impli-
cations of this clustering decomposition® for prac-
tical applications are apparent for it allows the in-
troduction of pole approximations in the two-parti-
cle amplitudes. The appearance of disconnected
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contributions to the kernel of the integral equation
prevents the existence of the Hilbert-Schmidt
norm, In Sec. IV this difficulty is circumvented by
formulating relativistic three-particle equations
with connected kernels. In the concluding section
of the paper, V, the relation to previous work is
given,

II. TWO-PARTICLE EQUATIONS

The formulation proceeds from a spinor equation
of motion which may serve as a starting point in
many -body theory, a quark model,® or the unified
theory of elementary particles.!® This equation
may be expressed in the following compact nota-
tion:

Dyde + Vi, iniluthy =0 (2.1)
and

. ]
Dik=-l(7“)ik6(xi —Xk)—"‘—axu . (2.2)
k

To the extent that the three-particle equations are
expressible in terms of two-particle attributes,
they may be regarded as being independent of the
starting equations.

Consider the generating functional

U =exp(iq,, ¥y (2.3)
and the Green’s function .

Gy = iWK0| T,3,U|0) , (2.4)
where

w ={0|7U|0) (2.5)

tfrom which the more-than-two-particle amplitudes
may be derived by functional-derivative techniques
with respect to the “classical source,” ¢,,. In
view of the fermion nature of the fields the classi-
cal source is antisymmetrical under change of in-
dices and the variation is given by

0Gmn
8q;

=0;,0np = 0,2 Opy (2.6)
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In order to keep the formulation as simple as pos-
sible, only the terms generated by the first term
of Eq. (2.6) are retained. When the need arises,
the equations may be appropriately symmetrized.
The Green’s function satisfies the equation

(D +q+M);,Gps =6y, (2.7)
where the mass operator, M, is given by k
M, Ges = Vi 20 Gin sm (2.8)

and the four-particle Green’s function is defined
by

Gkn.sm=W_l<0|Tlpk¢n$samUlo> . (2-9)

Forming the functional derivatives of Eq. (2.7)
with respect to the source ¢ and using the fact that
the mass operator depends on ¢ only via G, it fol-
lows that

(2.10)

where the four-point function, F, is given by

F, b +Gip Gy + 1Gyp K ,lrFrq ,SPGZn =0,

aGfS
94, )
The effective two-particle interaction, K, is de-
fined by

(2.11)

rq,5p

OMp;

M 2.12
3G, (2.12)

"Kks,zr=

The two-particle T matrix is in turn defined by

qu mp = G”,G + ZG Jn,ngfmGgp (2’13)
and satisfies the mtegral equation
Tda Jbe ™ Kda Wbe T les errJ ia chfs . (2-14)

Relationships which are needed in the sequel are
now derived. '
(a) Employing the result

oM, _ .
9 . =ZKks,lrF‘;'q,SP (2-15)
Apq

and taking the last two equations into account, it
follows that
BM“
aqPq

(b) Utilizing Eqs. (2.8), (2.9), (2.11), (2.13),
and (2.16) it follows that

=_qun7;zn,lmG (2'16)

oM,
kaqm )
(2.17)
The last equation may be iterated to exhibit the
structure of the mass operator.

M;;= Vi jqGap = WVip ,ri Grp = Vip 7o Gy

III. THREE-PARTICLE EQUATIONS

Three-particle equations may be derived by func-
tional-derivative techniques starting from Eq.

(2.11), However, in order to avoid disconnected
contributions it is advantageous to proceed from
the following truncated four-point function:

Nrq .SP=E'q.sP+Grqus (3~1)
= 1Gy; GanTin, 5¢ s Ges 3.2)

oMy
- ”(aq )c,s (3.3)

We next define a six-point function by
Srqa,sﬁb =

9 .
EI; (nrq ,sP) . (3'4)

Employing the two-particle equations of Sec. II, it
follows that

9 3Mjf>
=L; . ok,
aqba <8q1>q jhd ,feg*ga,db" ca hp
. 9G, 9Gun
+ 1an,fc[:scaa,m - (aq: >G r—Ge (3% )]
a a
(3.5)
where
L My (3.6)

jhd ,feg = 3G aGch

denotes a three-particle effective interaction which
derives from the two-body effective interaction.

It therefore follows that the six-point function
satisfies the equation

Srqa SPb + zGTJ KJh,fc cha hpd Gfs rqa,sﬂb b (3 °7)

where the inhomogeneous term is given by.

Trqa,sop = A+B +C).rqa,spb (3.8)

and

9 Grj

Ama,spb l<8q > G T]n.fs’ Gfs Gglz ’ (3 -9)

8Gy.
qua SPb T ZGrJ anTJn g Gg? ( > ) ) (3 -10)

qua
crqa,spb == rj[Ljhp,fc)\F)\a pb‘F;q hp

c.b qa hb)]Gfs
(3.11)

The inhomogeneous terms may be further exhibi-
ted. Utilizing equations (2 11) and (2.13), it fol-
lows that

B,y Y Al 1G5 Gy T JE Gy Ggp Gon

=Ky fc( a5 G

'-Gn‘GanTjn e ng Gfl Gathh ,ex Gcs be (3 . 12)
and the crossed term
Arqa JSPb = _iG'rb Ga i an T‘n Je Gfs Ggp
-G,; G, ,,T”,,,y ;Gy G,,,,T},,’ngfs Ggp o (3.13)
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FIG. 1. Graphical representation of some representa-
tive terms of the inhomogeneous term Eq. (3.8) exhibit-
ing the clustering decomposition.

Representative terms of the inhomogeneous term
Eq. (3.8) are depicted in Fig. 1.

The structure of the three-particle effective in-
teraction may be illustrated by iterating Eq. (2.17)
and applying Eq. (3.6) with the effect

Ljhp,fcx == VJ; pync Gox K‘h JA
_ij.'lh GﬂxVJ‘p.fu G, Vn;y.)\chy
- V;'X,rm G Voo Ju Guz Gy, 7,

yo Vepye T 00 0 .

(3.14)
Defining

Srqa,spb =er Gaszqz,ypb Gys ’ (3-15)

it follows that
Gaz er quz,ypb Gys + Z'chr Grj Kid Je ch quz »YPb Gyd Gfs
(3.186)

= {rqa,spb>
which is the configuration-space representative of
the desired relativistic three-particle equation de-
fined in terms of the two-particle kernel. Equa-
tions (3.12) to (3.14) exhibit the inhomogeneous
term factorized in terms of two-particle attributes.

IV. RELATIVISTIC THREE-PARTICLE
EQUATIONS WITH CONNECTED KERNELS

The relativistic three-particle equations of Sec.
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III are not suitable for many practicle applications
in view of the disconnected nature of the kernel.

In order to circumvent this deficiency it is first of
all necessary to symmetrize the kernel in order to
take into account the role of the spectator particle
that accompanies the two-particle kernel.

It follows from Eq. (3.16) that the appropriately
symmetrized equation which exhibits the first par-
ticle, the second particle, and finally the third
particle as a spectator, respectively, is given by

GazGrx Xsqz 900 Gys = Trqa, 50
= 1G2Gex Gyy Gry K o g Gees Xxaz yp0
= 1Gy K e g Gra Gez Gex Gys Xz, o0
= Gy K me £ Gea Gz Grx Gya Xz yob +
(4.1)

In view of the dependence of the kernel of the equa-
tion on the two-particle kernel itself, a partial in-
version of the equation may be effected by taking
into account the two-particle relativistic equation

Tme.gc =Kme.§c - iTma,ngijje ,chfa (4'2)
according to Eq. (2.14).

The convolution T, ;s1;qq,sp5 26 determined by
Eq. (4.1) is next to be considered. The contribu-
tion which derives from the last term of Eq. (4.1),

in particular, reads

K e ,24GezGrz Gyt Xugz yoo = Trn, 8t Lran it = & T, gt Ghe Gox Gya Gri K ja 10 Grt Xsge o0

- Tmh 8t Grj Kje Je Gﬂ: Gez ch Gyt quz,ypb .

Application of the above procedure furthermore yields the equations

Gaz ch Gyd Kmd ,&C anz.ypb = Trnt. gnImm K72 iTmt ,&n Gru' Kje Je Gfa Gez ch G::t X:mz 8724

- Tmt ,&n GH Kje Jd Gfa Gez Gmr Gyd quz,be

and

Kme ,&C Gez ch Gys quz,ypb = Lonn N gnlnqh Shb T i Tmh ,&n Ghz ch Gyd an Kjd Je Gfs quz,yﬂb

-1 Tmh ,&n GSj Kle Jfd Gfa Geg an Gyd quz,m .

iTma,{s stKje,idGfaGezerGdexqz,ypb (4-3)
which, by virtue of Eq. (4.2), equals
(Kme Ld = Tme ,gd)cez erGyd quz, b * (44)
It therefore follows that
(4.5)
(4.6)
(4.7

A graphical representation of the last equation is given in Fig. 2. Equations (4.5) to (4.7) may be regarded
as the relativistic analog of the Faddeev equations. The importance of the equations derives from the fact
that they incorporate the two-particle dynamics of Eq. (2.14) which in turn implies a connected three-par-
ticle kernel, This result may be achieved by substitution of Eqs. (4.5)—(4.7) into Eq. (4.1) with the result

that

Gazerqux,yhb Gys = Irqa,spb - iG,mG,s Tmt . gnInqa,tpb - iGrmGea Tmlt.gn’nqh Spb T 2'G.v:mGga Tmh ,:tIrqh J1Pb
- [GrmGgs Tmt ,&n Gfa Ge: (an Kje Jfc ch Gyt + th Kje Jd an Gyd) ]'qux ¥bb
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- [ rmGga Tmh, en Gyd Gfs(Ghz ch an Kjd Je +Kfe,jd Gtheanx)] quz,ypb
=[G nGea Toun, 5t Gex GGG K ;4 feGrt +Gri K jo .G G,, G,)] Xrqz,vo0 « (4.8)

Equation (4.8) is depicted in Fig. 3. This equa-
tion represents a linear relativistic three-particle
equation defined in terms of a “known” kernel and
inhomogeneous terms which are factorized in
terms of two-particle attributes. In contrast to
Eq. (4.1), for example, it possesses a connected
kernel accompanied by the fact that the Hilbert-
Schmidt character of the kernel is not aggravated
. by the more-than-two-particle nature of the the-
ory. This circumstance is also reflected by the
structure of the inhomogeneous terms of the new
equation. These terms represent multiparticle
scattering contributions. Once the contributions
of the cuts associated with these multiple-scatter-
ing processes have been separated from the ker-
nel, they do not interfere with the convergence of
the Fredholm or quasiparticle methods. The rela-
tivistic three-particle scattering problem is re-
duced to the solution of three-particle equations
which may be solved by standard methods provided
the two-particle Bethe-Salpeter kernel is suffi-
ciently well behaved.

V. CONCLUSIONS

A functional-derivative formulation of a relativ-
istic three-particle theory has been developed.
Relativistic three-particle equations have been de-
rived and the main difficulties that arise in more-
particle theory were avoided by rendering the
three-particle kernel connected. The equations
provide a basis for the description of many differ-
ent physical processes such as three-particle
bound states and scattering, scattering of compos-
ite particles, rearrangement collisions as well as
the decay of unstable composite particles.

It is of interest, in conclusion, to discuss the
relationship of this work to related investigations
in three-particle theory.! It is appropriate to em-
ploy a symbolic notation for this purpose. Equa-
tion (4.1) in a symbolic notation reads

S=I-iG(K; +K,; +K,)GS, (5.1)

where the K; denotes the two-particle kernel ac-
companied by particle i as a spectator. In Sec, IV
a method has been developed for rendering the

wXE - o - K- D8I

FIG. 2. Graphical representation of the
three-particle Eq. (4.7) with final-state interaction.

kernel connected. In order to make contact with
related investigations, it is first of all to be no-
ticed that, according to Eqgs. (3.12) and (3.13), the
inhomogeneous term may be separated into con-
nected and disconnected parts.

Consider a separation of the form

I=1Ip+1Ig, (5.2)
where
3
Ip=Y 1%, (5.3)
i1

In Eq. (5.3), the I' denotes the two-particle 7 ma-
trix connecting the particles (j, #) accompanied by
the ith particle as a spectator. '

It follows from Egs. (5.1) and (5.2) that the
three-particle amplitude may be decomposed in
the form

S=Sp+Sg, (5.4)
where S, and S satisfy the equations

Sp=1Ip = iG(K;+K,;+K,)GSp (5.5)
and

Sg=Ig—iG(K;+K,;+K,)GSg. (5.6)

Relativistic Faddeev equations may be derived
from the equation for the disconnected part Eq.
(5.5) and Eq. (5.3).

Define the disconnected three-particle ampli-
tudes as follows:

Sp= f} st. (5.7)
i=1
Substitution of Eq. (5.7) into Eq. (5.5) yields the
equation for the disconnected part:
St=TI' - iGK,G(S* +57 +5%) . (5.8)

Partial inversion of the equation by means of the
two -particle equation

T;=K,; - iT,.GK,G (5.9)

EQREONEu QNP O RE O =

FIG. 3. Graphical representation of the
relativistic three-particle Eq. (4.8).
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yields a coupled set of relativistic Faddeev equa-
tions®

St=(I' - iGT,I'G)~ i GTG(1=6,,)8%.
.2 ]

(5.10)

Finally, consider the Eq. (5.6). The kernel of
the equation may be cast into a connected form by
the method of Sec. IV. The inhomogeneous term
contains, among other terms, pole terms connect-
ing the two-particle 7 matrix, These terms gen-
erate relativistic equations for the connected part

of the three-particle amplitude in a “ladder” ap-
proximation. This equation may be further sim-
plified by considering the two-particle T' matrix
in the proximity of its bound-state poles. The re-
sulting equation describes the scattering of a par-
ticle from a bound-state analogous to the Amado
model! introduced in connection with nucleon-deu-
teron scattering. The multiple-scattering terms
that occur in the connected equations generate dy-
namical singularities, the role of which have been
investigated in the triton bound-state problem.*
These singularities also play a role in the treat-
‘ment of unstable composite particles.®
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