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A generalization of Wightman field theory is formulated which makes the theory also
applicable to the gravitational field. Strongly geodesically complete manifolds are found to
be the most suitable for description of curved space-time in our approach. After the form-
ulation of generalized axioms, the schemes of proofs of the fundamental theorems of the
theory (Bargmann-Hall-Wightman theorem, 8 theorem, main reconstruction theorem, etc.)
are given. The paper ends with hints on the possible ways of constructing the theory of
asymptotic states for the quantized gravitational field.

I. INTRODUCTION

Historically the quantization of the gravitational
field has been pushed in two main directions: that
in which the gravitational'field is described in a
canonical formalism, and that in which the formal-
ism is covariant. The first one began with Berg-
mann, ' who looked for a canonical formulation of
the gravitational field in order to quantize it (it was
then the only known way to quantize a field), but
was stopped by the problem of constraints (namely,
that some of the field variables have no conjugate
momenta, and those of the other variables are not
independent). Dirac, Pirani, and Schild later
worked on this problem, and Dirac' gave a partial
solution to it. The main disadvantage of this kind

, of formalism is that it fixes the time, and as a
consequence reduces the number of field variables
from the 10 g&, (p. , v = 0, 1, 2, 3) to the six variables
g, ~ (i, j= 1, 2, 3). On the other hand, we have the
advantage of getting the canonical commutation re-
lations for the field.

The second direction is generally called the man-
ifestly covariant formalism; as contrary to the
canonical formalism, it preserves at every step
the formal covariance of general relativity under
the changes of local coordinates. The aim of this
formalism is to calculate by perturbation methods
the scattering matrix of the gravitational field, the
gravitational self-energy, etc. In order to derive
these quantities, we need the commutation rela-
tions of the gravitational field. DeWitt and De-
Witt, ' Feynman, and Lichnerowicz' were able to
get commutation relations for the first variation of
the gravitational field (which is a perturbation g„„-g„„+6g„„ofthe geometrical background field g„„)
and of the total field in some particular cases. The
main difficulty in deriving these commutation rela-
tions results from the nonlinearity of Einstein's
equations. The calculations of the physical quanti-
ties mentioned above were presented by DeVfitt, e'7

Mandelstam, ' and Popov and Faddeev. '
Today, we are far from having a complete (even

from the formal point of view) calculation of these
quantities associated with the total gravitational
field (and not with the variation 5g„„).

The aim of this work is to give an axiomatic
Wightman-like formulation to the quantized gravi-
tational field and its consequences. The Wightman
theory of a quantized field (on Minkowski space)
cannot be formulated on a curved space-time in a
straightforward manner. We are interested in such
a formulation for the following two reasons:

(a) to give a rigorous mathematical formulation
to the problem of quantizat'ion of the gravitational
field (a thing which has not been done before);

(b) to examine the stability of the Wightman the-
ory under curvature. It is believed by us that if the
Wightman theory is a good theory, then the flat
space-time cannot be singular, in the sense that
the formulation and results of the theory are ex-
tensible also to a curved space-time manifold with
"close" structure.

If we want to stay in the spirit of general rela-
tivity, it is necessary that the gravitational field
will dictate the geometry of space-time. To intro-
duce this feature we assume that the gravitational
field is a distribution-metric, namely, an operator
valued covariant symmetric tensor distribution to
which is canonically associated a light-cone field.
As we shall see later, this notion of local light
cone is necessary in order to define the locality of
the field as well as the spectral condition for the
4-momentum operator.

To define the notion of remote past Or future we
have introduced the notion of geodesically complete
metrics. These are metrics the geodesics of which
are homeomorphic, via their parametrization, to
the real line. This kind of metrics permits us to
relate the tangent space with the manifold itself in
a satisfactory manner and in particular to connect
the locality on the manifold with that in the tangent
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spRce.
The eovariance group of the theory is a semi-

direct product of the Poincare group (operating on
the tangent space) by a group of C" functions on the
tangent space at the same point (which correspond
to the changes of unit of measure). This choice of
covRrlRnce gl'oup cRQ Rt first 81ght look strRnge
the general relativity being covariant under the
group of all the diffeomorphisms. %'e chose this
group as the minimal group which is necessary in
order to formulate the Wightman theory in a co-
eariant manner (the word covariant here means co-
variant relative to the cone field), and therefore
its structure is associated with the gravitational
field itself. In this connection note also that the
gravitational field has conformal degree'o 2 rel
tive to any flat metric on V (this results from the
fact that it is a tensor).

Now the classical gravitational field is covariant
under discrete symmetries (for instance the geo-
desic symmetry); we shall see in the TCP theorem
that the quantized generalized gravitational field
also possesses a discrete symmetry 8 (usually
called TCJ').

II. DEFINITIONS AND GENERAL PROPERTIES

Let V be a C" four-dimensional connected para-
compaet manifold, and denote by V„ the tangent
space at x on V. A cone field ~ on V is a mapping
which associates to every xE- V a cone C, CV„(we
define here a cone in a vector space as the set of
isotropic vectors, for a hyperbolic normal qua-
dratic form) such that there exists a C" metric g
with signature (+ ——-) such that for every xg V,
C is the light cone of gat x. Such a metric gis
said to be compatible with 8,

Given R cone field 8 on Vy R C Path ls sRld to be
timelike (isotropic) relative to 8 if the tangent vec-
tor at every point x of this path is inside C„(on
C„). A C" path is said to be physically spacelike
if given any couple of points n, P on it there is no
timelike or isotropic C" path joining n and p.

Two C" vector fields T and 7" over V, the vec-
tors at every point x of which are timelike, are
called equivalent if at every point xC V, T(x) and
T'(x) belong to the same connected component of
V„-C, . An equivalence class is called a time ori-
entation of 6. V being connected, there are two
time orientations of C. Given an orientation of 6
we call future C„' in V„ the closure of the connected
component of V, —C„which contains a vector T(x),
where T is an element of the orientation.

Two points x and y are said to be timelike (iso-
tropically, physically spacelike) separated if there
exists a timelike (isotropic, physically spacelike)
C" path joining x and y. Two points x and y are

d'x' „dx' dx''""-)
di df

='
d'x', dx~ dx', , ( ) dx' '
dt j~ dt dt ~g ~ goo

(2.1)

said to be spacelike separated if there exists no
timelike or isotropic C" path joining x and y.

A C" metric gon V, with signature (+---), is
called geodesically complete if for every x&V, its
exponential mapping exp„ is a C" diffeomorphism
between V„and an open set 0,Q V. g is said to be
strongly geodesi cally complete if in addition any
two timelike or physically spacelike separated
points are joined by a geodesic.

A cone field 8 is called geodesieally complete
(strongly geodesically complete) if there exists a
metric g on V, compatible with 8 and geodesically
complete (strongly geodesically complete) Su. ch a
metric g is called geodesically compatible (strong-
ly geodesically compatible) with 8.

VFe shRll Qow exRD11ne a coIldltlon uQde1 which R

geodesieally complete metric is strongly geodesi-
cally complete.

Definition l. A C" metric g on V with signature
(+- —-) is called stationary if there exists a con-
nected global one-parameter isometry group, with
timelike trajectories (called time lines), without
invariant point on V, such that:

(a) The time lines are homeomorphic to the real
line R.

(b) There exists a three-dimensional manifold V'

with the same topological properties as V, such
that there exists a C" diffeomorphisrn between V
and V'x R in which the image of the time lines are
the real lines fx'j x R, where x'E V'.

In that case (Lichnerowicz, "p. 110) there exists
around every point a local coordinate system x"
(which is said to be adapted to g) satisfying the fol-
lowing conditions:

(i) x' (i = 1, 2, 2) is an arbitrary coordinate sys-
tem on V'.

(ii) The manifolds x'= const are submanifolds in
V, diffeomorphie to V'.

(iii) g does not depend on x'.
Definition 2. A stationary metric g is called

static if there exists a local coordinate system x"
adapted to g (in a neighborhood of every point),
such that

ds'=g„(dx')'+g„. dx'dx' (i, j= I, 2, 8) .

Them. em: J.et V be simply connected. A geodesi-
cally complete static metric g on Vis st ongly
geodesi cally complete.

Proof. The equations of geodesics in a coordi-
nate system adapted to g in which g„=0 (i = 1, 2, 2)
(note that xo can be chosen globally on V) are
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~ la ~g (sl&al + sa&ll sH~() &

fl

which becomes

define Z'=ZAV'. lf 5=-I choose K= I, i.e., X(c)
goo+1. Let ybe a geodesic in V; thus, gbeing

geodesically complete, t runs over all the real line
and so does

dx
dt

=cgoo where c is a positive constant

x f dx dx ~ 2 i y oo
2 j k'

+I&& +2C g 8&g =0 ~

dif

(2.2)

(a) Timelike s-eparated points: Suppose that x and

y are timelike separated; denote by v a C" time-
like segment between x and y, and let c( = 1,dx'.
Suppose yEPexp, (V„). H zCexp, (V,) and zC~, de-
note by v(z) the subsegment of l. between x and z,
and by y(x) the geodesic segment between x and z.
v (z) —y(z) is a boundary sS because V is simply
connected; thus the Stokes formula gives

dx' — dx' = d'x'= 0.

Therefore, o. ~ f &,
&dx' (if we suppose without loss

of generality that n ~ 0), and

d '
dt= cgoodt~ ) c 'dt,

y(g) dt y(g) y(a)

because on the geodesic we have

()() dx
c g =j. —g]g d'

d
~~1 ~

Hilt if 80 ls 'tile lillllt polllt of exp„(V~)Q 7, 'tllell,

when z-zo, we have fzt,~c 'dt-~ and thus n=+
which is absurd.

'

Therefore there exists a geode-
sic joining x and y.

(b) Remark: Call g' the elliptic metric (g„.) de-
fined on V', and define h), =kg', where A. is a
strictly positive C" function on V'. The equations
of geodesics on V' relative to this metric A, & are
(if the canonical parameter t' of the geodesics is
given by X =dt'/dt)

d'x', dx' dx', dx' dx'
dt2 r~a dt dt

2A gyo dt dt g BlA-0

(2.3)

Qn the other hand the diffeomorphism between V
and V' x R defines canonically a projection m from
V onto V' along the time lines. Comparing (2.2)
and (2.8) we see that a necessary and sufficient
condition for the projection on V' of the isotropic
or spacelike geodesics of V to be geodesics of A~

is A. =K(c'goo- 5), where K is a constant and 5 =0
or -1, respectively, for the isotropic or spacelike
geodesics of V.

(c) Now let x, y6 V be physically spacelike sepa-
rated. Denote by Z the time line passing through
y. Without loss of generality we can suppose that
xg fx'=0] = V'and that yEV'=—(xoo 0]. We shall

[c'g "(y(t)) + l]dt .
R

Therefore, h), (,) is complete in the usual sense.
Thus, as there exists a path joining x and w(y),
there exists a geodesic y,

' in V' relative to h~(, )
joining x and w(y) [and such that its length is equal
to the distance d,(x, w(y)) between x and v(y)]. Thus
the intersection of Z' with the set%, (c) formed by
the geodesics such that (dy/dt)(0) =X, X' = cg"(x},
and y(0) = x [when the parameter t is chosen so that
g(X, X)= -I] is not empty De.note by y(c) one point
of this intersection; Z' is contained in the interior
of exp, t,~(C, t,&). As A, (c) is spacelike, y(c) is the
only intersection of A„(c) with exp, t,&(C„t,&), and a
fortiori with Z'.

We show now that Z' also intersects exp„(C,) at
one and only one point y„. The projection of the
lsotroplc geodesics on V Rre the geodeslcs of the
metric g"=g"g', consider

~(&)=J z"'b(0'I«;

where y is Rn isotropic geodesic. As

dy' dy''g = g" dt

if (n(y)(&+~, then
~

~

dy' dy'
g)y d d

dt + ~

But g' is geodesically complete on V', thus using
normal coordinates on V' we see that w(y) would

have a limit point in V' when t-+~; therefore, y
would hRve a limit point lnslde V when t~ +ooy Rnd

this is absurd because a geodesic cannot have a
limit point (it can always be extended from any
point). Therefore g" is complete and there is a
geodesic (for g") joining x and v(y), and thus there
exists an isotropic geodesic joining x and Z'. In
other words exp„(C, ) intersects Z' and, for the
same reason as above, this intersection is reduced
to one point y„.

But exp„'[A, (c)] varies continuously between the
spacelike hyperplane H, = exp, '((x'=0]) for c =0
and C„(when c-+~). Thus y(c) varies continu-
ously from ll(y) when c=0 to y„when c-+~. This
implies that every point between ~(y) and y„on Z'
is joined to x by a geodesic. But y is necessarily
between m(y) and y„because otherwise y'& y'„and
if y„ is the isotropic geodesic joining x and y„,
then the path t- ((y'/y'„)yo (t), y„'(t)) would be a
timelike path joining x and y, which is absurd.
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We conjecture that every geodesically complete
(hyperbolic) metric is strongly geodesically com-
plete. We hope in the future to be able to give an
answer to this problem.

Theorem: Let g and g' be tzvo met ics, st ongly
geodesi cally compatible zoith a strongly geodesi-
cally complete cone field 8. Then g'= Ag where A

is a C" strictly positive function on V, and the

mapping

(g, g'), =- exp„'o exp,'

(where x C V and exp„and exp„' axe, ~espectively,
the exjonential maPPings at x of g and g') is a C"
diffeomorPhism of V„. Its differential d((g, g'),),
at the ori gin 0 of V„ is the Product of a dilatation
in V„by an orthochronous Lorentz transformation
on V„(relative to the light cone C„).

The first statement is clear because g and g'
have the same light cone at every point. Since g
and g' are strongly geodesically complete,
exp, (V,) =exp,'(V, ) because they consist of points
which are either timelike, or physically spacelike,
or isotropically separated with x.

If XGC„and t- y(t) is the geodesic for g such
that y(0) =x and (dy/dt)(0) =X, we see that if we de-
fine t'= J A(y(t))dt, and a„by t'(a„) = 1, then the

mapping

t'- r(t') =-r(a. 't(t'))

is a geodesic for g' such that

r(0) =x,

(d y/dt')(0) = [a„X(x)] 'X,

and

r(1)= r(1)

Thus

(g, g')~=[a,X(x)] 'X.

In particular, (g, g'), preserves the generatrices
of C„and their orientation. d((g, g'), ), will be an
element of GL(V„) which preserves the genera-
trices of C, and their orientation. It is therefore
the product of a dilatation by an element of the
orthochronous Lorentz group associated to C„.

If 8 is a strongly geodesically complete cone
field and xCV, denote by P„ the Poincare group
(connected component of the inhomogeneous Lo-
rentz group) on V, associated to the cone C, .

Definition. We shall call chronological group at
x of 8 the group G„generated by finite products of
elements of P„and of diffeomorphisms of the hind

(g,g') when g and g' are two metrics strongly geo-
desi cally compatible zoith 6.

We put on t"„ the topology associated with the
uniform convergence on every compact set of V„

of the diffeomorphisms and their partial deriva-
tives. Denote by 6'5l(V) the set of the C" twisted
4-forms-2-contravariant symmetric tensor field
over V (Ref. 13) with compact support, with the
-space topology. If I' is a topological vector
space over C (complex field), let 6,5)'(V, E) be the
set of the linear continuous applications over
O'S(V) with values in E. Denote by Q (V) the set
of C" twisted 4-forms over V with compact sup-
port. If BEN, X)'(V, E), we shall say that a C" vec-
tor field X over V is isotropic for g if for every

y CI)(V) we have 8(XXy) =0. Denote bye(8)
the set of C" vector fields isotropic for g. If xEV,
we define C, =(X(x)~XGs(g)).

Definition. We shall say that g&S, G'(V, F) is an
F-valued distribution metric if the maP 8: x- C„
is a cone field. 8 will be called the cone field as
sociated arith g.

We shall say that Q is geodesically complete
(strongly geodesically complete) if 8 is geodesi-
cally complete (strongly geodesically complete).

Theorem: A necessary and sufficient condition
for 866,&'(V, E) to be a distribution metric is that

g = Xg where g is a C" metric on V [with signature
(+- —-)], and XC B'(V, F) with suPPort equal to V.

This theorem is easily checked in local coordi-
nate systems, and then proved in general by gluing
together the different distributions obtained in
these different local coordinates.

III. THE GRAVITATIONAL FIELD

We give here a definition for the gravitational
field with a system of Wightman axioms, '~ which
put the accent on the covariance properties of the
field and the spectral properties of the energy-
momentum operator of the field.

We suppose that the manifold V has the same
properties as in Sec. II.

Axiom (0): We suppose we are given a Hilbert
space X over C, called the space of states.

Axiom (I): Call Op(K) the set of linear operators
in X, endowed with the weak topology. The gravi-
tational field is a strongly- geodesically complete
distribution metric

8«.&'(V, Op(&)),

the associated cone field 8 of which is time orient-
ed. We suppose that g(y) is defined, for every
cp&S'S(V), on a dense domain DC X, 8(cp)DC D,
and if 4,%ED then(C, 8(y)j)=(8(y)C, %), where
y is the complex conjugate of y.

Let x &V and g be a metric strongly geodesically
compatible with 8. When yg Q(0, ), where 0,
= exp„(V, ), define y*gu(V„) by y'= (exp„)*p
=go exp„. If A, B are C" vector fields on V, de-
fine (A, B)'6&'(V„Op(X)) by (A, B)*(cp')= (A, B)(y),
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where (A, B)(y) = 29((AS B+BSA)8y).
Axiom (2): For every x6 V there exists a sub-

Hilbert space X„ofX and a unitary representation
U," of G„on X„such that, if h EG„, A and 8 are C"
vector fields on V, and yg X)(V,), then we have

and

&, (*) f0=&@,*(0)

(integrations over V, ), then we see that

U*,(h)(» B)*,(q)U,'(h ') = (A, B),*(q,), (3.1) P, (x) = & '(x)U;((g', g).)P,(x)U*,((g, g').) (3 5)

where

y„=(h ')*q=q oh ',

g, (A, B)= const

for a given metric g, strongly geodesically com-
patible with 8. In addition, we suppose, for the
algebraic stability of the operations, that if we de-
note D„=X„AD, then

g (()))D,&:D„and Ug(h)D„C D„.
We must check that this axiom is independent of

the choice of g. Indeed, let g' be another metric,
strongly geodesically compatible with C. Define

U," (h) = U,"((g', g).)U",(h) U,*((g g').) . (3.2)

T*,(t,) = J)exp(i(p, a), &„)]dE*,(p), (3.3)

where (p, a) &„&
is the scalar product relative to

g(x) and the integral is taken over V„. The energy-
momentum operator is defined by (integration over
V„)

(3 4)

On the other hand, if g' is defined as above, and

T"i(t, )= J)exp[i(p, a), &,&]dZ~ (p)

The e(luation (A, B);,(y) = (A, B)*,((g', g),*&()) implies
then U;.(h)(A, B); (y) U~ (h ') = (A, B)*,.(y„) .

ftemarhs: (1) This axiom shows that G„ is the
minimal group necessary in order to have an in-
trinsic theory on V, and we could have taken in-
stead of G„ the group of all the diffeomorphisms of
V, .

(2) If g,'= ng, is a metric strongly geodesically
compatible with 6, the field z 'g is a gravitational
field if in Axiom (2) we take g, instead of g, .

(3) It is sufficient in (3.1) to take g= g,; the gen-
eral case follows immediately.

For x P V, denote by T", the restriction of V" to
the translation group on V„. The spectral decom-
position of T", on X„, if t, is the translation of vec-
tor a, is

if g'=kg.
Axiom (3): For every x 6 V, p= 0 i's an eigenvalue

of P (x) with multiplicity unity and if we denote by

0 a corresponding eigenvalue, then 0 GD„and is
independent of x. The total spectrum of P,(x) is
e&lual to C,'. The relation (3.5) shows that this ax-
iom is independent of the choice of g.

If M, N are two subsets of V, we shall say that
they are spacelike separated if every couple of
points (x, y) CM && N are spacelike separated rela-
tive to 6.

Axiom (4): If rp, y'&6'u(V) have their support
spacelike separated, then [8(q)), g (y')] = 0.

Axiom (5): The set of elements of the form

g(&&),) g(((()„)Q for n6 N (natural numbers) and

())„.. . , ())„6s'5)(V) is dense in K.
geynark: We utilize translations in the tangent

space to define the energy-momentum operators,
since in the case of flat space-time it coincides
with the usual definition and since in any case our
construction relates very closely translations in
the manifold with translations in the tangent space.

IV. THE WIGHTMAN DISTRIBUTIONS

For y„.. . , y„gl'Q(V), we define

W„(1,8 ~ ~ ~ 8 &()„)= (0, g(&)),) ~ g(&))„)O}.

W„can be extended by nuclearity to a continuous

linear form (Wightman distribution) on the space
s'$(V)„of the C" ntuple-twisted 4-forms twice con-
travariant symmetric tensor field (for every vari-
able x„.. . , x„) (see Ref. 13) with compact support
and with the S-space topology.

One easily checks that these distributions have
the following properties:

(1) A necessary and sufficient condition for a C"
vector field A, to be isotropic relative to 6 is that

W„((ASASq)(x, )Sq,(x,)" Sq„(x„))=0

for every yF 5)(V) and cp„. . . ,q„CS'&(V).
(2) If gee'a)(V)„, W„(y*)=W„(y), where

q*(x„.. . , x„)=y(x„, . . . ,x,).
(3) If &() C $(V)„(space of the C" ntuple-twisted 4-

forms with compact support) and A„.. . ,A„,
B„.. . , B„are C" vector fields on V [from now on

we suppose that g, (A, , B,) = const], and if we define

(A„B,)„(y)=Wg((A SB,)(x,) ~ ~ ~ 8 (A„SB„)(x„))8())(x„.. . , x„)),



then (A, , B,)„CS'(V)„. If g is a metric strongly
geodesically compatible with |:,me define for
xEV

(AI, BI)*.,(q) = (AI, BI).(y'),

y C $(V,)„,
q"(x„.. . , x„) =y(exp, '(x,), . . . , exp„'(x„)}

Then (A„B,)"„,g S'(V„)„and we have, if
k GC„and

|p»(x„.. . , x„)=y(h '(x, ), . . . , h '(x„)},
the following:

(Ai BI):.,(m) = (AI. BI)".,(ea).

This allows us to define

(A„B,]"„,,(g„.. . , g„)E S'(V„)„,
with the change of variables f» =x„-x», in

(A„B,)" (x„.. . , x ).
(4) If PCS(V„)„, we define its Fourier trans-

form by the following integral (over V„"):

g(PI& ' y Pn)

eXp f Py y gy (g) gyy a ~ n y gff

and if TIES'(Vg„by T(y)=~7( y), we have
~yCZ(V,") and ~T C Z'{V„"), in the notation of Gel-
fand and shilov. " Then the support of
~fA, , B,]"„ I n(q„. . . , q„) is contained in the set
((e. ",e.) le «.').

(5) lf pip ~ p cp+ Ee $(V) Rnd t'p» Rnd p»»I have
spacelike separated supports, then

W„(y,8 ~ ~ ~ 8y 8y»„8 ~ ~ ~ 8y„)
=W.(V 8".8W"18@~8" 8m.).

(6) lf q„C6'$(V)„, n= 0, . . . , X,

P W..„(q+8q„)»0.
Ntqff~ 0

(7) If the support of cp(P„. . . , P„) [cpFS(V,)„]
x'elative to the vax'laMe pj + ' ' '+p„1ntex'sects C„
at most at the point p + ~ ~ ~ +p = 0, then

(A,', B»')»„,(y *8y) =
i (A „B,)*„,(cp) /

', where

(A,')=(A„.. . ,A„, A„.. . ,A„)
and

(B»)= (Bu . ~ Bn~ Bu . t B)n.

AecossA'Qcfsos Tkeof'8PPl: SQPPose Ke af'8 gEves
a system of distributions W„'CS'(V)„, nCN, satis-
fying (I') the C" vector fields, such that

W„((A.A8y)(xi) p, (x,)8 ~ ~ ~ 8y„(x„)}=0

for every AC $(V), y», . . . , cp„C6'$(V) and n C N

are the isotropic vecto~ fields of a strongly geo-
desicalty comP/ete cone field 8 on which we choose
a time orientati on, and 'the properties (2) to (7)
abo'08, Ne'Pl I&8'Pe exists a QMQQ8 QQalt$88d gF'avE-

tational field g, the Wightman distribution of which
are N8S8 S'„.

We take as Hilbert space X the Hausdorff com-
pleted of the algebraic sum $„(6'$(V)„}relative to
the scalar product defined for q = (&p„) and tP = {IP„)by

(W4)= Q W...(V.*84 ),

mhich is mell defined as this sum consists of only
a finite number of nonzero terms. Denote by m the
CRI10111CR1 mapping Sn(e $(V)„} K RIld by' D Its
range. The gravitational field is defined, for
q Ce'$(V) and gee $(V)„, by 8(q)x(y)=~(q y).
We thus obtain an operator-valued distribution.

The representation U" of G„ is defined, fox'

cp 6$(V,)„by

U "(h)II([(A,8 B,)(x,)8 .8 (A „8B„)(x„)] [(exp„')*y](x„.. . , x„)}
= II{[(A 8B,)(x,)8. 8 (A 8B„)(x„)]8[(exp, ')*q,](x„.. . , „)}.

This defines by extension a unitary operator on $C„=D„, where g)„ is the set of the elements of the form
P„II((exp„')*y„},where (y„)C@„(e $(V)„}. The continuity in h results from the choice we made for the
topology of 6„ in Sec. Q. The other properties are straightforward.

We remark that, V being paracompact, 3.'is a separable Hilbert space because 8„(e'$(V)„}is countable.
The passage from the %'ightman distributions to the %'ightman functions can nom be realized as in the

Qat-space case.

V. THE TCP THEOREM FOR THE GRAVITATIONAL FIEI.D

A. The Saqpnann-Hall-Vhghtman (SHE() Theorem

Let e»GV; (complexification of V, ), s»=x»+iy», q»=y»-y», if h» 2 and q, =y„and let A„, ,A„,
B„.. . , B„be C" vector fields on V; me define
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exp i P~, z~ („) A], 8] "„P~,. . . , P„dP~ dP„

(integration over V„), which is an holomorphic
function for g~ p C„'.

(A, , B,)*„,(x„.. . , x„) (defined in Sec..IV) is the
limit in Q'(V)„of

(A, , B~)n g(x» . .
~ xnan '9» ~ '9n)

when g„.. . , q„go to zero. If we define

fA„B,]:,,(~.. .~.) = (A„B,)*. ,(.„...),
where g, = z, —z, „ these functions are analytic for

~,Ce =-k Iim(~) «„'&.
The distributions (A, , B,)"„,,($„.. . , $„) (defined
in Sec. IV) are limits of the (A, , B,]"„,,(g„.. . , g„)
when im(g, ) go to zero.

We shall call L,(C) the connected component of
identity of the complex Lorentz group. Then the
BHW theorem takes the following form:

Theorem: IfA„. . . ,A„, B„.. . , B„are C" vec-
tor fields on V, the functions
fA, , B,]*„, (g„.. . , g„), which are invariant under
the connected comPonent of identity of the real Lo-
rentz group and analytic in 4" ', have an analytic
extension which is invariant under L,(C) to the do-
main

yl 0

Agent

1

h.FI.+(C)

The functions {A,, B,}"„,,(g„.. . , j„)have the
same properties as the usual Wightman functions
for the scalar field. Thus the demonstration of
the BHW theorem in our case is the same as that
given (e.g. ) in lost. '~

B.The TCP Theorem

To bring us back to a situation similar to the
flat case, we begin with the following.

Lemma: Given tzoo points x and y in VM)hich are
physically spacelike separated, there exist takeo

neighborhoods M„and M, of these points which are
spacelike separated.

Define x'= exp, '(x); there exists an open neigh-
borhood 0' of x' in U, which is spacelike separated
(in the Minkowskian sense relative to C,} with the
origin of V, . Then exp, (O') and y are spacelike
separated. Choose x, and x, into two different con-
nected components of the intersection of the image
under exp, of the interior of C, with exp, (O'). De-
note by A, and B, (i = 1, 2) the images under the ex-
ponential mapping at x, of the interior and the ex-
terior (respectively) of the light cone at x, ;

exp, (O')AA, AA, = M„

and

exp, (V„)A B,AB, = M,

are two open sets of V containing x and y (respec
tively) and which are spacelike separated.

Corollary: For any xC V, choose aCV„, space-
li ke seParated (in the Minkowskian sense) in V„
with the origin 0 of V, . There exist two open sets
0~ and 0, zvhich contain, respectively, 0 and a,
are spacelike separated in the Minkozvskian sense
in U„and are such that exp, (O, ) and exp, (O, ) are
spacelike separated in V.

Let S ] and S, be two Minkowskian spacelike-sep-
arated open sets in V, which contain, respectively,
0 and a; put y=exp„(a) and choose M„. and M„ two
open sets containing x and y and which are space-
like separated in V. The open sets

O, =S,+exp„'(M„) and O, =S,+exp, '(M, )

answer the question.
When xCV, y602S(V„), and gis a metric

strongly geodesically compatible with 8, we shall
define

g,*«,&'(V„Op(X))

g*,(9) = g((exp. ')*q)

Let a CU„be spacelike separated with the origin
0 of V„and let 0, and 0, be two open sets satisfy-
ing the conditions of the above corollary. If y, p'
Ce'&(V, ) with supp(y) CO, and supp(y') CO„we
have

[g",(V), g*,(V')] =0.

This last property together with the BHW theorem
implies (cf. Dost, '~ theorem, p. 85} the locality of
the field g', (y) in the tangent space V„.

Before formulating the TCP theorem, and for
the sake of completeness, we give the following
definition:

Suppose A.„.. . , A.„, B„.. . , B„are C" vector
fields on V, and y». . . , y„P K)(V). Then we define

[A, , B(]„(y~S ~ ~ ~ S y )

= g(AiS BiS yi) . g(A„S B„S(p„)Q .

Thyrse [A„B,]„can be extended by nuclearity to
distributions over G(V)„. We then define, if
yG S(V,)„,

[A„B,]".,(y) = [A„(B,].(9 *),



where .cp" = (exp„')*y .
TCI' Theorem: To every xgVis associated ms

antilinear operator g on X„obtained by antilinear
extensions of

0"0 =Ay

e*,[A„a,]"„,(q) = [A„a,]"„,(q ),
cohere

@65)(V„)„,

(xy& & x») &&t ( xy& ~
& x»)

This operator has the following action on the
field g: Let x C V and 0,= exp, (V„)(recall that 0,
is independent of the choice of g strongly geodesi-
cally compatible with 6), and denote by 8," the geo-
desic symmetry (relative to the metric g) at the
point x; then if A. , 8 are C" vector fields on U and

cpg $(O„), we have

& g(2@88@)8",= g(ASB8 (yoS;)).

RemM'k. Though for the sake of simplicity we
utilize strong locality here, the generalization in
our case to weak locality is straightforward.

VI. POSSIBLE DEVELOPMENT OF A THEORY OF
ASYMPTOTIC STATES

(1) The equations satisfied by the asymptotic
fields are Einstein equations fj'„(8)= 0, where ~ is
the Hicci tensor of 9. However, this expression
does not make sense as a distribution equation.
We shall therefore give to these equations the fol-
lowing sense:

We say that g is a weak solution of the equation
B(9)=0 if there exists a sequence 'B„of C" opera-
tor-valued metrics with signature (+ ——-), which
converge in S,&'{V,Op(3C)) to 8 (for the strong
topology in Q'), and such that ~(g„) tends to zero
in e'n'(V, op(X)).

However, the asymptotic properties of the solu-
tion of Einstein'8 equations al e Qot known. It is
therefore i.mpossible at present to give a general
theory of asymptotic states. Nevertheless, the
following remarks seem of relevance to a possible
future.

(2) Let h be a metric on V and let f be a C"
Op(X)-valued function on V such that [f(x)]
exists at 'every point of V; the Christoffel symbols
of the metric fh, in a coordinate system, are
given by

~F88 +~s~y —&t I "&p

where (1/f) is the functio~ x-[f(x)j ' and

~ ~

(l ) =-,'X"[s,(I „)+s„(S„)—8, {h„)j,
. y

and where the Ricci tensor ft „s(fh) of fk is given by

&& &(f&)=&& &(&)-~ &&(& &&&f)-—»&5=, (& f)(&&f)+~ &&f(a (&t+& (&„t»—&,
&I&I&(&)).

A &If&' = —&&(&»&yf),» —» » f»&f(& (&) —&& &&&" (&) + (& f)&& f).aP wy
(6.1)

Suppose that we are given a strongly geodesically
complete metric g satisfying fl(g) = 0 and a weak
solution A. of A(A. , g) =0(e.g. , a sequence A.„ofC"
Op(K)-valued functions on V such that [A.„(x)j
exists for every x~ V, which convex ges to A. in
S'(V, Op(Ã)), and with supp' = V}. Then b = Xg is
a distribution metric which is a weak solution of
f~(S) =0.

We note that the equation g(X, g) =0 contains only
one nonlinear term in A., which is far less compli-
cated than the nonlinear terms of the general equa-
tion ft(g) =0. So it seems possible, in that partic-

ular case, to make a treatment of asymptotic
states {at least formally).

(3) Another possible direction is to suppose that
the asymptotic field is asymptotically flat. We can,
for instance, suppose, if gis a metric strongly
geodesically compatible with p, and (e„) a, Carte-
sian basis in V for a chosen xp V, that

(6.2)
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where (8"),8 is defined by

(8') (y) = ,'(Q-")[(e,ee + e,e„) qoj

+ Z Il&p„'(F,) .(q)+II

One then finds the following commutation rela-
tions:

(6.3)

[(&*,) s(y), (g),5(y')]

i+[&-s„~b x') gsb-)g,~b')G'(x s')]+ &'

(6.4)
where Q' and g are, respectively, the scalar and

the symmetric tensorial propagators' of the opera-
tors „=g„q(y)8„88, and T is a distribution with
the same properties as 7.' arising from higher-
order terms. Here we have asymptotically (when
f-+~) a linear equation which after contraction of
the nonoperatorial spin-2 degrees of freedom gives
rise to scalar "gravitons. " In spite of the difficulty
of getting an asymptotic-state theory for zero-
mass particles, the asymptotic linearity gives an
important simplification and therefore there is a
good hope in this direction.

VII. CONCLUSIONS

We saw that it was possible to give a Wightman
formulation to the gravitational field in which the
geometry of space-time is directly created by the
quantized field (by geometry we mean here the
cone fieM). This implies some particularities in
comparison with the usual theory of a flat space-
time; for instance, the fact that the group G„can-
not (in general) operate everywhere on K, namely,
that to every x&V is associated a Hilbert space
K„CK. In general, K,sK if exp, (V,) e V, a thing
associated with the fact that X„ is connected with a
space of forms the support of which is contained in
O„=exp„(V). This set containing only the points
which are connected to x by geodesics compatible
with the cone field, the space X„thus can be inter-
preted as the space of states that a Pro~i can be
physically influenced by the -event g.

for y E S(V„), and T is a distribution which satisfies
the fooowing condhtion: For every & &0 there
exists a compact g, Cp„which contains the origin
such that if yea(V, ) with supp(cp) CC„A (V, —K,),
where g„ is the set of timelike and isotropic vec-
tors at g, we have for all 4 ED

Z II sp(g), ~(v) + II

pyh

Note also that the decomposition g = Xg implies
that 8 contains only one quantized operational de-
gree of freedom, which is in the X part. The g
part itself, consisting of C" functions, contains the
spin degrees of freedom. In other words, though
in our quantization procedure the classical field
has spin 2, the quantized field has spin 0.

In this connection one has to remark that for a
given generalized metric, g-null directions at each
point of Vare fixed. However, g itself can be
uniquely determined only if the Cauchy data of
Einstein's equations are known, and this is not
supposed here.

Concerning the results, we get (except for the
asymptotic-states theory) the usual results of the
Wightman theory on Minkowski space. The theory
of asymptotic states contains some difficulties,
the first resulting from the nonlinearity of Ein-
stein's equations (this problem is not a new one
and one can try to solve it by perturbation-theory
methods), and the second being the fact that the
gauge group in non-Abelian. In that direction Pop-
ov and Faddeeve gave an interesting formal tech-
nique of renormalization.

Our Wightman theory of gravitation contains the
usual difficulties: Does there exist a nontrivial
quantized field having essentially self-adjoint op-
erators'? Can we (for instance in the asymptoti-
cally flat case) have the Haag-Ruelle kind of re-
sults also for zero-mass particles'P etc.

To sum up we see that the problems which arose
in our Wightman theory of the gravitational field
are problems which existed already for a field on
the Minkowski space-time which satisfies nonlinear
equations of motion (as the Yang-Mills field, for
example).

Therefore, any progress in the Wightman theory
or in the knowledge of properties of solutions of
the classical Einstein equations will contribute to
a complete solution to the problem of axiomatic
quantization of the gravitational field.
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