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' One easily verifies that the restriction on the range of
the y integration implied by Eq. (8) can be neglected
provided e «1.

' This justifies our statement in Sec. II that the two-
body S-matrix factor strongly damps chains from which
pions are produced with large relative rapidities.

Notice that the contribution from the "grey ring" can
be made arbitrarily small by taking g to be large.

l3Notice that the bootstrap solution given by Eqs. (41)
and (42) holds for all values of Rp.
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On the basis of unsubtracted dispersion relations we point out that theoretical estimates
fail to account for the corrections to the Goldberger-Treiman relation A= 1 —Mgz/gf
=0.08 ~ 0.02 by one to two orders of magnitude. As a new result we prove an exact thresh-
old theorem for the absorptive part of K(t), the pion-nucleon form factor. by doing the
full three-body angular integrations and using current-algebra low-energy theorems for the
37] processes. In the chiral-SU(2)@ SU(2)-symmetry world in which the pion mass vanishes
the result is ImK(t) = (gt /3t(8z)~f, ~][- g„a( tsar ) r—t7s] as t - 0, the threshold point. This
leads to an estimate of 4 which fails by two orders of magnitude. We also show the pion
spectral function in the chiral-symmetric world behaves like p, (t) = 8t/3(87])4f 4 as t —0.
As a way out of this negative result we consider (i) subtractions in the dispersion relation,
(ii) new values for g and g&, and (iii) a heavy pion as possibilities.

I. CORRECTIONS TO THE GOLDBERGER-
TREIMAN RELATION

This paper will be devoted to an examination of
the corrections to the Goldberger-Treiman rela-
tion, ' which a.re about 8%"

6=1 — ~ =+0.08+0.02.

The approximate validity of the relation Mg„=f,g
today is understood as a consequence of a slightly
broken chiral SU(2) 81SU(2) symmetry with the
pion in the role of the Nambu-Goldstone boson. '

The main point of this article is to point out that
on the basis of unsubtracted dispersion relations
we have no theoretical understanding of these cor-
rections. Theoretical estimates are too small to
account for the observed value by one to two or-
ders of magnitude. ' If the experimental numbers
are indeed correct then this discrepancy poses a
theoretical problem to which we presently have no
answer.

As a major result in this study we have estab-
lished an exact threshold theorem for the absorp-
tive part of K(t ), the pion-nucleon form factor, in
the SU(2) SSU(2)-symmetry limit for which the pion
mass vanishes. This result was obtained from the
3-pion intermediate state utilizing the exact chiral-
symmetry low-energy theorems for the 3-pion

processes and performing the exact three-body
angular integrations over the appropriate matrix
elements. The result is the threshold theorem

fmZ(t) ~,~, , [~g„'(vs —~v') —-,'], (l.l)

valid in the exact SU(2) (3SU(2)-symmetry limit in
which the 3m threshold is at t= 0. Using this exact
result we estimate the 3-pion contribution from
threshold states to be too small by two orders of
magnitude. Further, this result shows that the
corrections are analytic to leading order in chiral-
symmetry breaking.

We begin our discussion by defining the matrix
element of the divergence of the axial-vector cur-
rent between nucleon states:

(N(P')
~
t&"A'„(0)

~
N(P)) = u(P')D(t}(—', T')t,u(P),

t=(p' p)'. (l 2)-
Here D(t) satisfies D(0) = 2Mg„, where M is the
nucleon mass and g„ the axial-vector coupling con-
stant related to the rate of Gamow-Teller transi-
tions in neutron P decay. Defining the pion field
according to partial conservation of axial-vector
current (PCAC)

& "A'„(x) = )t'f, v'(x),

where p, is the pion mass and f the pion decay
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constant. ' we may define the pion nucleon form
factor

sume that 6,(0) is dominated by the pion pole.
This requires

K(t )u(p')y, r'u(p) = t(N(p') i(U+ p')v'(0)
i N( p))

so that

2
" df1- p.

' —p, (t),
(3it)

(1 12)

2 p'f +. (t )
I+ &2

(1.4)
where equality holds only if the continuum equals
the pion-pole contribution to A„(0). From (1.12)
and (1.10) we obtain

and K(p') =g, the pion-nucleon coupling constant.
As a fundamental assumption we presume that

8"A'„(x) is a gentle operator and that D(t) -0 as
t —~. This implies an unsubtracted dispersion
relation,

-dt ImD(t )
t' —t

(1.5)

and extracting the m pole term and setting t=0, we
find

1 " dtMg„—f,g=— —ImD(t) .
2m (3„)2 t

(1.6)

We will find it more convenient to discuss K(t ) de-
fined by (1.4) so that the corrections to the Gold-
berger- Treiman relation,

may be expressed by

dt ImK(t )

g7T ( 3p)2 t(t —|L( ') (1.8)

—p. (t) .2'(,
" dt

(2~)2 t (1.10)

Here p, (t ) ) 0 is the pion spectral function where
the interpolating field for the pion is defined by
PCAC [Eq. (1.3)]. The pion propagator is

1 " dt'p„(t')
t —P,

' (,„)2 t —t'

If approximate SU(2) SSU(2) is valid we may as-

The only assumption going into this expression
for ~ is the absence of subtractions for D(t). It
should be remarked here that electromagnetic
corrections have been estimated. " They are
finite' and are typically of order n/'4v, too small
by at least an order of magnitude. Ne may con-
tinue to ignore them.

One might suppose, in view of our total igno-
rance of the high-frequency part of the dispersion
integral (1.8), that one could say nothing about this
part of ~. However, one can establish a rigorous
bound on the high-frequency part

dt Im K(t )

gn (»)2 t(t —P, ')

This bound is'

= 0.014.v2

g M
(1.13)

Had we assumed that the right-hand side of (1.12)
was (0.1, a more reasonable estimate in view of
the success of current algebra, then

~ h„i (0.004.
In either case the high-frequency part can safely
be ignored so that

dt Im K(t )=
g~ (,„)2 t(t —

I ') (1.14)

The contributions of intermediate pm and err

states have been estimated and found to be small. '
The err state will contribute to 6 with the wrong
sign, as can be argued as follows. The an inter-
mediate-state contribution to ~ essentially is the
influence of the cr term in m-N scattering on ~.'
This a term as estimated by Cheng and Dashen'
is +110 MeV, although it may be smaller by a fac-
tor of 2 or 3." The o term is the nucleonic mass
shift 5M when one turns on SU(2) SSU(2)-violating
forces. From our definition of 6 (1.7) such a
shift in the nucleonic mass contributes to b „
= —5M/M, which is negative or in the wrong di-
rection if the sign of the Dashen-Cheng calcula-
tion is correct.

Finally we turn to the 3m intermediate state. In
Sec. II we will prove the theorem on the absorp-
tive pa.rt ImK(t ) in the chiral limit which is given
by (1.1). From this result and from the dispersion
integral (1.8) we see that if we develop & in an ex-
pansion in g' then

C,g'+ C,p,
'

lnp, '+
p 2~ 0

(1.15)

where C, , are finite in the chiral SU(2) CgISU(2)

limit. Hence 6 is analytic to leading order in
chiral-symmetry breaking" and we have from a
cutoff dispersion integral

C, =— —,Imi|(t).gw, t'

If we estimate ~ using this result we obtain from
a cutoff dispersion relation (1.16)

2 2

4[pe„(r —mv ) —-]= -0.001I 2 5 17 2 7

3v(8v) f„ 5 8

A-M (1.17)
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which fails to account for the observed corrections,
in sign and by two orders of magnitude. The main
reason for this small magnitude is that the three-
body phase space is very small.

7r {q&)

7r4{P)

~'fq, )

II. THRESHOLD THEOREM

In this section we will describe the calculation
of our threshold theorem (1.1). Our starting point
is the unitarity condition for ImK(t ), which is

P = , (M'/t )u—(—p)T fy,u(p'), (2.2)

where r' are the usual isospin matrices [r„r,],
=25„(a, 5= 1, 2, 3) and the nucleon wave functions

imK(f) = —,
' g P'(2w)'S'(P' —P —P„)

spins, d, n

x & &p'&
I n(o) I n& & n

I
J (0) I 0& u( p) .

(2.1)

Here we have introduced a projection operator

FIG. 1. Unitarity condition.

are normalized so that p, ,„u(p)u(p) = (IS+M}/2M.
Also, q(x}=g(x)(-iP -M) and J'(x) =(0+g')w'(x),
with the pion field defined by p'f, w'(x) = 8"A'„(x).
We here will compute the behavior of ImK(t) in
the chiral limit, p. '=0, as t-0, which is the
threshold in the chiral limit. The leading behav-
ior of ImK(t ) is obtained by retaining just the 3w

intermediate state which contributes proportional
to t'. The contribution from the 5n and 7n states
begins to contribute only in orders t' and t' so the
leading behavior involves only the 3m state. From
the 3m state one has (see Fig. 1)

t
a, b, c, d,

spins

x & iq( p')16(o) I w'(q, )w (q, )w'(q, )& & o
I
z'(o)

I
w'(q, )w '(q, )w'(q, )&*u(p) . (2.3)

In the chiral limit the matrix elements in this unitarity condition for w'- w'+ w'+ w' and (by crossing)
for m'+ z'+ m'- N+ N can be established at threshold by the standard techniques for proving low-energy
theorems. It is useful to cross one of the nucleon legs and define p=-p and P= p+p' so P'=f. Using
Weinberg's method" for low-energy pion scattering, one finds

(olz (o)lw'(q, )w'(q, )w'(q, )) = ——,(f„s„[y.' —(P —q, )']+ a„s„[u'—(P —q, )']+3, v„[q' —(P —q,)']).
(2.4)

To establish the low-energy theorem for the process 37T-NN we have found it expedient to separate
this process into proper and improper parts. The improper part is defined as that part of the amplitude
that one can cut across a single pion line in the t channel, i.e., those processes for which 3m- m-NN.
The proper part is everything else. For the proper part one establishes by standard current algebra a
low-energy theorem as q. ..-0, which is the threshold point. With the understanding that the improper
piece has been separated out, the result for the proper piece is

f, '( a
I w '(q, )w '(q, )w'(q, )p& = -q",q,"q, ( n

I T (A'„(q, )A„'(q, )A') (q, ) ) I p)

+ 2[qlq,'e"'& ~ I T(y'„'(q, + q, )A'~(q. ))l P& + q.'q,'e'"& ~
I T(I".(q, + q, )A'dq, ))l P&

+ q,'q,"e' ( a
I T(V,'(q, + q, )A;(q, ) }Ip) + q, q", e '( o

I T(V~(q, + q, )A'„(q, ) )( p)

+ q,'q;~"'& ~
I T(vi(q, + q, )A!(q,})IP& + q",q; e-'& ~

I T(I'„'(q, + q.&A.'(q, ))l P& ]

+-,'((P - 3q,)"s„s„+(P- sq, )"s.,~„+(P - sq, )"s„s.,](~IA'„(P) I p) . (2 5)

Here A„denotes that the axial-vector current has the w pole removed, and A'„(q) = Id'xe "*A'„(x).
There are three distinct terms in (2.5) which will contribute to ImK(t ); we will denote them by ImKass,

ImK~„-, and ImK~. These three terms taken together with the contribution of the improper part, ImK„,
give us the total contribution of the 3w- Hfdf matrix element. ' (See Fig. 2. )
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FIG. 2. Low-energy contributions to T(3w 8Ã). (a) Improper graph. (b), (c), (d) Proper graphs corresponding to
current products and commutator s.

A. Improper Graph

Using the tt-3tt amplitude (2.4) with p'=0, the contribution of the improper graph is

1 g~d $2dK, =,
( ), g, 5(P —q, —q, —q)

a, b, c, d,
SPInS

2M . , 1x — v( p—) T iy,u( p'), gu( p')i y, T v( p)3 t ' -t+g'

x—,[5, 5„(P—q, )'+ 5 5„(P—q, )'+ 5, 5„(P—q, )')'.

The angular integrations present no difficulties since all angles are in the numerator, and one finds

(2.6)

The sign is negative, as is required for all improper graphs. A by-product of this discussion is an exact
theorem on the behavior of the pion spectral function defined in (1.11), which is

8t
P~( ) 3(6 )4f 4

in the chiral limit. This result is obtained from (2.6) by dividing out the pion pole term.

(2.7)

B. ImE& Term

The contribution of this term [Fig. 1(b)] is given by

1
ImK„-(t )=, , - g ' ' '5'(P —q, —q, —q, ) —v(p)r'iy, —(p') , u(p')g„,'—r'iy,y„v(p)-

a, b, c, d,
spins

x 3[(P 3q3)~5 ~5 s+ (P 3q2)~5. 5~v+ (P 3qi)~5~5~f]

1x—, [(P —q, )'5„5 +(P —q, )'5 5„+(P —q, )'5„5„]. {2.8)

The angular integrations present no great difficulty, and one obtains

(2 9)

where we have used Mg„= gf„.
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C. ImEAAA Trm

This part confronts us with doing the angular integrations over the nucleon pole terms and is the most
difficult to calculate. The unitarity condition reads

1 d g~d q24 g 411k(1) 4 2t(2 )5 g 2 0 2 0 2 0 6(P ql q2 q3)
~ 7l

a, b, c, d,
sp&ns

&& —,[6, 6„(P—q, )'+ 6„6.,(P —q, )'+ 6„6„(P—q, )']

xp, iy, —r,2v(p)+per mtautions of abc

Carrying out the traces, this expression reduces to

with T(t ) = -2 ReF, (t), T, = 2M'ReF, (t ),

&& 6((P —q, ) —2q2 ~ (P —q, ))(-P +8P q2)[P2(q, q )(P ~ q, ) —4p ~ q (p* ~ q )2],

)2 P 2

F2(') =
Jl ' 8(q:)6«)[-P"8(P - q, )'] '-. " d'. 8(.:)6(.. )8(P. ,; „)6(—(P —q —q )')—

K order to carry out the remaining integration we note that the expressions under )'d'q, are Lorentz-in-
variant. We carry out this integration in the Lorentz frame I" in which P' = q,', for which the 5 function is
simple. By explicitly carrying out the Lorentz transformation after integration removing the 5 function,
we evaluate the result in the barycentric frame in which P=O and perform the Id'q, integration. After
some manipulation one finds

sjn8 d8 2'
F,(t) = ~P' dx(1 —x), ', ', dp, ~

sin8, d8, d@,[1+2x—2(1 —x) cos8,]
$0 0 po p cos 1 0 Jo 0

x[-,'P'(I —cos8, ) —4(p, +i
~ p ~

cos8,)'(P;,'(I + x) —P, s(1 —x) cos8, + i
~ p ~

—,'(1 —x) cos8,

—i-,' ~p ~ [v x sin8, sin8, cosp, +-,'(I+x) cos8, cos8,]}],
1 sin 8&d6 &

2' 2 1r

F (t ) =2BP dx(1 —x)(-1 + 8x)x . ,
', '

~
sin8, d8,

~ d@, dQ,
dp

X
j. + COS(92

P,[1+x—(1-x) cos]82i+~p~([1 —x-(1+x)cos8,] cos8, —2v x sin8, sin8, cosg} '

where P, =2p, = vP' and ~p~ = (M' —,t)'". In the limit —t=P'-0these integrals can be done exactly, with
the result

ReF, (t) ~ ~~3v't',
t~O

2M'ReF, (t) ~ v't'(1 —~~~ v').

The result is
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2 2
(5 i7

9(6 )., ~ '~ —~& '
t~o ~ fff

(2.10)

The unitarity condition for this term reads

D. ImK~~ Term

16(2 )' + J~ 2, 2, 2, '( —'-'-q '
a, b, c, d,

sp&n~

e' '( 'r')—iy,g, , ', , (—'&')f4, + &' '(2r )f42
p

2 M2 (2 r')f1'gl2 ~ 1 (Pf q
2 M2 2 2 '

q, —P -M

+M
+ e"'(2 v' }fy/. . . ,2™,(zv')iy, + e'(2T }x$, —,2 2 (27 )iysg, v(P)'

(q —P) —M

x—,[6„6„(P—q, )'+ 6~6„(P—q, )'+ 6„6„(P—q, )'] .f.'
After taking traces and performing the Lorentz transformation as we did in Sec. IIC it turns out that the

angular factor in the denominator cancels one in the numerator. The resulting angular integrations are
simple and the result is

5g t 2

ImEC„„(t) ~ -( (2.11)

E. ImK(t)

If we now add the results of Secs. IIA-IID we

obtain the final result, a threshold theorem valid
in the chiral SU(2) SSU(2) limit:

2

(2.12)

The corrections to this result are expected to be
of order g't and p,

' (which we have dropped in this
treatment). They would give rise to terms in 6 of
order p. 'Lnp' and p, ', respectively, and are ex-
pected to be very small. The term we have calcu-
lated of order t' gives rise to a term in 6 of order
p' which from the cutoff dispersion relation gives
a contribution which is very small.

III. CONCLUSIONS

So where are the corrections to the Goldberger-
Treiman relation'P Here we will discuss the three
possibilities which in our opinion are the most
likely candidates for countering our negative re-
sult.

A. Subtraction

If 9"4'„(x) is not gentle then D(t ) requires a sub-
traction and we cannot calculate 4 by this method.
If this is the case then one loses much of the ratio-
nale for the approximate validity of the Goldberger-
Treiman relation. Qf course this relation is ex-
act in a chiral world, but in the real world for
which the symmetry is broken one has no reason

to believe that the corrections are small. The pos-
sible systematics of a subtraction have been ex-
amined by one of us. " It should be remarked that
the axial-vector form factor seems to be falling
like the nucleon form factor for spacelike momen-
tum transfer. If the induced pseudoscalar form
factor is likewise falling, then D(t ) is probably
unsubtracted. If D(t) needs a subtraction, how-
ever, then our game is over.

B. Experimental Values of g and g&

In obtaining our value for

a =1- " = 0.081+0.019

we have used the most accurate determinations of

g~ and g published to date, g„=1.226+0.011, as
given by the analysis of P-decay data of Blin-Stoyle
and Freeman, "and g'/4n = 14.73 +0.29, as deter-
mined from the value off' given by Samaranayake
and Woolcock" [g'/4s=4(M/g, +)'f']. If we use
the slightly different value for the nP coupling con-
stant given by Mac Gregor et al. ,

"g'/4@= 14.72
+0.83, then we get 6 =0.081~0.037. Should the
value of g be too large by 4%0 or the value of g„
too smaLL by 3-4%, then 4 would be consistent
with our theoretical result. However, the analyses
of experimental data mentioned above do not seem
to leave room for such changes. The value of the
other two parameters, the nucleon mass and f„
are determined very accurately and are unlikely
to be a problem. In particular f„ turns out to be,
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using the value of G~ given by Blin-Stoyle and

Freeman, "f„=(0.932 51+0.00144)g, +/v 2.

C. A New State-the Tripion

An exciting possibility is that our consideration
of the hadron spectrum is not complete. If there

existed a heavy pion'" with mass 3p, & p, „&2M or
even a large 3m enhancement it could easily ac-
count for the observed value of 4. No such state
has been seen, "but it could be looked for in
17 +p ~ 77 +p ~ 3 7T + p& and p +p ~ 77 +p ~ 3z +p.
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