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We generalize, by including an electric dipole moment that leads to parity nonconserva-
tion, our previous investigation of the scattering of a charged vector meson by a static Yu-
kawa potential, or, in particular, a static Coulomb field. The existence of a solution that
satisfies Meixner's corner condition requires the following inequality between the anomalous
magnetic moment v and the electric dipole moment ut: K & 1+ tt} . In the special case where
the electric dipole moment is absent, this condition reduces to the one obtained previously.

I. INTRODUCTION

If parity need not be conserved, then the charged
intermediate boson may have in addition an electric
dipole moment. ' It is the purpose of the present
paper to show that the condition (1.1) can be gen-
eralized in a completely straightforward manner to

a'& 1+w, (1.2)

where w is the electric dipole moment. Further-
more, all the miracles that happen in the previous
case of w =0 to make an explicit perturbation ex-

In connection with the charged intermediate bo-
son' for weak interactions, we have recently rein-
vestigated' the Corben-Schwinger problem' of the
scattering of a charged vector meson with anoma-
lous magnetic moment by an external static Yukawa
potential, or in particular a static Coulomb field.
It is found that, in this example of a nonrenormal-
izable theory, a finite solution that satisfies Meix-
ner's corner condition' of finite integrated energy
in every bounded region can be found if and only if
the anomalous magnetic moment &f is larger than 1:

pansion possible for small coupling constants also
happen in the present more general case. In fact,
the underlying fourth-order ordinary differential
equations are altered only by the redefinition of
one constant.

Since the development follows very closely the
investigation' of the special case M& =0, we shall
emphasize the differences and be rather sketchy
otherwise.

II. FIELD EQUATIONS

With the presence of an electric dipole moment
w, the Lagrangian density for the interacting
charged vector-meson field and electromagnetic
field is

1 8A„8A„ G;* g y*y
2 8xft 8x

1 ~

lflI 4'll Alt &

'

ll fjaP lf v oP ~ (2.1)

where the notation is the same as that of Ref. 2.
As discussed further in the Appendix, this quantity
w does not appear explicitly in the energy density
S~ for the vector-meson field:

8 ~ 8 . 8 8+ieA, p&* — +ieA& (It),
* -ieA ft) — -ieA

2 8x, 8x, ' ' 8x, ' ' 8x

+ [(V + i eA) y *,+ (S/S t —i eAo) y ~] ~ [(V —i eX)go+ (S/S t +i eA, )y ]
+ p*,p, + p* ~ /+icy(VA, +BA /st) ~ (p*Q, —p*,p)+ice(V x A) (g*x Q ). (2.2)

(2.3)

We are here only interested in the case of a static external electric field described by A =0 and A, = V.
When the time dependence of P„ is e ' ', the field equations from the Lagrangian density (2.1) are explicitly

(V' —1)@,—iV ~ (F. —eV)/+ice(VV) ~ P =0,
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[(E—eV) +V —1]Q —V(V '
Q )+i(E —eV)VQ, +ice/, VV —iew Q x VV=0.

The Lorentz condition that follows from (2.3) and (2.4) is

V ~
Q —i (E —e V)P, + e(l —z)V V ~ [(E—eV) Q + i VQ] -i e zP,V' V +i e w (V V) ~ (V x P ) = 0.

(2.4)

(2 6)

From the Corben-Schwinger case' ge =0, we learn that the result K) 1 can be obtained without considering
the situation where the incident plane wave is transversely polarized. We therefore restrict ourselves to
the case of longitudinal polarization. However, when w 40, all three components of Q in spherical coordi-
nates are present, i.e., for zv c0 the simplification Q@

—-0 no longer holds. The five field equations are
therefore explicitly

1 a, ay, 1 a . a@, i a, i a . . dV—,—r' '+, . —sing ' —Q, ——,—r'(E —eV)p„— . (E —eV) —si gnp ei+ez $—„=0,r' ar ar r'sing a g a g ' r' ar " r sing a g dr
(2.6)

1 a . ap„2[(E—eV)' —1]P„+, . —sing "—,. —singler'sing a g a g r' sin g a g

a 1 a . . ago—sing Pe +i (E —eV)ar hsing a & a1

dV
+iejcp —= 0'dr

(2.7)

1 a 2 a 1 a (iver 2 a Qo dV[(E—eV)' —1]pe+ —,—r' —pe —— ' + —(E —eV) ' —iewp —=0,r' ar ar r arag r ag @dr

1 a, a 1 a . ap~ y~ . dV[(E—eV)' —1]g~+ —,—r' —Q~+, . —sing —, , +iewpe =0,
y ar ay' y sing ag ag y' sin g ' dr

and

1 a 2 1 a . . dV . a(IP)o—,—r'p„+ . —sing4 e —i(E —eV)&f&, +e(1 —~) —(E —eV)p„+ir' ar " rsing ag dy " ar

(2.8)

(2.9)

The partial-wave expansion takes the form

P, = P (2n+ 1)i"4,„(r)P.(cos 6),
n=O

1 d, dV . dV 1 a
+iegfo —

2
—r' —+i ceo — . —sing (]ti =0.' r' dr dy dr rsing a g

(2.10)

and

P, = g (2n+ 1)i " '4„„(r)P„(cosg),
n=o

Pe = Q (2n+ l)i" '4 e„(r)P„'(cos6),
n= ].

Q~= Q (2n+1)i "4&„(r)P„'(cosg).
n=g

(2.11)

It follows from (2.6)-(2.11) that the radial equations for the partial waves are as follows:

d, d d, dVr ' —r' ——n(n+1)r ' —1 4 8„—r ' —r'(E —eV) -e(1+@)—4 +n(n+1)r '(E —eV)4 =0dr dr dy On (2.12)

for n ~0;
dV d(E —eV) —+e(l+q) —4'«~[(E —eV)' —1 —n(n+l)r ']4„„+n(n+1)r ' —r@ =p (2.13)

for n~0;

(E —eV)@« —r ' —4„„+ r ' —r' —+(E —eV)' —l. 4 +ew —@ =p
-1 c 2 d dV

Ch "" dr dr
for n~1;dV, d, d

ezp —4 ~„+ r —r —+ (F. —eV) —1 —n(n+1)r 4 = 0Ch " dr dr n

(2.14)

(2.15)
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for n) 0;
dV d , d dV , d , dV

(E —eV)+eg ——+e(1+rl)r ' —r —4,„+ r ' —r' —eq —(E —eV) 4„„—n(n+1)r 'Ce„dr dr d~ dy
'" d~ dr

, dV+ewn(n+1}r ' —4@ -0

for n ) 0. We have again used the notation q = z —1. Note that (2.16) can be obtained from

(E —e-V) [(2.12}]—r ' —r '[{2.13)]+n{n+1)r '[(2.14)]dr

(2.16)

without using (2.15).
Although this set of radial equations looks much more complicated than the corresponding set for se =0,

we show in Sec. III that the behaviors for small r are very similar for these two sets of equations.

III. BEHAVIOR FOR SMALL DISTANCES

As before, ' let eV =ge ""/r, R=r/g so that

E —eV-E' —R ',

where E'=E+ pg, and approximate (2.12)-(2.16) by

(3 1)

I

R ' —R' ——n(n+1)R ' 4,„—R ' —R'(E' —R ')+(1+@)R ' 4,„+n(n+1)R '(E' —R ')4e„=0, (3.2)

-n(n+ 1)R-'4,„+n(n+ 1}R-' —R 4,„=0,

d 2 d 2 d-R ' —4 +R —R —Ce =0
dR "" dR dR (3.4)

-wR '4e„+ R ' —R' ——n(n+1)R ' 4~„=0, (3.5)

and

-qR ' ——4v(1+@)5(R) 4,„+ R ' —R'+qR '(E' —R ') C,„-n(n+1)R '4 e„—|en(n+ 1)R 'I „=0.
(3.6)

In (3.2), (3.5), and (3.6), we have used the notation

C' i. = @o.//g

(3.7)

C „„=4 ~„/g.

Let us consider the case n ~ 1. It then follows from (3.3} that the relation

d
@.n=

dR R@e.

still holds even for ws 0. From (3.2} and (3.6) with 5(R) deleted, we get

1 d 24'„, = «+1)0 ' —R R
d

—1+rl) n n+1)
d ~ dR

R'+(E'-R '} f—wg ' —R4

when f=RC ~,„. The substitution of (3.9) back to (3.6) then gives

dR' dR dR, R' —R' ——n(n+1), R'+ —R' ——rIR ' -q(1+@) +n'(n+ I)' f

(3.8)

(3.9)

d=u n(n+ 1}R R ' —R' ——n(n+ 1)R 4
dR dR wn '

(3.10)
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(3.11)

It is miraculous that by (3.5) the right-hand side of (3:.10) is simply w'n(n+1)R '4!e„. We therefore get

the following fourth-order ordinary differential equation for f:

~

~

~

d d2
R' —R' ——n(n+1), R'+ —R' ——(q —w')R ' -!I(1+!I),+n'(n+I)' f=0.

dR' dR dR dR' dR dR dR

In (3.11), not only E does not appear, but also u merely modifies q.
The method of solution given in Appendix A of Ref. 2 applies step by step here. Alternatively, we may

define

and

q' = (g~ +zv2) j'(q —u)2)

R' = (q'+w')'"R j i/I —w'i .

(3.12)

(3.13)

Thus

I +!I'= /I(I + /I) j(q —w').

and, in terms of R', (3.11) is

d /
d d 12 d 12 d I I 2

, —n(n+1), z
R"+,R",—/I'R' ' —q'(I+ I')7„+n'(n+1)' f=0.

(3.14)

(3.15)

In other words, M) can be transformed away.

IV. CONDITION ON THE MOMENTS

Since w does not appear in the expression (2.2)
for the energy density E~ or in the field equations
(2.12) and (2.13), the situation for n= 0 is com-
pletely independent of M). This merely reflects the
fact that an electric dipole moment has no effect
on a spherically symmetrical wave. Thus' g must
be either positive or less than 1. Next, we apply
the previous considerations for n & 1 step by step.
Instead of q&0 for the special case w =0, we get
more generally

g' &0.

By (3.12), (4.1) means that

g&w,

(4.1)

(4.2)

which is identical to (1.2}. This is the desired re-
sult.

To solve the differential equation (3.15) when

(4.1) and (4.2) are satisfied, define'

v = —,[I + 4n(n+ 1)(1+q') ']'/2 (4.3)

and

2!/2 [q
l
(I + ~

I
)]

I /4R I - I /2 (4.4}

By (3.12) and (3.14),

x= 2 / [q(I+!I)] / R

is actually independent of w; furthermore

v = —,
' [1+4n(n+1)q(l+q)/(q —w')]' ' .

(4.5)

(4.6)

Therefore, this redefinition of v is the only change

necessary to generalize to w 10 all the results
given in the appendixes of Ref. 2.

V. DISCUSSIONS

We plot in Fig. 1 the region in the i(, -gg plane
where the condition (1.2) is satisfied. Note first
that the admissible region is two-dimensional, not
one-dimensional. Therefore, it is not possible,
even in the present exactly solvable model, to ob-
tain our result by the procedure of studying certain
low-order terms in the perturbation series and re-
quiring some nonrenormalizable quantities to be
multiplied by a coefficient which is zero. The in-
formation about restrictions on coupling constants
for nonrenormalizable theories is not contained in
the first few terms of the perturbation series.

For the sake of comparison, we also show in
Fig. 1 the circle zv'+~'+3~+1=0, which is the con-
dition obtained by Wellner. ' This circle happens
not to intersect our admissible region.

By this example, we have shown that in general
there are conditions between the various coupling
constants in a nonrenormalizable theory. The next
question is: Does this condition K&1+m' have any
quantitative validity for charged intermediate bo-
sons, if they do occur in nature? We believe that
the answer is no. In order to get an explicit an-
swer, we have here studied a problem in potential
scattering. This implies, among other things, that
every photon emitted by the vector meson is ab-
sorbed by the static charge, and vice versa. In
other words, all radiative effects in which the vector
meson emits and reabsorbs photons are neglected.
Since these neglected terms are in no sense small-
er, this approximation is not justified for inter-
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mediate bosons in nature. It is thus highly unlikely
that our inequality (1.2) is quantitatively correct in
such cases. Rather, we have given evidences by
example that such conditions should exist ~

The admissible region in Fig. 1 does not inter-
sect the line x=0. Thus, if (1.2) is correct, a
vector meson without strong interactions cannot have
electromagnetic interactions through the charge
only, or through the charge and the electric dipole
moment only. However, there does not seem to be
any reason why this qualitative feature of the pres-
ent result should hold. Let us therefore consider
the possibility that the admissible region does in-
tersect the line v=0. For example, suppose that
the condition (1.2) is instead x& 1 —w'. Then this
condition can in particular be satisfied by &=0 and
~w

~

& 1. With this possibility in mind, we conclude
that, if the c ha~ ged i»te~ mediate boson does not
have strong interactions, then it is exPected to
have ei ther a sizable ano&nalous magn etI'c mo&nent

or a sizable electric diPole moment. If g=0, ' thjs
conct. usion is very similar to the one previously
reached' through the (-limiting formalism of Lee
and Yang. ' So far as we know, this remains the
only proposal to the question sehy CP is violated.

-3 3
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FIG. 1. Admissible values of the coupling constants
ff; and 24).

APPENDIX

We discuss here briefly the derivation of (2.2) for the energy density S». From the Lagrangian density
(2.1), we get the Hamiltonian density

X Xcm +Kg

where

Kern = z(aAO/at)'+ 2(a—X/at)' —~2(vAO) + —,'(vA)

is the electromagnetic part of the Hamiltonian density and

X, = j(V +teA)p*, +(a/at —ieA )p*+w(Vx p*+ieAx p*)] ~ (ad /at)

+(ay /at). [(V ieA)p, +(a/at+ieA, )p+w(Vxy —ieAxp)]+ieK(aA/at) ~ (p*$, —Q*,p)-g„
with

(Al)

(A2)

(AS)

2, = --,'(1+w')[(a/ax, +ieA, )p*, —(a/ax, +i. eA, )y*.,][(a/ax, —i.eA, )@,—(a/. ax, —ieA, )p;].
+[ (V +ieA)@~~+(a/at ieA, )@*+w(V-x@*+teAxp*)] ~ [(V —ieA)@,+ (a/at+ieA, )p +w(Vx p —ieAx @)]
+ p*,Q, —p* ~ @ +ted(VA, + 8 A/at) ~ (p*p, —p*,p ) iex(V x A ) (y'-x y ). ~

(A4)
Since

DAp i exV ~ (@*&,—p*,p ) —i e(p* ~ [(V —ieA )p, + (a/at + ieAO)Q +w (V x p —ieA x p )j
—[(V+ieA)p*, +(a/at —ieA, )@* (V+xw@~+ieAx@*)] ~ Q},

the Hamiltonian density + can be expressed alternatively as
(A5)
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~= g,m+~2 —V ~ [A (VAO+ A ) + [(V ~ A ) —(A ~ V}]A+iettAO(/*$0 —$~0$ )],
where g is the usual electromagnetic energy density, and

X, = 2(l+w')[(a/ax, +i eA;}p,* (a—/ax, +ieA, )p*][,(a/ax; —ted;)p, —(a/ax, —ieA, )p, ]

+[(a/at —teA, )g] [(a/at+ieA, }p]
-[(V+ieA)p*, +w(V x p*+ieAx Q*)] ~ [(v —ieA)p, +w(Vx p —ieAx p )]

Q-Q, + Q* ~ /+i e K(V x A ) ~ (p x p ).

Finally, the A'» of (2.2) differs from this &, of (A7) by a divergence

$»=K, +2V Re{/*,[(V —ieA)P, +(a/at+ieA, )P+w(V xP —teAxy }]].

(A8)

(A7)

(A8)
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A class of models of multiparticle scattering and production amplitudes is constructed for
which the S matrix is exactly unitary at high energies. Two specific models are studied in
detail. One leads to a constant total cross section, the other to a logarithmically increasing
one. Particle production in inclusive and exclusive experiments is considered for both mod-
els.

I. INTRODUCTION

One of the central problems in strong-interac-
tion dynamics is to construct a realistic model
of multiparticle scattering and production ampli-
tudes. Certainly such a model must satisfy the
constraints of multiparticle unitarity. Ideally one
would like to construct models which automatical-
ly satisfy unitarity independent of any other physi-
cal input due to their structure. ' As a first step
in this direction we present a class of models for

which the S-matrix elements satisfy all the multi-
particle unitarity relations at high energies. To
our knowledge this is the first example of a solv-
able multiparticle model with a unitary $ matrix.
Although in some respects the present model is
quite crude we believe that the ideas discussed
here can be used to construct more sophisticated
and hopefully more realistic models.

In Sec. II we combined ideas from the multipe-
ripheral and eikonal models to write down a gen-
eral S-matrix element in our model. Each matrix


