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The density of hadron levels p(m) has been derived from the statistical bootstrap model to
have the asymptotic form p(m) - cm'e with a ~ —2. We study the properties of ultradense
hadronic matter characterized by level densities of this type. If a & —2 (as is preferred by
the bootstrap model), we show that hadronic matter may be thermodynamically unstable at
high densities. This instability is characterized by macroscopic fluctuations of the energy
density and the existence of a negative specific heat. Implications of the instability are dis-
cussed with reference to high-energy collisions and astrophysics.

I. INTRODUCTION

8P = T lnZ(V, T),— (1.2}

(E) = T' lnZ(V, T) . —
~T (1.3)

This procedure is the one that other authors"'
have used in studying the properties of bulk mat-
ter characterized by the exponentially rising level
density {1.1). We will review the details of this
approach in Sec. II.

An important feature of the canonical ensemble
for a system with a level density of the type (1.1)
is the existence of a singularity in the partition
function at a temperature T, = b '. For tempera-
tures T & T„ the partition function does not exist,
and hence T, is said' to be the ultimate tempera-
ture of the system.

Since the singularity of Z{V, T) at T = To is a
phenomenon without parallel in conventional sta-
tistical mechanics, it would be reassuring to ver-
ify any conclusions derived from Z(V, T) by work-
ing directly with the density of states in the micro-
canonical ensemble. This is the principal objec-
tive of this paper. We find that the microcanoni-

Dual models, "the Veneziano model, ' ' and the
statistical bootstrap model' "all indicate that the
density of hadron levels, p(ni), has the asymptotic
form

p(m) -cm'e'

In this paper we will utilize this level density to
investigate the properties of hadronic matter at
high densities. It is of course a straightforward
matter to construct from Eq. (1.1) a partition func-
tion Z(V, T) in the canonical ensemble and to de-
rive from the partition function the thermodynam-
ical properties of the system. Thus, for example,
the pressure P and mean energy (E) are given by
the expressions""

cal ensemble is equivalent to the canonical ensem-
ble only if the parameter a in Eq. (1.1}satisfies
the constraint a ~ --, . In this case T, does define
the ultimate temperature of the system, T ap-
proaching To in the limit of infinitely large energy
densities.

If, on the other hand, a& --,', the system may be
characterized by macroscopic fluctuations of the
energy density. Equivalence of the microcanoni-
cal and canonical ensembles is no longer guaran-
teed. Temperatures greater than Tp are permit-
ted in the microcanonical ensemble, and the sys-
tem as a whole may be unstable, characterized by
a negative specific heat.

In the following two sections we shall calculate
the properties of matter described by the level
density (1.1). The calculation in Sec. II is per-
formed from the viewpoint of the canonical ensem-
ble and that in Sec. III from the viewpoint of the
microcanonical ensemble. In Sec. IV the nature
of the instability encountered for the case a& -~&

is explained. Finally in Sec. V we mention some
implications of our findings for thermodynamical
treatments of high energy scattering and of cer-
tain astrophysical problems.

II. THE CANONICAL ENSEMBLE

In this section we review the results that other
authors"" have obtained by constructing the par-
tition function Z(V, T) for a system characterized
by the level density (1.1). For simplicity we con-
sider a system of bosons; our results are nonethe-
less applicable for systems containing fermions
if the energy density is large relative to the Fermi
level. The partition function for a system of bo-
sons enclosed in a volume V at a temperature T,
and characterized by a level density p(m}, may be
written in the form'

-V
Z(V, T) =exp, dmp(m)

1ll Q
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(p2+ m')"'
x

~
d'pin 1 —exp—

T

(2.1)

where mp is the mass of the lightest particle that
can be produced. Expanding the logarithm, one
can perform the d3P integration to obtain

T Tp have been retained.
With these expressions for lnZ(V, T), it is a

straightforward matter to calculate the behavior
of the pressure P and mean energy (E) as T ap-
proaches the limiting value T,. Equations (1.2)
and (1.3) yield the following results for various
values of a:

Z(V, T) =exp 3
' dmp(m)

VT
~ m0

5a) -&,

cI'(a + 5/2) (2.8)

'K,
( ), (2.2)

tf = I

where K,(z} is a modified Bessel function. The
asymptotic expansion of K,(z) has the form

(E) ' }T 20+&7I2(T T)- -7/2 ~ (2 8}
cvr a+7,~2

(22)3I2 0 0

5a= -2

(g)~e l++ ~ ~ ~ (2.3) Tp T0
(2v}3I2 m, (T, —T)J' (2.10)

Substituting the level density (1.1) in Eq. (2.2},
then, one finds that the n = 1 term is singular at
T=Tp=b ',

lnZ(V, T)

=cV — ' I' a+5 2

cT,'/'V
(22)3"(T0 —T) '

—+0 a) —T
5 7

P = constant,

(2.11)

(2.12)

+less singular terms. (2.4)
(E)- VI'(a+7/2)

T "+""( — )
'-'" ~

(2m) 3/2 0 Tp —T

Here I"(x, y) denotes an incomplete I' function. In
general the nth term of the sum in Eq. (2.2) would
produce singularities at T =nT0. In this paper we
will be interested only in the singularity at T = T,.
Note that if we were considering a system of fer-
mions, the n = 1 term in Eq. (2.2) would be un-
changed (although terms with n& 1 would be differ-
ent). Therefore for a discussion of the singularity
of Z(V, T) at T= T„our restriction to boson sys-
tems is really immaterial ~

We can now catalog the form of Z(V, T) for
T = T, and various values of the parameter a,

7a=--
2

P = constant,

T 3!2 T 2

(E)=cV ~ ln
22 m, (T0 —T)

a&--7
2

P = constant,

(E) = constant x V .

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

aw -~ -n, n=0, 1, 2, . . . ,

lnZ(V T)= ' ' T "'""(T—T} 'cVrt.'a+ 5,/2
(22)3I2 0 0

5a= —2)

T 3/2 T 2

lnZ(V, T)= cV ~ ln
22 m0(T0 —T)

(2.5}

(2.6)

7a=-~,

lnZ(V, T)=(, ,I (T —T ) ln
2

(2.7)

In Eqs. (2.5)-(2.7) only the terms most singular at

For a~ --,', then, T, appears to define an ulti-
mate temperature, with T approaching T, as the
energy density (E)/V becomes infinitely large.
For a& --,' the situation seems to be quite differ-
ent. According to Eq. (2.17) the temperature T0
is reached at a finite energy density E,/V, . Evi-
dently systems with a& --', and (E)/V above E0/V0
are thermodynamically unstable. The precise
nature of this instability is, however, unclear in
the present approach.

A clearer picture will be provided in the next
section, where we study systems of the type (1.1)
in the microcanonical ensemble. We find that for
a& -~ instabilities may occur. The system is then
characterized by a large internal inhomogeneity
or, equivalently, by large fluctuations of the in-
ternal energy density.
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III. THE MICROCANONICAL ENSEMBLE

We have seen that for matter described by the
level density (1.1), the canonical ensemble is in-
adequate for the treatment of very dense systems
-at least for a& --,' . Thus it is necessary to
study these systems by a direct construction of
the microcanonical ensemble. This approach is
straightforward enough, but the actual calcula-
tions are clumsy and inelegant by comparison with
the construction of the canonical ensemble in Sec.
II. For a system of energy E enclosed in a volume
V the fundamental quantity we will need is the
phase space density o(E, V). Thermodynamic prop-
erties of the system are all specified by o(E, V).
In particular the temperature T and pressure P
are given by the expressions"

8 -l
T = —lno(E, V)

aF-
(3.1)

and

8P = T lno(E, V—) .
8V (3.2)

Heuristically, it is easy to understand why
o(E, V) is an important quantity. A fundamental
tenet of statistical mechanics is that all substates
of a system have equal probability to be occupied.
Hence the most probable state of a system is sim-
ply that state which occupies the largest phase vol-
ume. The thermodynamic properties calculated
from o(E, V) correspond to the properties of the
most probable state by virtue of the fact that this
state provides the dominant contributions to
o(E, V).

In constructing the partition function for a sys-
tem of matter described by the level density p(m),
we were able to start from the simple expression
(2.1). There is no simple analog for o(E, V). The
density of states for ri identical bosons of total en-
ergy E enclosed in a volume V is given by the rath-
er complicated equation

V
{d, v}=—

~, n d'p, c~
r". d, -d),

(3 3)
where E, = (p, ' + m')'~' and m is the boson mass.
Equation (3.3) is simply the product of n integrals"
h 'd'x, d'p, , constrained by energy conservation
and corrected for double counting by the factor
1/n! .

For a system of bosons described by a level den-
sity p(m), the phase-space density'" is slightly
more complex than Eq. (3.3):

V "1
o(E, V) =g, —,g ~

dm, p(m, )
n =1 i= l

x d'pdb g E, -E ~.
)

(3.4)

This is a. sum of n-particle terms of the form (3.3)
generalized to permit each of the n particles to
have masses in the range mo & m, & ~. The most
probable number of particles in the system corre-
sponds to the value of n for which the summand of
Eq. (3.4) is maximal.

Let us now proceed to calculate o(E, V) for the
level density (1.1). Our procedure follows closely
that developed by Frautschi'" in his derivation
of solutions of the statistical bootstrap equation.
The reader may consult Sec. 0 of Frautschi's pa-
per for details we omit. There is a slight differ-
ence in our equations in that Frautschi neglects
the contribution of 1-particle states to o(E, V).
This omission was appropriate in formulating the
bootstrap constraint but could not be justified in
the present discussion.

A second difference lies in the fact that Fraut-
schi imposes over-all momentum conservation by
means of a factor 5'(Q", , P, ) in Eq. (3.4). The ef-
fects of this factor will be seen to be insignificant
for the large energy densities in which we are in-
terested.

With the level density (1.1), Eq. (3.4) reads
co

n cl

+(E V) = g (2 )
II

~

dfm cm

E,. =m, +Qi. (3.6)

The factors e' d in Eq. (3.5) may thus be written
in the form

n n

e i=e e (3.7)
i=1 i=1

The contributions of states with large kinetic ener-
gy to the integrals d'p, . are damped by the factors
e ~i. The Q, are essentially limited to Q, & b '.
Hence particles with masses m; » b ' are nonrela-
tivistic, and their momenta

p; = (2m;Q, )'" (3.8)

are limited to p, & (m, /b)'" More sp. ecifically,
one can estimate the ith momentum and mass inte-
grals in Eq. (3.5):

hi
C, td, l=c d;, 'fd'j;.

ni p

=c — dm m "'" (3.9)

n

x d'v, '" c r d, -d) . (d.v)

Following Frautschi, ' rewrite the energy E; of the
ith particle in terms of its kinetic energy Q, :
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3/2 A a 5/2

a& -5/2, 1,(A, ) = c
b a+5 2' (3.10)

The cutoff A,. on the mass integral is imposed by
the constraint of energy conservation. It is clear
that one can distinguish three types of behavior
for I, (A, ) depending on the value of a:

from all n-particle states with energy less than or
equal to E. Because each integral I, (A, ) is dom-
inated by states with masses of order A, , v"(E)
is in fact dominated by states with energy of order
E H.ence Eq. (3.18) approximates the contribution
of these states quite well, and we can safely apply
Eq. (3.15) to obtain an approximation for cf"(E, V}:

a = -5/2, 2 3!2
I, (A, ) = c — In(A, /ma), (3.11} (a + 5/2)eb c V E a+ 5/2 5

E(n —1)! (a+5/2}(2rrb}3/2
2& 3/2 d+ 5/2 A t2 5/2

a & —5/2, I, (A, )= .c.
b -a —5/2

(3.12)

These three cases must be treated separately.

(3.19)

The most probable number of particles is found

by maximizing o"(E, V) with respect to n. Follow-
ing Frautschi' we write cf"(E, V) in the form

A. 0)--5
2 a"(E, V)

(a+5/ ) ebEQ(a E v) (3.20)
According to Eqs. (3.9) and (3.10), the dominant

part of the mass integral dm, - is contributed by
states with large mass (unless these states are
forbidden by the energy-conservation constraint).
The n-particle contribution to o(E, V), denoted by
o "(F, 1/'), has then the following approximate form:

bE V 2~ 3!2 n

cr"(E, V) =,
( }3c

n n

x n J( ;all r;"";*-5) .
(3.13)

Define the quantity

"(.)= (
—';)"''

n n

x dx dm;m;" '5 m; —x
nmo

& l mo i=1

(3.14)

in terms of which cr"(E, V) may be written

gyE +

f(n, E, V) = (n —-1) inn+ n+nln
( 5/2)(2 b)3/2

—(a+ 5/2)n inn. (3.21)

The maximum of cr"(E, V) corresponds to the max-
imum of f(n, E, V), i.e. ,

y -a-5/2ga+ 5/2 1/(a+7/2)

(a+ 5/2)(2rrb)3/2 (3.22)

Note that for large E, N grows only like
Therefore the mean energy per

particle and hence the average mass are large
when the energy density is sufficiently large.
This justifies the approximations used to obtain
Eq. (3.19). From Eqs. (3.19)-(3.22) one obtains
the estimate

o(E, V) =cr"(E, V)

By Stirling's approximation f(n, E, V) may be writ-
ten

e' V "drr" (E)
n! (27/)' dE (3.15)

bE f(/r, fr, 'Vre e (3.23)

With the help of Eq. (3.9), rr"(E) may be written in
the form

n

"(E)= II I;(A;),
i=1

subject to the constraint

(3.16)

QA;=E.
f=1

(3.17)

The maximum contribution to rr"(E) is obtained
when the A, are all of order E/n This provides.
the estimate

(3.18)

Note that the quantity rr"(E) receives contributions

where

C V 5/2Ea+ 5/2 l/(/2+ 7/2)

f(ItI, E, V) = (a+7/2)
( 5/2)(2 ) /

(3.24)

If in Eq. (3.4) we had imposed over-all momentum
conservation, then there would have been one few-
er d'p, integrations in each of the cf"(E, V), and
cf(E, V) would have picked up an additional factor
(2rrb)'/2V 'E '". Such a factor would have negli-
gible effect on our calculations of the temperature
and pressure given below.

The thermodynamic properties of the system
(3.23) are extracted by application of Eqs. (3.1)
and (3.2). Using Eq. (3.1) we find that for large
volumes and a large energy density,
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or

-a-5/2 V/E
- r/(a+7/2)

-1 ce
T = b (a 5/2)

( 5/2)(2 b) '
(3.25)

E ce ' "' (a+5/2)TT, '""'
V (a+ 5/2)(2rrb)"' T, —T

imately by replacing n in the argument of the loga-
rithm in Eq. (3.30) by N T.his replacement is jus-
tified by the fact that inn is very slowly varying
relative to n! . Summing o"(E, V), then, we obtain

the approximate result

o(E, V) = pc"(E, V)

+ 5 2 a~5/2

T 2o+ rr/2(T T)-& 7/2-
0

(3.26)

Similarly, Eq. (3.2) defines the pressure,

ce -a -5/2 "1/(a+ 7/2) E (a+ 5/2)/(a+ 7/2)

(a+5/2)(2vb)'" V

(3.27)

cm0 Ve' cp E
(2rrb)'"E (2rrb)'" Nm

cV/(2n b)

l2 b)"'z A', ) (3.32)

From Eq. (3.31) we see that the number density
N/V is a function only of the energy density E/V:

With the help of Eq. (3.26), this may be written
in the form

N c E/V
V (2 5)"',N/V)

(3.33)

(a+5/2)TT, "'"
T0 T

Ce-a-5/2

(a + 5/2) (2 rrb)"'

8. a=--5
2

For a= —-'„Eq. (3.11) shows that f, (A, ) is again
dominated by high mass states. As in the pre-
vious case, therefore, rr"(E) receives its princi-
pal contributions for A, =E/n. This provides the
estimate

(3.29)

Once again rr"(E) is dominated by states with ener-
gy of order E, and we can apply Eq. (3.15) to ob-
tain an approximation for c"(E, V}:

cmoVe cVln(E/nmo) " '
(2rrb)'"E(n —1)! (2rrb)"

This expression is maximal for

c t/' E
(2vb)'" Nm

(3.30)

(3.31}

The sum on n of o "(E, V) may be performed approx-

+ 5 /2 a+5/2
7 &o+ &5/2(T T )

-~ -5/2

(2 rr b)3/2 e 0 0

(3.28)

Equations (3.28) and (3.26) are to be compared
with the corresponding equations (2.8) and (2.9)
derived from the canonical ensemble. Except for
slight differences in the over-all coefficients, the
expressions from the microcanonical ensemble
agree with those from the canonical ensemble.
This discrepancy is due to the roughness of our
estimates of the various integrals in Eq. (3.13),
and we may therefore conclude that for a& --', the
canonical and microcanonical ensembles are equiv-
alent.

In the limit of large energy density, the number
density is also large, but N/V grows only as the
logarithm of E/V If we .apply Eq. (3.1) to the
phase space density (3.32), we find that

1 1 CV—= b+ —-1+
T E (2rrb)"

(3.34)

Terms involving BN/aE are negligible by virtue
of the slow growth of N relative to E. For com-
parison with Eq. (2.11), Eq. (3.34) may be rewrit-
ten in the approximate form

E cT '"
0

V (2v)"'(T, —T)
' (3.35)

If we had imposed over-all momentum conserva-
tion on Eq. (3.4), then rr(E, V) would acquire an
extra factor (2rrb)'"V 'E '". This would change
the —1 term in Eq. (3.34) to ——',. This term, how-

ever, is negligible for the volumes in which we
are interested.

According to Eq. (3.2) the pressure is given by
the expression

cT E V d/
(2rrb)3/2 Nmo N d V

(3.36)

Differentiating Eq. (3.31) with respect to V, we
find that

SN E (2rrb)"' V -'
dV Nm0 C N

(3.37)

CT 5/2 -
T

ln 0
(2rr )"' m, (T, —T) (3.38)

Thus in the limit of large energy density [when
V/N becomes negligible in Eq. (3.3 t)], BN/BV
grows like ln(E/Nm, ). Since in this limit V/N
falls like 1/ln(E/Nm ), the term (V/N)BN/S V may
be neglected in Eq. (3.36). Rewriting this equa-
tion with the aid of Eqs. (3.35) and (3.33) we find
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E»nm(E). ( 3.39)

The mean mass m(A, } in the integral l, (A, ) is
given by the expression

Ai Ai

m(A,.) = dm m""'
mp mp

For various values of a, this yields the following
values for m(A, .):

dm m""' (3.40)

where terms of order In[in(E/Nm, )] have been
dropped. Equations (3.38) and (3.35) may now be
compared with Eqs. (2.10) and (2.11). They are
completely identical. Thus we conclude that the
canonical and microcanonical ensembles are equi-
valent in the case a=--,'.

C. a &--5
2

The state of affairs when a& --', is considerably
different from the eases previously considered.
According to Eq. (3.12) the integral l, (A,.) re-
ceives its dominant contribution from the low
mass region. Therefore, important contributions
to a"(E, V) in Eq. (3.13}can come from configura-
tions in which n —1 particles have small masses—
with a mean mass m- and the nth particle has a
mass fixed by energy conservation to be of order
E —(n-1)m. Such configurations will be the domi-
nant ones when E becomes sufficiently large,

Thus, using Eqs. (3.12) and (3.15), we obtain the
estimate

e' cVm '''l'
n! (-a —5/2)(2wb)'

a i. 7/2 m a+ a/2 1/(a+ 7/2)
X 0

-a —5/2 n

x[1 —(A;/m, )' ' '/']" ' .

This expression is maximal for

c~a+ s/2 V
(-a —5/2)(2 wb }a/

(3.47)

(3.48)

1 cV/E
(a+ 7/2)(2wb)a/a

t 1l (a+ 7/2)
(3.50)

Recall that the present discussion is valid only
when condition (3.39) is not met, i.e., when

cV
( + 7/2)(2wb)'"

(3.49)

For any fixed energy density Eq. (3.49) can always
be satisfied if V is sufficiently large. In partic-
ular, for any macroscopic volume, Eqs. (3.47) and
and (3.48) should be reliable. Estimating o(E, V)
= ow(E, V) and applying Eq. (3.1), one finds that

—' & a& ——', m(A. ) = -a —5/'2
m -i2-sl2A ii+7/2

a+ 7/2
(3.41)

or

Z 2a+17/2(Z Zr)-a —7/2
V (2w) (a+ 7/2)

7a= ——
2

a& —y)7

m(A, .) =m, ln(A, ./m, },

a~5 2
m(A, ) =

(3.42)

( 3.43)

(3.51}

Similarly, applying Eq. (3.2) one obtains the re-
sult

In deriving Eq. (3.9) we assumed that all the par-
ticles are nonrelativistic —including those of low
mass. This assumption is valid only if m»b '.'
Thus the numerical coefficients in Eqs. (3.41)-
(3.43) may not be properly estimated. The A, de-
pendence, upon which our results primarily de-
pend, is certainly valid, so we will ignore possi-
ble errors in the coefficients.

If the condition (3.39) is not met, one can impose
energy conservation in Eq. (3.16} in the approxi-
mate form

Cm tI+ slaT s/2
0

(-a —5/2)(2w)'" ' (3.52)

m eEln
i 0 (3.53}

Except for slight discrepancies in the numerical
coefficients the expressions (3.50) and (3.51)
agree with thoSe calculated in the canonical en-
semble, Eqs. (2.13) and (2.12).

Next consider the case a = —~7 and suppose that
condition (3.39) is still not met. From Eqs. (3.42)
and (3.44) the cutoffs A, are of order

m(A,.) =E/n.

This provides the estimate

(3.44) Using Eqs. (3.45), (3.12), and (3.15), then, we
obtain the estimate

w "(E)=[I,.(A)]", (3.45)

with A,. given by Eqs. (3.41)—(3.44). In the case
—

2
&a& —2, A,. zs found to be

cV
ma(2wb)'"

X [1 e-E/naca]n-1

E«t)tp
o"(E, V)=

m pn t

(3.54)
a+ 7/2 E-1/ia+ 7/2)

1 5/2 0 0 (3.46) This is maximal for n =N as given by Eq. (3.48).
Note that the present discussion is valid as long as
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( =-7/2),cV
ln(E/m, ) (2n'b}'12 (3.55)

or

E(2')3i—= 5+m0 expT 0 cV (3.56)

and

V (2„b)3~2 ~ (2'-~ b)
(3.57)

and in particular for any system of macroscopic
volume. Taking o(E, V)= o"(E, V) and applying
Eqs. (3.1) and (3.2} we obtain the expressions

For any fixed volume V the inequalities (3.60) and

(3.61) can be met if E is taken to be sufficiently
large. On the other hand, the larger V is chosen
to be, the larger the energy density E/V will have
to be for the inequality to hold. Hence for macro-
scopic volumes the inequalities (3.60) and (3.61}
are virtually impossible to satisfy. In contrast
the inequality (3.62) for the case a& —

& is a func-
tion only of the energy density E/V. If E/V is
sufficiently large, Eq. (3.62) will be satisfied re-
gardless of how large V may be.

One can perform the sum over n of o"(E, V) as
given by Eq. (3.59) to obtain

C T0
(2w)'"m, ' (3.58) o(E, V) = go"(E, V)

n=l

These expressions for P and E are seen to agree
with those calculated in the canonical ensemble,
Kqs. (2.14) and (2.15). Thus we have shown that
if —f & a ~ —&, the microcanonical and canonical
viewpoints are equivalent —provided that the vol-
ume of the system under consideration is suffi-
ciently large.

Let us now return to the case where Eq. (3.39)
is valid. As described earlier, the dominant
contributions to a (E, V) arise in this case from
configurations containing n —1 light particles of
mean mass m(E) and a single heavy particle
with mass of order E —(n —1)m(E). The contri-
bution of such configurations may be estimated'
to be

cVE~+3/2ebs
-

cm ~+5/2V

(2pb)~'~ ~
( g 5/2}(2vb) '

(3.63)

a+3 2
(3.64)

or

and

T:E = (a + 3/2)
To —T

(3.65)

Equations (3.1) and (3.2) may now be applied to
extract the temperature and pressure of the sys-
tem. One obtains the following expressions:

cVEo+' 'e's cVm '+ '
(2mb} 2(n —1)! (-a —5/2)(2vb)

n-1 a+5/2T s/2
0

(-a —5/2)(2v)"' ' (3.66}

(3.59)

The n —1 integrals over low-mass states have
been estimated retaining only the dominant term
m "'~' in Eq. (3.12). The factor n/n! = I/(n —1)!
arises from the fact that the high-mass particle
may be associated with any of the n mass integrals.
The mass of the heavy particle has been approxi-
mated by E using Eq. (3.39).

The most probable number of particles N is
found by maximizing o"(E, V} with respect to n
The result coincides with Eq. (3.48). The con-
straint (3.39}may thus be rephrased in the fol-
lowing forms for various values of a less than —$:

cV2&a&-7
(a+ 7/2)(2 vb)3i

(3.60)

Had we constrained the total momentum 5~p, to
vanish in Eq. (3.4), the density of states (3.63)
would have acquired an additional factor
(2vb)'"V 'E "'. The only effect of this factor
would be to change the coefficient at a+-,' in Eq.
(3.65) to a. This difference will be insignificant
in our discussion of this equation; the crucial fea-
ture of Eq. (3.65) is the negative sign of the coef-
ficient and not its magnitude.

If now we compare Eqs. (3.66} and (3.65) with
Eqs. (2.12)-(2.17), we see that the expressions
for the pressure are compatible, but those for
the energy are not. Hence the canonical and
microcanonical ensembles are not equivalent
when any of the inequalities (3.60)-(3.62) are valid.
In the next section we will explain this discrep-
ancy in detail.

a = -7/2,

a« -7/2,

cV
tn(E/m. ) (2vb)'" ' (3.61

m a+7/2"(-a —5/2)(2vb)~&2

IV. A SYSTEM WITH NEGATIVE SPECIFIC HEAT

We have shown in the previous sections that if
a & -~ and any of the inequalities (3.60)-(3.62)
are met, then the canonical and microcanonical
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(4 1)

Using Eqs. (2.5) and (2.7) we can calculate the en-
ergy fluctuations for the cases ——,

' &a &~,

(E2) (E)2 ( T 2a+21/2(T —T) a-9/2cVI a+S/2)
(21/)"' 0

(4.2)

and a= -~,7

E }—&E} =(2 T (To —1' (4.3)

The canonical and microcanonical descriptions
will be inequivalent if the fluctuations are large,
i.e. , if

ensembles for a system with the level density
(1.1) are inequivalent. In general, equivalence
of the canonical and microcanonical descriptions
is obtained whenever Quctuations of the internal
energy density are small. In the canonical en-
semble these Quctuations are measured by the
quantity

8 3a(E'}—(E)' =T', ln Z (V, T ) + 2 T' ln Z—(V, T ) .

(-a —5/2)(21/b)2/2
VG =

a+ 5/2 ln2 . (4.7)

Therefore for a & -&, N may be written as

probable distribution of masses is still m,. = E/n.
In other words, one can say that the subsystems
have the same thermodynamic properties as the
whole system. This feature is essential for the
construction of a canonical ensemble.

For the case a & --'„when one of conditions
(3.60)-(3.62) is met, the system as a whole lacks
this uniformity. The most probable configuration
of n particles with total energy E»nm(E) is one
in which there are n —1 particles of mass rn,.

=m(E), i = 1, 2, . . . , n —1, and one heavy particle
with mass m„=E —(n —1)m(E). This is obviously
an extremely nonuniform configuration, and the
thermodynamic properties of various subsystems
are inequivalent with the properties of the sys-
tem as a whole.

In the statistical bootstrap model, all particles
are assumed to occupy a common volume VG ~ The
bootstrap constraint relates this volume to the
parameters a, b, c, andm0 by the approximate
expression' ':

&E') -&E)' „1 (4.4)
N= (ln2)V/V, (4.8)

and the "high-density" requirement (3.39) has the
formUsing Eqs. (2.13) and (2.15} then, we can deter-

mine the conditions under which fluctuations are
large:
-5/2 & a & -7/2,

a= -7/2,

cI'(a + 'I /2) V
(2vb)2/2(a y9/2)a+ (4.5)

(2mb)"'(E)' cV,Vm, "(2.b) /' (4.6)

The conditions (4.5) and (4.6) are essentially the
same as conditions (3.60) and (3.61}, respec-
tively.

The origin of large energy fluctuations when
one of conditions (3.60)-(3.62) is met can be
understood upon a detailed examination of the
most probable states in the microcanonical en-
semble. If a & ——,

' or if conditions (3.49) or (3.55)
are met, we showed that for any n-particle state,
the most probable distribution of masses has
m, =E/n, i =1,2, . . . , n. This distribution is clear-
ly uniforma Suppose we were to divide an n-parti-
cle system of energy E and volume V into two sub-
systems, of volume V/2 each. The most probable
distribution of particles between the two subsys-
tems is such that each subsystem should have
n/2 particles and a total energy of E/2 The most.

E m—» —1n2 .
V VG

(4.9)

The most probable high-density configuration for
a & -~ can thus be described as follows: The vol-
ume V is filled with N particles. The particles
are packed together so that they are almost touch-
ing. All but one of the particles are light, with
masses of order m(E). There is a single heavy
particle with mass of order E —(n —1)rn(E).

Suppose now that we fill the volume V with n par-
ticles of mass E/n. The system will evolve away
from this uniform distribution toward a nonuni-
form distribution in which most of the energy is
carried by a single massive particle. Subsequent-
ly the system will Quctuate among states of this
type. These fluctuations involve large changes in
the local energy density which destroy the equiva-
lence of the canonical and microcanonical en-
sembles.

In a sense, the behavior of a system with
a & --,', when the energy density is raised above
the critical value m(E)/V9, can be described as
a sort of condensation. This behavior is easier
to understand if we focus attention on the case
a &-&7 (so that m=m9) and assume for the moment
that the spectrum has an "ionization point" at
some mass M»m, i.e. , p(m}=0 form&M. For
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aE
Cv gv

V fixed
(4.10)

which measures the rate of change of the energy
with the temperature. Ordinary systems, on
which our intuition is founded, have Cv &0. A
dense hadron system, characterized by a & ——,',

m & M the level density is described by p(m); there
are, however, no particles with masses greater
than M. Consider a volume V initially character-
ized by a low energy density, E/V &= mo/Vo. At
this stage the system will behave like a cold gas
of N =E/m, particles.

Suppose now that the energy of the system is
gradually increased. When E/V becomes larger
than mo/Vo, the production of states with masses
higher than mo begins to occur. Let E be in-
creased to the point that E/V is much greater
than m, /Vo but still small compared to M/Vo. The
number of particles will be of order N = ln2 V/Vo.
Most of the energy will be concentrated in parti-
cles of mass M, since production of massive states
is favored statistically and M is the maximum pos-
sible mass. As the energy density increases, N
remains constant and more and more particles
with masses of order M are produced.

At low energies the energy density was uniform,
but as the energy increased there was a condensa-
tion into massive particles and a subsequent non-
uniform energy density. Eventually when E/V
~M/p the energy density will again be uniform.
At this stage most of the particles in the system
will have masses of order M. If E/V is increased
above this point, the mean mass will remain at M
and the system will behave like a gas of bosons
of mass M. What we have just described is clear-
ly a phase transition in which the original phase
dominated by light particles (of mass mo) con-
denses into a phase dominated by heavy particles
(of mass M). While the condensation is taking
place there can be fluctuations in the energy den-
sity of order M/Vo. In the limit M-~ the fluctua-
tions are limited only by the total energy of the
system, and the present phase transition appears
as a gross instability.

The phase transition we have just described is
a rather peculiar sort of event. We started with
a system of light particles and poured energy into
it. As the energy density grew higher and higher
the system did not boil, i.e., dissociate into
lighter particles; it condensed into heavier par-
ticles. The clue to this astonishing behavior is
provided by Eq. (3.64). Note how the temperature
T behaves as the energy is increased. Since
a+-,' &0, T decreases as E increases.

The relevant quantity in the present discussion
is clearly the specific heat,

and satisfying one of conditions (3.60)-(3.62), has
a negative specific heat Ind. eed, from Eq. (3.65)
we have explicitly

2

C, = (a ~ 3l2) (~ 0
(4.11)

To

mo/Vo

I

I

I

I

I

I

M/Vo E/V

FIG. 1. The temperature is shown as a function of the
energy density in the microcanonical ensemble. If the
spectrum is cut off at mass M, there is a region of
negative specific heat for densities between mp/Vp and
M/Vp.

Systems with negative specific heat have been dis-
cussed by Lynden-Bell and Wood ' and by Thirring.
The principal feature of interest to us is their in-
stability. If two systems with negative specific
heat are placed in thermal contact, they are un-
stable. In particular consider a dense system of
hadrons characterized by the level density (1.1)
and satisfying one of conditions (3.60)-(3.62). Any
subsystem of this system has a negative specific
heat, so the system as a whole is thermodynami-
cally unstable.

If a system with negative specific heat is placed
in a heat bath, equilibrium cannot be established.
The system will exchange energy with the heat
bath until it reaches a point where its specific
heat is again positive. Therefore if there is some
region of energies for which the microcanonical
ensemble indicates the existence of a negative
specific heat, this region will be jumped over by
a phase transition in the canonical ensemble. Con-
sequently the canonical ensemble never exhibits
a negative specific heat. We shall illustrate this
point graphically for the case where a & -& and
there is an "ionization point" at mass M. In Fig.
1 we show the temperature-energy density curve
derived from the microcanonical ensemble for
such a system. There is a region of densities be-
tween mo/Vo and M/Vo for which T —To falls like
E ' as required by Eq. (3.65). At large energy
densities T grows like (E/V)'", characteristic of
a high temperature Bose gas. For E/V & mo/Vo
the temperature falls to 0 at E/V =0 as required
by the third law of thermodynamics. If we were
to construct ' the canonical ensemble for this
system and plot the internal energy density against
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S = Ino(E, V)

~@Ed+»2 - ~ ~+»2y
0

(2mb)"' (-a —5/2)(2nb)"' '

(4.12)

For ordinary thermodynamics to be valid, S
should be an extensive quantity. The j.ogarithm
in Eq. (4.12) does not exhibit this property. Thus,
insofar as this term cannot be neglected, the sys-
tem will not obey ordinary thermodynamics. It is
of course precisely this term which provides the
negative specific heat in Eq. (4.11}. A calculation
of C~ for systems with ao--,' or for the cases
(3.49) and (3.55) would show that analogous terms
are negligible.

the temperature, we would obtain the curve of Fig.
2. The temperature of the system is defined by
the heat bath. At low temperatures the system
behaves normally, its internal energy rising con-
tinuously with the temperature. When the internal
energy density is of the order of a few times m /
V„copious production of particles of mass M can
begin to take place. This condensation process
continues at constant temperature until the inter-
nal energy density is of order M/Vo. At this point
the condensation is complete and the temperature
must be raised to raise the energy density further.

As discussed in Sec. II, the construction of the
canonical ensemble for a & -& fails if there is no
mass cutoff; i.e. , if the spectrum has no ioniza-
tion point. The physical reason already stated is
the existence of uncontrollable macroscopic fluc-
tuations in the energy density. A related technical
point may also be considered. In the microcanoni-
cal ensemble, the entropy may be identified with
the logarithm of the density of states. Therefore
for a & --', when one of conditions (3.60)-(3.62) is
met, Eq. (3.63) provides the following expression:

V. IMPLICATIONS

x dsp,.5 E,. —E 5 p, 5.1
)=1 )=1

[This represents a modification of Eq. (3.4} to
exclude 1-particle contributions and to include the
constraint of over-all momentum conservation. ]
(4} Require that at high energies o(E, V, ) repro-
duce the input level density p(E). The reader is
referred to the original papers' ' for a detailed
discussion of this program. Here we shall only
note that the solution to the bootstrap is a level
density of the form (1.1). The extent to which the
parameter a is limited in the solution depends on
just how the bootstrap constraint (4) is phrased.
If one requires only that

lno(E, Vo)

lnp(E)
(5.2)

one has the constraint a ~--,'.' With the stronger
condition

e(E, V, )

p(E)
(5.3)

one eliminates the possibility that a= --,'. The
constraint is then a & --,'.' Finally if one requires
that

We have shown that a system of dense hadronic
matter characterized by the level density (1.1)
can be thermodynamically unstable if any of the
conditions (3.60)-(3.62} are met. In this section
we shall consider some of the implications of this
result. It is first useful to review precisely what
the statistical bootstrap model-one of the sources
of Eq. (1.1)-has to say about the level density.
The bootstrap condition' "may be phrased in the
following way: (1) Take a volume V„which de-
fines the size of all hadronic particles. (2} As-
sume some input level density p(m). (3) Compute
the density of states by means of the equation9

v
o(E, V, ) = Q 2, Q dm,.p(m, )

n=2- j 1

Tp

o(E, V.) p(E)—
p(E)

(5 4)

mp/Vp

I

I

I

I

I

M/VP & E &/V

FIG. 2. The internal energy density is shown as a
function of the temperature in the canonical ensemble.
The spectrum is assumed to be cut off at mass M. The
region of energy densities between mp/Vp and M/'Vo is
bridged by a phase transition. In the limit M- ~ the
region of phase transition corresponds to an instability.

the constraint is sharpened to a= -3.'
We have presented the conditions (5.2)-(5.4) in

the historical order in which they were proposed.
Logically, of course, Eq. (5.4) is the strongest
statement of the bootstrap, Eqs. (5.3) and (5.2)
being progressivley weakened versions. It is a
curious fact that the favored value, a=-3, lies
in the region of thermodynamic instability. This
curiosity has profound consequences for applica-
tions of the bootstrap spectrum to various phys-
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ical problems.
The applications that have been proposed for

the spectrum (1.1) are in two general areas: high-
energy collisions and astrophysics. We shall dis-
cuss each of these in turn.

High-Energy Collisions

cV
(2mb)sn (5 5)

Hagedorn and Ranft" have constructed a thermo-
dynamical model for the description of particle
production in high-energy collisions. Since they
have chosen to use the value a=-—,

' in the level
density (1.1), their application of thermodynamics
is not plagued by any instabilities occasioned by
large energy densities. There is, however, one
curious point worth noting. In a high-energy colli-
sion the interaction takes place in a small volume,
namely V„which is approximately the size of the
produced particles themselves. One might ask if
this volume is so small as to invalidate a thermo-
dynamical approach. The answer to this question
may be found by examining Eq. (3.34). The vol-
ume Vo may be considered large enough if the
inequality

of mass m corresponds to the concentration of an

energy m in a volume V= V,. This volume [see
Eq. (4.7)] is determined at the time of the colli-
sion by the range of the strong interactions. As
time passes the hadronic matter can expand to

fill a larger volume. When this volume has reached
a size of order 2VO/ln2, there is according to
Eq. (4.8) an appreciable probability that the had-
ronic matter will consist of 2 particles —one
heavy and one light. This corresponds to the de-
cay of the original resonance into a second heavy
resonance and a light particle. As the volume ex-
pands further the second resonance will also de-
cay. In this fashion there will be produced a se-
quence of secondary resonances and a concomi-
tant cascade of light particles. From the dis-
cussion of Sec. III it is clear that in the rest
frame of each resonance, the momenta of its de-
cay products will be bounded by P, & (m, /b)'~'. If
the production mechanism is such that the original
resonance is produced with a limited transverse
momentum, then the transverse momenta of its
decay products will also be limited.

The experimentally observed bound on trans-
verse momenta is thus achieved in a simple fash-
ion. Just as in the model of Hagedorn and Ranft, '9

the production of states with large transverse
momenta is damped by a factor of the form

is satisfied. [For large volumes the -1 term in

Eq. (3.34) should be negligible. ] In Hagedorn and
Ranft's fits" to high-energy-collision data, their
parameters b, c, and Vo are such that c Vo(2mb) '~2

= 9. Thus Eq. (5.5) seems to be satisfied.
If, as the bootstrap would have one believe,

a& ——,', can the Hagedorn-Ranft approach be gen-
eralized? Substituting the expression (4.7) for
Vo in any of Eqs. (3.60)-(3.62) we see that the
"high-density" constraint requires only that E be
large relative to mo. Since a system satisfying
this "high-density" requirement is thermodynam-
ically unstable, it seems very unlikely that the
thermodynamical description of Hagedorn and
Ranft could be appropriate for such a case. It is
possible, however, to construct less sophisticated
statistical models which incorporate the bootstrap
spectrum and are able to reproduce some of the
impressive results of the Hagedorn-Ranft model.

We will describe one such model as an example.
Suppose that in most high-energy collisions a pair
of massive resonances is produced. Details of
the production process may involve dynamical de-
tails of the interaction which lie outside the scope
of the statistical approach. The decays of the
heavy resonances can, however, be described
statistically.

Roughly speaking the information of a resonance

exp(-bE, ) ~ exp[-b(p, r'+ m, ')"'] (5.6)

where p, denotes the transverse momentum of
the produced particle. Another feature ' of the
Hagedorn-Ranft model shared by the present mod-
el is the manner in which the production of mas-
sive pairs —such as pp —is suppressed. A reso-
nance with mass greater than 2m~ can decay into

pp, but statistical competition reduces the proba-
bility of this decay mode by a factor exp(-2bm~).

The model we have just outlined is very close
to ones proposed by Hwa and Lam2~ and by Jacob
and Slansky. " These authors are concerned pri-
marily with the mechanism by which the original
heavy resonances are produced. They assume a
decay scheme similar to that predicted by our sta-
tistical model and successfully account for a num-
ber of features of one particle inclusive production
experiments.

Hamer" has further tested the plausibility of a
statistical decay scheme with a study of proton-
antiproton annihilation at rest. He assumes that
all annihilations proceed by resonance formation.
The resonance decay chain is traced with the aid
of a spectrum of states explicitly constructed"
as a solution to the bootstrap constraint (5.4). The
model successfully accounts for a large fraction
of the observed production cross sections.
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Astrophysical Problems

Applications of the level density (1.1) have been
made in two areas of astrophysics: the structure
of neutron stars ' ' and the early history of the
universe. '" In both these problems one is deal-
ing with macroscopic volumes of hadronic matter.
We have shown that conventional thermodynamics
may be inadequate for the treatment of such sys-
tems if «--', . Therefore, if the possibility
a& -~ is to be reckoned with„ the results in Refs.
27-30, 7, and 13 must all be reexamined. There
are a number of questions which must be answered
in the course of such a study. We close with a
brief list.

(1}What happens to p(m} at extremely high
masses? Is the spectrum cut off above a certain
mass; that is, is there an "ionization point"? If
not, what happens when m is so large that gravita-
tional effects become significant?

(2) How does p(m} behave at low masses? At
what ma, ss does the asymptotic form (1.1) first
become appropriate?

(2) What are the dynamical properties of the en-

ergy fluctuations in dense hadronic matter? Sta-
tistical mechanics indicates the presence of large
fluctuations but says nothing about the time scale
on which they develop. Can these fluctuations be
related to the formation of galaxies in the early
universe?

(4) In a system of particles with baryon number
B ~1, a large baryon number density implies the
existence of a large particle number density. In
this case, are particle interactions still adequate-
ly described by the formation of resonances with
the level density (1.1)?
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