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We show that broken-scale-invariance Ward identities place strong restrictions on the
asymptotic behavior of perturbation-theory amplitudes.

I. INTRODUCTION

A by-product of the recent flurry of interest in
scale invariance has been the recognition" that
perturbation-theory amplitudes satisfy an equa-
tion which can be described as a "broken-scale-
invariance Ward identity. " This name is appro-
priate because, apart from anomaly terms of the
general class made familiar by Adler' and by Bell
and Jackiw, ' the equation in question is just the
Ward identity for the dilation current. Unlike
most Ward identities, this one has some nontriv-
ial consequences for the asymptotic behavior of
amplitudes. Indeed, in Refs. 1 and 2, it was
shown how the usual renormalization-group re-
sults could be obtained from it in a particularly
expeditious fashion. There is, however, much
more to be learned and this paper will be devoted
to extracting the full consequences for high-ener-
gy behavior of the broken-scale-invariance Ward
identity.

In order to simplify our presentation, we shall
first guess a sensible-looking asymptotic expan-
sion and then show how it can be proven with the
help of the broken-scale-invariance Ward identity.
The expansion we shall consider is very closely
related to Wilson's operator-product expansion, '
whose validity in perturbation theory has already
been discussed by Brandt' and Zimmermann. ' We
hope to convince the reader that a proof based on
the broken-scale-invariance Ward identity is es-
pecially simple. In order to avoid notational com-
plications, we shall always deal with the eminently
renormalizable theory of a massive scalar field
having a quartic self-interaction (AQ' theory). The
extension of our arguments to any renormalizable
theory should be quite evident.

I et us first consider a nonlocal product P(x) P(y)
of the field operators of the theory. It is not un-
reasonable to suppose that in the limit x- y this
nonlocal product can be expanded in terms of oth-
er local operators (local in a sense we shall short-
ly explain) as follows:

y(x) y(y) —g B„{»—y) O„(-,'(»+ y) ),

where B„(x—y) are c-number functions and {0„].
is a "complete" set of operators. (This, of

course, is the assumption of Wilson's operator-
product expansion. )

In a free-field theory, the set {0„}is easy to
identify. It consists of all the monomials one can
form out of powers of derivatives and powers of
fields: P', P', S„QS„P, etc. [These operators
are conveniently classified in terms of their di-
mension d in powers of energy: d(P)= I, d(P')=2,
d(y')=4, d(s„ps„p) =4, etc.] In the presence of
interactions, we can still consider this same set
of operators; subtractions are now required to
render their matrix elements finite, and the num-
ber of subtractions needed grows with the dimen-
sion d of the operator considered. Nevertheless,
if we make some universal choice of subtraction
point (for example, all four-momenta equal to
zero), a perfectly definite meaning attaches to
each monomial we can form out of powers of de-
rivatives and powers of fields. The operators de-
fined by this perturbation-theory prescription are
presumably local in the strict sense of the word
(their matrix elements satisfy dispersion rela-
tions, and so on), but we shall not attempt to
prove that they are. We regard this as an inde-
pendent question about the general properties of
renormalized perturbation theory.

Something can be said about the c-number func-
tions B„(x)as well. Dimensional analysis tells us
that if O„has dimension d„, then B„must have
dimension 2 —d„. But for the presence of the
mass p of the field, this would mean that B„(x)
must be homogeneous of degree d„—2 in x. On the
other hand, the dependence of B„(x) on g must be
such that in the limit p, —0 only the usual logarith-
mic infrared singularities are encountered.
Therefore, apart from powers of In(g'x'), only
positive powers of p,

' may occur and they must
actually be powers of the dimensionless combina-
tion p, 'x' in order to keep the over-all dimension
of B„(x)fixed. In the limit x-0, the leading con-
tribution to B„(x) is therefore of the form (func-
tion of x homogeneous of degree d„—2) times [sum
of powers of In(g'x')]. Since logarithmic singular-
ities are associated with loop integrations, we ex-
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pect only a finite number of powers of 1n(p, 'x2) if
we consider amplitudes expanded out to a finite
order in perturbation theory. In the future, we
shall refer to a function of the form (function of
x homogeneous of degree n) times [polynomial in
In(x2g2)] as being O(x"). Therefore the functions
B„(x) in Eq. (1) should be O(x " ') in the limit
x-0, that is to say, less and less singular as d„
increases.

Now, since our primary concern is the high-
energy behavior of scattering amplitudes, it is
convenient to transform Eq. (1) into a statement
about the asymptotic behavior of momentum-space
amplitudes. We shall use the same notation as in
Ref. 2, where r'"'(p, ~ ~ ~ p„) stood for the con-
nected, one-particle irreducible amplitude for n

particles (having ingoing momenta p, ~ ~ p„) with
external-line propagators divided out, I"„"'(q;
P, . P„) stood for a similar amplitude with an
insertion of the operator A carrying ingoing mo-
mentum q, and so on. Obviously, the momentum-
space equivalent of letting x, —x, -0 in the prod-
uct P(x,)$(x2} is to let the difference P, -P, of the
momenta carried by p(x„) and p(x2) go to infinity.
This suggests that the proper momentum-space
transcription of Eq. (1}is

r'"&(p, . p„} pc.(q)r'."-"(~; p, . p„),
fft

(2)
1

Pj = q+ z& r P2= -q+ a& f

where the C (q) are just Fourier transforms of
the corresponding B„(x)[and therefore asymptot-
ically of O(q' ~) in the sense explained in the pre-
vious paragraph]. Because of the symmetry of the
theory under the operation P--Q, it is apparent
that only operators 0 involving even powers of

Q can appear in the expansion. The allowed di-
mensions are therefore 2 (corresponding to &fP},

4 (corresponding to P', 9„$9,$, etc. ), and so on.
Since C„(q) is O(q' '"), the leading term in the ex-
pansion, corresponding to the operator of lowest
dimension, is

r'"'(p, p„) ~ c„(q)r'y2 (~;p, p„)+o(q '},

(3)
I 1p, =q+ —4, p =-q+2h,

with C &2 of O(q'} [i.e., a polynomial in In(q'/g')].
The terms of O(q '} will involve operators of di-
mension four and so on.

So far, of course, this is but an educated guess
as to the asymptotic behavior of momentum-space
amplitudes. One should not, however, be misled
into thinking that a statement such as Eq. (3}is in
any sense self-evident. For example, this equa-
tion asserts that the leading asymptotic behavior

is a function only of the magnitude of the large mo-
mentum, and not of its "direction cosines" with
respect to the momenta which are held fixed. For
individual Feynman diagrams this is not necessar-
ily the case, so that if Eq. (3) is correct, it is so
by virtue of some nontrivial cancellations between
different diagrams.

This is where the broken-scale-invariance Ward
identity comes in. In the next sections of this pa-
per, we shall show that such Ward identities do
two things: They provide a very simple scheme
for demonstrating that Eq. (2) is actually correct
(i.e., they guarantee that the requisite cancella-
tions do occur} and they impose conditions on the
expansion functions C„(q) which are similar to
what one might expect from renormalization-group
arguments. Another useful feature of this ap-
proach is that it can easily be generalized to oth-
er renormalizable theories and to expansions of
more interesting quantities, such as current ma-
trix elements. Once Eqs. (2) and (3) have been
disposed of, the generalization to more interest-
ing amplitudes will be evident. It is worth men-
tioning that although our heuristic arguments
started from the configuration-space expansion
of Eq. (1), we shall not be able to prove that it is
true. For technical reasons which will soon be
apparent, we must content ourselves with the mo-
mentum-space expansion of Eq. (2).

II. PROOF OF THE LEADING TERM

The expansion in Eq. (2) consists of terms of
well-defined orders in large momentum which can
evidently be studied individually. Accordingly, in
this section we shall concentrate on the leading
term [written explicitly in Eq. (3)], since the
proof is especially simple and clearly illustrates
the general procedure for dealing with further
terms in the expansion.

As a first step, we shall use Weinberg's theo-
rem' to show that if Eq. (3) is true for n = 4, it is
automatically true for n&4. The relevant part of
Weinberg's theorem can be stated as follows: Sup-
pose we have a graph with n external lines of mo-
menta p, ~ ~ ~ p„, and suppose that the momenta
p, ~ ~ p„are taken to infinity as follows: p; =p;
+he;, with e; spacelike and A. -~. Then, in the
limit, the graph is O(X' ), where m is the min-
imum number of internal lines which, when cut,
completely separate the external lines carrying
P, ~ ~ ~ P„ from those carrying P „~ ~ ~ P„(see
Fig. 1}. The instruction that the large momenta
be asymptotically spacelike is absolutely crucial, '
and we must in the future understand that in Eqs.
(2) and (3) (and in any similar asymptotic expan-
sions) the momentum q is large and spacelike. It
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internal lines

/F.~

+ 0(q-')

l'm+& ~n

FIG. 1. Example of a graph such that cutting m
internal lines completely separates the sets of external
moment (p&, ... ,p~} ~d (p~+ f, ... ,p„}.

is this restriction on q which makes it difficult to
go from Eq. (2) to Eq. (I}.

Let us now consider Eq. (3) for n&4. By virtue
of Weinberg's theorem, it is clear that only Feyn-
man diagrams which can be decomposed as in Fig.
2 can be asymptotically O(q'}. Therefore, in the
skeleton expansion of I' "' for n &4, only those
skeletons in which the two external lines carrying
large momentum are attached to the same vertex
can be O(q'). If the four-particle vertex is as-
sumed to satisfy Eq. (3), these skeletons undergo
the transformation summarized in Fig. 3, yield-
ing graphs which are easily recognized as the
skeleton for I'&g". In making the transformation,
we assumed that the limit could be taken inside
the integration over internal momentum. This is
justified by the convergence of all the relevant in-
tegrals before and after taking the limit.

A related result, which will prove useful, fol-
lows from similar arguments. The amplitude I'&2
has a skeleton expansion for n~ 4. Therefore, if
we study its O(q') asymptotic behavior along the
lines of the previous paragraph, we find that if
I' ' satisfies Eq. (3) then

r'g,'(a; p, ~ p„)

~ c,.( )rq',",'.(~, n', p, p„)+o(q-'),
(4)

FIG, 3. Taking the limit of the diagrams « o(q ) in
The cross represents an insertion of the opera-

tor P2.

needed to order r in the coupling constant, it is
only necessary to insert primitive vertices cor-
rect to order r —1 in the skeleton expansion.
Therefore Eq. (4) is guaranteed correct to order
r if one assumes I'"' to satisfy Eq. (3) only to or-
der r —1.

It remains to show that I'" actually satisfies
Eq. (3}. Since r is primitively divergent, it
has no skeleton expansion and some more power-
ful technique is needed. We shall now show that
an effective procedure is to argue by induction
with the help of the broken-scale-invariance Ward
identity. The explicit form of this Ward identity
was found in Refs. 1 and 2 to be

8 8 (.)+p——+~y r (p '' p)
8A,

= -fr',"'(o;p, p„),
where P, y are power series in the coupling con-
stant X beginning with A.', X, respectively, and 8 is
proportional to P' [more precisely, 8= p, 'f(X)P'
= o.'&fP]. Since matrix elements of P' arise natural-
ly in our argument, we prefer to write this equa-
tion in the form

8 8
u —+p +ay r'"—'(p p)1 n

= -fo.r',",'(o; p, p„) .
(5)

p, = q+ ~b', 1p2= -q+ zb ', A similar equation for I'&"3, of which we shall
make use, was derived in Ref. 2:

for n ~ 4. An important point is that if I"2 is

FIG. 2. All diagrams with O(q ) asymptotic behavior
must be decomposable in this fashion. The arrowed
lines are the external lines carrying large momentum.

(
8 8

p, —+ p—+ny+y&2 I'&2 &;p, ~ ~ ~ p„

fa r'gi, ~( ~o; p, -p„),
(6)

where o., P, y are the same functions as they ap-
pear in Eq. (5), and y&2 is a power series in X

beginning O(A).
The first thing to observe is that the proposed

expansion for I' "' [Eq. (3)] and its consequence
for r~g2 [Eq. (4)] cannot be consistent with Eqs.
(5}and (6) for an arbitrary C z&. Inserting the
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leading terms of the expansions for F and F &2
(.) (.)

into Eq. (5) gives

( + p—+ny C~2 q Fg2' ~; p3' ' 'P
Bg ~A,

= -t[[C~~(q)r'$2~2(0&; p[' ' ' p.}~

Simplifying this with Eq. (6) yields the condition

The definition of C&2 in Eq. (3} shows that it is a
power series in in(-q'/)), ') with dimensionless co-
efficients. Equation (7) therefore guarantees that
if P()[) = 0, the logarithms sum up to the power

I(-q'/p')», where y'= -2y+y&2. This is reminis-
cent of Wilson's operator-product expansion', one
is tempted to identify the "scaling dimensions" of
(p and (j)' as 5&= 1+y and 5&~

——2+y&a (in the ab-
sence of interactions, y and y2 go to zero and the
scaling dimension becomes identical with the or-
dinary dimension). Then C&2 is proportional to
(-q'), where 5'= 6&a —25, which is, for this
case, precisely the relation proposed by Wilson
between asymptotic behavior and scaling dimen-
sions. When we study the higher-order terms in
Eq. (2), however, we shall see that C &2 has
O(q ') (and smaller) contributions which might
sum up to a power just as well as the O(q') contri-
bution. Therefore, we cannot attach too much
weight to the fact that the O(q') term can sum up
to the power in Wilson's relation.

We are now ready to proceed wiA the proof by
induction that I' " satisfies Eq. (3). Let us there-

fore suppose that, to 0()[" '), I'" satisfies Eq. (3),
and that as a consequence C&2 is known to O(Z" ')
and satisfies Eq. (7) to that order. [The notation
0()[")has the usual meaning, as opposed to the
somewhat different meaning we attach to the sym-
bol O(q") when applied to asymptotic behavior. No
confusion should arise. ] To keep track of orders
in the coupling constant, we shall provisionally
adopt the notation "'I' ") to indicate the expansion
of I' ") out to 0()[') only (and a corresponding nota-
tion for other matrix elements which appear in our
equations). Our problem then is to show that'"'I'" satisfies Eq. (3}.

To do this, we study the broken-scale-invari-
ance Ward identity for '~F ", which can be writ-
ten

[)((r(4)(p. . .p )1 4

tn "r-",)(0;p, p, )

p +4 [n-1]F(4) P . . .P

(8)

if we let it be understood that the right-hand side
is expanded out only to 0()["}. The reason that
'" "I' ', rather than '"'F ', appears on the right-
hand side is that, as mentioned in connection with
Eq. (5), pe/s)[ and y are both effectively of O(X).
If we use Eq. (4) and the remarks which follow it,
plus our assumption on the asymptotic behavior of
'" "I'('), Eq. (8) transforms into the following
statement about the asymptotic behavior of '"'F ':

[qar(4)( p p ) [~ [qq QC (q} [ ]r(2))) (Og, p p )
a

8 ]L(, q~ OO

a
j|3—+4y ~" 'C& q

'" "r",,' ~;P,P, +0 q-',

P, -q+2&, P.=-q+.&.1 1

The right-hand side of this equation can be recast, using Eq. (6), into the form

'"'I' ' (p ' ' ' p )
" C (q))[—'"'I' (t[' p p )$2 $2 y 3 4

a
~ '"'c',*l(q;q, q, )(-()——qq+x, .) '"-"c,.(q)+o(q *). (lo}

Notice that in the first term on the right-hand side, it is legitimate to replace '" ~C&2 by '~C@2 since
[[(8/&)[)r&2 has an expansion which begins at 0()[) [the 0()[ ) piece of r&] is dimensionless and therefore
is annihilated by ps/&)[] and we are only keeping track of terms of 0()[") or less in the equation.

So far, of course, the term of O(X") in C&~ is undetermined. On the other hand, we know that if I' is
to satisfy Eq. (3) to 0()("), then C&2 must satisfy Eq. (7) to the same order. If we look only at terms of
O(A") or less, that equation can be written

'"'c,.(q)= -q
q~

—qy ~ q, *) '"-"c,*(q),
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where '" ~C &2 rather than '"'C&2 appears on the right-hand side because the operator in large parentheses
is O(X). It is not hard to see that, since C&2 is a joint power series in ln(-q'/p, ') and X with dimensionless
coefficients, this equation determines '"'C&2, apart from an additive constant of O(A."), once '" nC» is giv-
en. If we construct the function '"'C&2 in this manner, Eq. (10) can finally be rewritten as

'"'I'"(P ~ ~ P ) v —['"'C~ (q) '"'I'~, (a;P, ~ P,)]+O(q '),

I 1
p, = q+ ~A, p2=-q+ ~b, .

For the moment, '~C&2 is arbitrary to the extent of an additive constant of O(X ). Since F, C&a, andn ~ (4)

I'&2 are all dimensionless quantities, the "integral form" of this relation is

(12)

'"'F"'(P P.) ~ '"'C, (q) '"'F' (~;P,P.)+F(q~P, P,)+o(q '), - (13)

where F is O(A.") [since I' " satisfies Eq. (3) to
O(A.

" ')] and satisfies gsE/&p = 0. F is of course
a dimensionless function so that the latter condi-
tion implies that F is a function only of ratios of
its momentum arguments and not of ]Lj, . However,
any singularities F may have in the variables 4,
p„and p, must, by the usual principles of analy-
ticity, occur at locations determined by the mass.
Therefore, F is actually entire in these arguments.
The only way it can do this and still be a function
only of ratios of momenta is for it to be just a con-
stant [necessarily of O(X")]. However, in Eq. (13),
we are free to adjust '~C

&2 by a constant of O(X"),
and since the O(X") piece of I'&a is itself a con-
stant, the product '"'C&2 '"'I"

&, is, to O(X"), adjust-
able to the extent of a constant of O(A. "). There-
fore, F can actually be absorbed into C@2 in Eq.
(13), thereby completely determining C&2 to O(X")
and guaranteeing that I' ' satisfies Eq. (3) to
O(X"). The resulting C&2 of course has been con-
structed to satisfy Eq. (7). The induction step of
the proof is therefore complete. Since the lowest-
order contribution to I' " automatically satisfies
Eq. (3), we are therefore gua. ranteed that, to any
finite order in X, I'" satisfies Eq. (3), and that
the C&2 so defined satisfies Eq. (7) to any finite
order.

The crucial feature of Eq. (3) is its assertion
that the various powers of 1n(-q'/p, ') coming from
various orders in the perturbation expansion all
multiply the same function (and of course that that
function is a matrix element of a specific local op-
erator). The interesting feature of our argument is
that the use of the broken-scale-invariance Ward
identity allows one to demonstrate that this actu-
ally happens without ever having to look in detail
at the behavior of specific diagrams. Presumably
this is possible because, as was emphasized in
Refs. 1 and 2, the Ward identity embodies the con-
straints of the renormalization group, while the
renormalization group is precisely a tool for or-
ganizing asymptotic logarithms.

III. HIGHER-ORDER TERMS

Next, we must consider the higher-order con-
tributions to Eq. (2). Actually, the steps one must
go through to prove any given order in the expan-
sion are completely analogous to the steps one
goes through in proving the leading order. The
only difference is that the number of independent
terms one has to juggle increases rapidly as one
goes to higher and higher orders. For this reason,
a general proof requires the development of a com-
pact and efficient notation. Rather than trying to
develop such a notation, we prefer to illustrate
how things go in nonleading orders by sketching
the proof of the O(q ') terms in Eq. (2). It should
then be clear how the proof of a general term
would go.

According to our heuristic argument, the O(q ')
terms in the expansion are determined by opera-
tors of dimension four. There are five indepen-
dent such operators:

of spin zero and

(a„a„-—,'g„„)y', (s„ya „y —~„„s d, a„y)

of spin two. As mentioned earlier, we agree to
define matrix elements of these operators by us-
ing the standard subtraction prescription with the
subtraction point taken at zero four-momentum.
It is worth noting that, as a consequence, to zer-
oth order in the coupling constant, these operators
have very simple matrix elements: I &4=1, all
other matrix elements zero;

I"a' ga g(q'PiP2) = Pg 'Pa-(2)

all other matrix elements zero, and so on. If then,
for ease of writing, we denote the five operators
of dimension four by B&, i=1, . . . , 5, the expan-
sion of I'"' out to O(q ') becomes
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5

r'"'(p, p„) c .(q)r'". "(r;p, ~ p„)+p c,.(q)r',". "(~;p, p„)+o(q ),
(14)

1 1P&=a+-.&, P2=-a'+r&,

where Cs. are of O(q ') [that is to say, a function of appropriate Lorentz tensor structure homogeneous of

degree -2 in q times a polynomial in ln(-q /p') with dimensionless coefficients] and C&2 is now expanded
out to O(q '). By analogy with the proof of the leading term, we expect to need the expansion to O(q ') of
I'&"2 as well. A natural guess for this would be

5

r'g,'(~; p, p„) ~ c,,(q)rg';,",(«', p, p„)+g c,, (q)r'~2,".(«'; p, p„)+o(q ').

In fact, it turns out that we must add to this a term which looks very much like a contact term. The cor-
rected expansion is

r'g)(~;p, . p„) ~ c,.(q)r'g, ',(«', p, p„)

5

+pcs (q)r&2s. («', p, p„)+Cy2(q)r~". "(a+a', p, ~ ~ ~ p„)+O(q '),

P&= a'+ z~', P2= -a'+ z&'y

where C&2 is O(q '). We shall shortly see the significance of, and understand the necessity for, the term
involving C &2.

Our experience with the leading term tells us that we shall also need the broken-scale-invariance Ward
identity satisfied by the matrix elements of the 8;. Since these Ward identities can readily be derived via
the methods of Refs. 1 and 2, we shall simply list the relevant results:

j
~ ~ ~ ~ ~

9 8 5

p —+ p—+ nr r' ".'(a; p, ~ ~ ~ p„) +Z w, ,r' "'(a; p, ~ p„) = -fo're/2, (0;p, ~ p„),
BjtL BA. j= 1

(
5

+ p—+ny+y&2 r&"2B («'; p, p„)+p y;, r&"2~,(hA', p, p„)+y& ~2, r&" (&2+6.', p, ~ ~ ~ p„)
Bp, Bg

(16)

far',",'„,(0«-'; p, .p„)

where o. is the same constant as in Eq. (5) and all
the y's are at least of O(X).

We are now ready to proceed with the proof,
which we will model as closely as possible on the
proof of the leading term. First of all, according
to Weinberg's theorem, the only diagrams contrib-
uting to I'"' which can have asymptotic behavior
of O(q ') or higher are those which can be decom-
posed as in Fig. 4. This means that the asymptot-
ic behavior to O(q ') of an arbitrary F "' is deter-
mined by the asymptotic behavior to O(q ') of I' "
and r~'~. However, if we insert Eq. (14) into Fig.
4 for the upper blobs, the internal-loop integra-
tions will converge only if the number of external
lines attached to the lower blob is greater than
four (because four- and two-particle matrix ele-
ments of operators of dimension four are in gen-
eral primitively divergent). As a result, one can
easily discover, by studying appropriate skeleton
expansions, that if I""and I ' are assumed to
satisfy Eq. (14), then I"'"' for n&6 automatically

satisfies Eq. (14). By the same token, one finds
that if r&2 is assumed to satisfy Eq. (15) and if
I' " and I'" are assumed to satisfy Eq. (14), then
r~g2 for n &4 automatically satisfies Eq. (15). In-
deed, since insertions in I'&"z of I' ', I' ', and
I @2 are necessarily of lower order in coupling
constant than I'@2 itself, it is only necessary to
insist that these fundamental Green's functions
satisfy Eqs. (14) and (15) to O(X' ') in order to

FIG. 4. All diagrams with asymptotic behavior of
0(q 2) or higher must be decomposable in either of
these two fashions.
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guarantee that r~6", 6 satisfies Eq. (15) to 0()('). It
therefore remains to be demonstrated that F ',
I' ", and I"

&2 satisfy the appropriate expansions.
We note also that the expansions of Eqs. (14) and

(15) are not consistent with the broken-scale-in-
variance Ward identities of Eqs. (5) and (16) for
arbitrary expansion functions B;, C&2, and Cy2.
Arguments completely analogous to those which
led to Eq. (7) yield the conditions

8 8
p. —+P—+2y —y 2 C 2—- -iC

a~ ex
(17a)

a ~ 8~ B
5
~

~~~
~ B ~» BI~

~~ t
8 8 5

)],—+(8—+2y C]) +Py t(c,])=0,
/=1

8 8 5

)],—+ p—+ 2y C66+pyz» C]), =0. (17c)
i=1

Equation (16) is just the extension to the next or-
der in the expansion of Eq. (7): to O(q '), C&6
satisfies an inhomogeneous equation with C &2 serv-
ing as the inhomogeneous term. In fact, were the
"contact term" missing from Eq. (15}, so that
C66=0, then Eq. (17a) would imply that C~6 is
purely O(q'), with no O(q ') piece. This is one
reason for the necessity of the "contact term. "
These equations are also analogous to Eq. (7) in
the sense that, up to simple integration constants,
they allow one to determine the expansion func-

tions C66, C]]„and C66 to 0()[") if they are given
to O()["-'}.

Let us now sketch how the induction step of the
proof goes. We assume that I' ', I' ", and I z2
satisfy Eqs. (14) and (15) to 0()[" '} and that the
corresponding expansion functions satisfy Eqs.
(17a)-(17c) out to the same order in the coupling
constant. Then we consider the broken-scale-in-
variance Ward identity for I' " expanded out to
o()("):

8 [n]I (6)(p. . .p1 6

= -5~ ["]r(6,)(0;p, ~ p, )

+—6y '" "r "(p ' p)
8

~

n ~ I
8A. 1 6

(18}
where we use the same notation as in Eq. (8) to in-
dicate the expansion of a matrix element out to a
given order in X. Again, '" ur(' appears on the
right-hand side, rather than '~I' ', because the
operator in parentheses is effectively 0()[) and the
whole equation is understood to be expanded out
only to 0()["). Our assumption that I' ', I" '), and
r'6)) satisfy Eqs. (14) and (15}now determines the
expansion to O(q ') of the right-hand side of the
Ward identity (18}:

~—'"'r "(p p )

&(]) [n-]]C (q) [n]r(4) (0l].p . p )
(I~ 4)o

5-]op '"-"C (q) '"'r",' (on. .p, p, ) -fa '"-"C (q) '"]r",'(~. p p )
5 5

~ ~ ~

8 5

p + 6y [tt )]C (q) [tt )]r(4)(Z. p . . .p ) + p [n-)]C [n-Qr(4) (Z p p ) O( 4)
5 5i=1

1 1p, = g+ ~b, p2 = -q+ 2b, . (19)

This can be simplified with the help of the broken-scale-invariance Ward identities of Eqs. (6) and (16) to

[)6r(6)(P . . . P ) ~ [n-l]c (q)~ [n]r(4)(Z. P P )
8 8

8p,

8'"r", (~;)pp. ) —(()—,+tr —r * '" "c *(t) —''" "c *(4)

5

+p '"-"c, (q)) —, '"'r", I(~; p, p, )
1 8p, i

5 8+p ["]r", (&;p, . p) — P +2y '" "C —
(q6) 5„';'y" "C,-(q) +o(q ),

i=1 5 2=1

(20)
1 1

PI = 0+ Z» P2= -9'+ Z& ~

The expressions in square brackets can then be simplified with the help of Eqs. (1"la)-(17c) as follows.
Since I' &6 has an expansion beginning at 0()('), the square bracket multiplying it is needed only to 0()(" ');
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(21)

where the expression in large parentheses is expanded out to O(X"). At this point we can undo the differ-
entiation with respect to p. , getting

5
'"'I' ' (p ' ' ' p ) C& (q)I'z (n; p ' ' p ) + p C,.(q)I' ',.(n; p ' ' ' p ) +F(q, n, p ' ' ' p )+O(q )

(22)

since C&2 is guaranteed to satisfy Eq. (17a) to O(X" '), this square bracket may therefore be replaced by

N(s/s p) " '
Cqm. Similar remarks are true for the square brackets multiplying the I'~,', with one excep-

tion: I @44 has an expansion in X beginning at A.', so that the square bracket multiplying it is needed to
o(x"). If we use Eq. (17b) to determine i"ic&4, the square bracket can be replaced by p(8/ai(, ) i"~c&4.

There will then be an undetermined additive constant of integration in C@4 which can easily be seen, be-
cause Cz, is O(q ') and has dimension -2, to be of the form constant XX"q '. The net effect of this is that

5'qr"'(p, p, ) q—cq. (q)r'~", (q;p, p, ( ~ Ec, (q r(',"( q; p, p.() +o(q '),
Bg &=1

where, again, the expression in large parentheses
is expanded out to O(X") and F is O(q '), O(V), and
satisfies (S/&g)F =0. The same sort of argument
as was made in the sequel to Eq. (13) allows one
to conclude that F is actually of the form constant
&A."q '. But this is just the right form to be elimi-
nated by adjusting the integration constant in our
determination of '"'C&4. Therefore, we have at
the same time shown that '"'I ' does satisfy Eq.
(14) and determined '"'C&4 so that it satisfies Eq.
(17b).

To complete the induction step, it is necessary
to show that I' "and I @, satisfy the proper equa-
tions. The argument is just the same as the one
we have gone through, with minor modifications,
so we shall not bother to write it out. An impor-
tant point, which is easy to check, is that the var-
ious integration constants, analogous to F in the
last equation, can consistently be absorbed by ad-
justing the integration constants in the expansion
functions C~. , etc. It is at this point that the ne-1'
cessity for the "contact term" proportional to
C&2 in Eq. (15) becomes fully apparent: A term
of that structure is necessary to absorb one of the
integration constants which arises. Again, to com-
plete the proof, it is necessary to find a starting
point for induction, and this is trivially supplied
by lowest-order perturbation theory.

Although the detailed steps of the proof become
quite cumbersome in O(q '), it is clear that basi-
cally the same operations must be gone through as
in the proof of the expansion to O(qo). It is also
clear how the proof of a general order would go,
although in the absence of a supercompact nota-
tion, writing out the explicit steps would be very
difficult.

IV. CONCLUSION

The most important thing to notice about these
arguments is that the essential steps in the proof

of the O(q ) and O(q ') terms in the asymptotic ex-
pansion are identical and logically determined
only by the structure of the broken-scale-invari-
ance Ward identities. For this reason, we are
convinced that our argument can be extended to
prove the general term in Eq. (2). It also seems
clear that, since broken-scale-invariance Ward
identities are not peculiar to A. Q' theory, but can
be derived in any renormalizable theory, expan-
sions such as Eq (2) ca.n be proven in the context
of other theories. This equation is, of course,
not of much interest in itself, since there is no
way of measuring off-mass-shell particle Green's
functions. However, since broken-scale-invari-
ance Ward identities exist for more interesting
quantities, such as amplitudes involving currents,
we expect to be able to derive for them expansions
quite simila, r to Eq. (2). We have concentrated our
attention on particle amplitudes since we wanted
to make our point about the connection between
broken-scale-invariance Ward identities and as-
ymptotic behavior in the simplest possible, if not
the most realistic, context. We hope that in this
context, the general power of these Ward identities
for studying asymptotic behavior has been made
very clear.

It should be noted that the limit we have studied
is not entirely without practical interest, at least
when applied to virtual Compton scattering ampli-
tudes. On the one hand, the behavior of a matrix
element of two currents, for large spacelike mo-
menta carried by the currents, determines wheth-
er or not radiative corrections to a given process
are finite. On the other hand, the same asymptot-
ic behavior can be used to derive sum rules for
inelastic weak production and electroproduction in
the manner of the original Bjorken limit. The sum
rules one would derive in this way are weaker than
the classic Bjorken-limit sum rules, but have the
virtue of being correct in perturbation theory.
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There are, of course, other asymptotic limits
of more direct phenomenological interest. In par-
ticular, it would be interesting to know what hap-
pens when the particles carrying large momentum
are kept on their mass shell. It is conceivable,
but not obvious, that methods similar to those we
have discussed can be applied usefully to this case.
It would also be interesting to know if these meth-
ods have anything to say about the so-called light-
cone expansion, "which is of direct interest in
studies of high-energy electroproduction.

Although we have not given an exhaustive discus-
sion, we hope that we have sho~n that the broken-
scale-invariance Ward identities are a powerful

tool for investigating at least certain kinds of high-
energy behavior. Since these Ward identities are
a consequence only of the renormalization struc-
ture of perturbation theory, they must incorporate
essentially the same information as the renormal-
ization group. However, the expression of this
information in the form of Ward identities seems
technically superior to the old-fashioned renormal-
ization-group arguments since it enables us to dis-
cuss very simply quite complicated situations.
Therefore, although we have been discussing what
is in a certain sense old physics, it is interesting
to see how a new point of view allows us to extract
new consequences.
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We propose a simple and unique asymptotic symmetry scheme to incorporate spins, SU(3),
CPT invariance, and the generalized Bose statistics into the parton dual-resonance model for
deep-inelastic lepton-hadron reactions. The scheme embodies Harari-Rosner quark duality
diagrams, adopts Chan-Paton SU(3)-symmetry factors, identifies Mandelstarn, Bardakci, and
Halpern's multiplicative quark model in the Bjorken limit, and generates Fritzsch and Gell-
Mann's light-cone structures identically. The dynamical (parton-dual-resonance-model) ap-
proach is therefore unified with the symmetry (light-cone) approach, and the complementarity
between these two is established. Light-cone sum rules are derived, and a new sum rule is
suggested. As a further application of this scheme, we calculate the complete sets of bilocal
light-cone structures occurring in the two-heavy-boson processes.

I. INTRODUCTION

It is generally believed that symmetries may be-
come more exact in reactions at very high ener-
gies, since then the symmetry-breaking effects
due to the masses of the external particles may be
neglected. The light-cone approach' to the deep-
inelastic processes is a beautiful example mani-
festing this belief. Fritzsch and Gell-Mann's ab-

stractions' from the free quark model of the light-
cone eommutators, and of the bilocal light-cone
algebra, are in fact based on this point of view.
However, the weakness (also the beauty) of this
approach, is the inability in dealing with the dy-
namical aspects of these processes under discus-
sion.

Entirely at the other extreme, the parton dual-
resonance model' for deep-inelastic lepton-hadron


