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Quantum concepts can be applied to space-time processes to make a quantum (q) theory
that is free of the possibility of divergencies inherent in classical continuum theories, yet
causal, Lorentz-invariant, and asymptotically Poincaré-invariant for large times. A gener-
al technique, algebraic quantization, is provided for going from classical (c) paradigms,
typically discrete logical structures, to q analogs. Applied to the two-dimensional ¢ checker-
board, algebraic quantization gives a q theory of time and space asymptotic to the four-di-
mensional Minkowski ¢ theory in the limit of large time. Applied to the simplest dynamics
on such a checkerboard, a piece that makes the same move again and again, algebraic quan-
tization gives a q dynamics asymptotic to a massless spin-} two-component dynamics in the
same limit. The quantum of time, if it exists, must have spin 1. Some features of general
relativity such as curvature seem plausible consequences of a quantum theory of space-time

processes.

1. INTRODUCTION

We turn now from quantum geometry to quantum
dynamics.! The development of physics, if we see
it right, looks like

ceeCoesCqee-q.

The c period was the epoch of Newton, Faraday,

Maxwell, Einstein. In it, time and matter were
both classical systems.

The cq period is now, the time of Heisenberg,
Dirac, Tomonoga, Schwinger, and Feynman; a
brief interregnum during which vigorous hybrids
of ¢ (classical) time and space with ¢ (quantum)
matter have been created. In the cq period we
have learned to specify the kinematics of matter M
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no longer by a phase space but by the algebra M4
of physical quantities belonging to M. (We take an
algebra to have +, X, *, and the complex numbers
€. The algebra S” of a set S: =the collection of
complex functions S~e.) In the cq period dynamics
is still given, as in the epoch ¢, by a map of 7 XM
- M, where T is time, the real-number axis in the
simplest theories, the future timelike Minkowski
cone in more relativistic ones. In cq, 7 is ¢ and
M is q. The X in T XM is the continental divide

of present-day physics. The flow of theories of 7T
brings us to general relativity, that of M to quan-
tum mechanics. Discovering the unity of these two
bodies of knowledge is still the main problem be-
fore physics today.

The q period toward which we have been feeling
our way of late is one in which both time and mat-
ter are q systems, if it will still be worthwhile to
regard them as separate entities at all.?

For I believe that the separation between 7 and M
must be an artificial one, indeed, we never meet
T without M or M without 7. There must be one
point of view from which both 7 and M are seen as
part of one deeper concept. Here we attempt to
express everything in terms of one object we call
the dynamical process. Then time emerges as the
number of elementary processes in sequence, and
matter is to be constructed from the processes of
our interaction with it. The processes of a ¢ dy-
namical system form a ¢ system. Those of a cq
dynamical system form a mixed or cq system.
Here we consider a q dynamical system, whose
processes form a q system.

Such a dynamical process is an ensemble of many
quanta and has a complex q logical structure. How-
ever, the procedures of q logic, those of one sys-
tem dealt with by Birkhoff-von Neumann and those
of many systems developed in the physics of g

ensembles, all are analogs of familiar ¢ paradigms.

For each q logical structure these paradigms form
a “g theory,” a general logical skeleton which we
flesh with g meat.

We have now spoken of four kinds of theory we
call ¢, cq, q, and g. c is the approximate theory
usually called the classical limit; cq is the ap-
proximate theory of the present-day quantum-
mechanical type; q is supposed to be the true
theory sought; g is a c theory of the general struc-
ture of q. We must provide the following paths
between these worlds:

(1) g~q. We go from g paradigms to q physical
theories by an algorithm described below called
algebraic quantization.

(2) q—cq. From q to cq is a limiting process in
which the number of quanta of time — chronons - is
permitted to go to «, or more conveniently a con-
stant 7, the quantum of time, is permitted to go to

0. This we call the limit of classical time.?

(3) eq—c. From cq to c is a limiting process in
which the constant of action 7 is allowed to go to 0.
This is the limit of classical mechanics.

Canonical quantization and its various forms- due
to Dirac, Schwinger, and Feynman* are ways to
undo the limiting process 7z -0, to reconstruct cq
from c. There can be no confusion between canoni-
cal quantization c -~ cq and algebraic quantization
g—-q. If we are right, moreover, algebraic quanti-
zation is sufficient in itself, and there is never any
need or sense for a canonical quantization following
it. .

The model of time given here is possibly wrong,
certainly incomplete. We have more confidence in
the general direction: For how could the one world
be half classical, half quantum? Here we only cor-
rect some definite errors in STC (Space-Time
Code),* express the essential concept of a q dy-
namics, and give some models. Nevertheless,
some conclusions do seem to stand out.

II. DYNAMICS

What is a dynamical system?

In most present-day physical theories, the laws
of dynamics are expressed by a one-parameter
group of automorphisms of the physical system.
The parameter is time and is a ¢ quantity from the
start. The action of the passage of time 7 upon
the system M is defined by a map

TOM: TX M~ M. 1)

Instead we consider a dynamical system as one
that is subject to and defined by a system of pro-
cesses. We express the laws of dynamics by giving
the system of all kinematically possible processes
II; an associative composition (where the subscripts
merely order the II’s)

I,0M,: I,xII,~TI @)

giving the resultant of two processes performed
sequentially; and a preferred class D of processes,
those that are dynamically allowed.

We call such a triple (II, O, D) (and improperly
the system II itself) a dynamical process. The pair
(I, O) alone are said to constitute a kinematical
process. The kinematics defines what might hap-
pen, the dynamics, what does. i

For a ¢ example, consider a point particle mov-
ing in 3-space with the passage of a discrete time
t=0,7,27,.... The path 7 is then a sequence of
points,

T=(Xgy Xyy Xpy 002 )e

However, the point x, can be regarded as obtained
from x, by the process of adding the vector dis-
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placement Ax,=x, — x,. The path 7 itself can equal-
ly be defined by x, and the sequence of displace-
ments or process

M= (A%, Ax,, ..., Axy),

where Ax,=x, ., - x, The path 7 abstracted from
its initial point x, is the process II, the sequence
of displacements to which the particle is subject.
The law of composition II, OII, of processes is
concatenation, the stringing together of two se-
quences of displacements to form one. The class
D of dynamically allowed processes for a free
particle is the class of all sequences with

Axy=Ax, =+ * * =Axy.

We call sequences whose terms are all equal di--
agonal, and then in this example D is the class of
diagonal sequences. This dynamics resembles the
nonrelativistic dynamics of a free point particle.
For a simpler example of a ¢ dynamical process
we take one appropriate to a’'man in the game of
checkers, which is known to be relevant to the
Dirac equation.
. We take II to be the set of binary sequences
X1 X2 - - - With x; =0, 1, and define the product
II,OIl, by concatenation of sequences:

(00)O(111)=00111.

Any such process we call a ¢ binary process. This
defines the kinematics.
We take for the dynamics the class D defined by

Xi+1=Xi» ©=0,1,...
which singles out as allowed all diagonal (bishop’s)
paths.

We wish now to consider dynamical theories in
which IT is a q system. What shall be meant by a
composition II, OII, in that case? And by the as-
sociative law? These are purely logical concepts,
and call for a further development of ¢ logic. We
give next a general procedure for such develop-
ments.

III. ALGEBRAIC QUANTIZATION

Here we give an algebraic technique for going
from c paradigms to q analogs, from g to q. It is
intended for the construction of a q-process dy-
namics from a c one, but it also provides ¢ coun-
terparts for many concepts of ¢ physics that can
be expressed in terms of sets such as phase spaces
belonging to the systems, and maps between these
sets. The generalization rules are, in the order of
their performance:

(1) Coordinatize. Each set is replaced by its
algebra of quantities (coordinates), each map is
reversed in direction.

(2) Generalize. Replace each algebra, com-
mutative in virtue of its construction, by a general
algebra, not necessarily commutative.

(3) Specialize. Replace each algebra by an ir-
reducible one to single out the pure quantum.

A system, regarded kinematically, may be iden-
tified with the algebra of its quantities, except that
the two map contragrediently. This algebra is
commutative for c systems, general for general
systems, irreducible for q systems.

The idea of defining a system by its algebra
rather than a phase space or Hilbert space stems
from Heisenberg and Dirac who in the earliest days
of quantum mechanics defined the kinematics of a
q particle on a line by the commutation relations

pa-qp=n/i,

which is to say by the abstract algebra generated
by p and ¢ subject to this relation.’

This general quantization algorithm cannot be
confused with the more special canonical quantiza-
tion of Hamiltonian dynamical systems. If we try
to apply this rule to Hamiltonian systems, we only
bring back to consciousness the grotesque internal
logical structure buried in any continuum-based
physical theory. '

Some results of algebraic quantization follow.
Most of these results have long been used infor-
mally in q physics, but to familiarize ourselves
with the present terminology we may work one out
here.

Consider for example the concept of the product
of two systems S;, S,, which we designate by S,
xS,. (Imagine this concept appears in some class-
ical form of theory, a paradigm, and we are to
provide a corresponding g form, its analog.) In a
c theory S; and S, are presented as sets, and S,
xS, is the set of (ordered) pairs (m, »n), for all
meS,, n€S,. What shall S, XS, mean ina q
theory, where S, and S, may be given by Hilbert
spaces? We compute as follows:

(1). Coordinatize. Question: How is the algebra
of S, XS, formed from those of S, S, in ¢ theory?
Answer: (S,xS,)*=SxS2 in the ¢ theory. We
multiply (commutative) algebras when we multiply
sets.

(2) Generalize. Question: What operation (func-
tor) on general algebras reduces to the product for
commutative algebras? Answer: The “commutative
product,” the product in which the elements of the
two algebras are taken to commute with each
other.

(3) Specialize. Question: What does this com-
mutative product of algebras reduce to when the
factors in it are the algebras of two Hilbert spaces
H,, H,? Answer : The algebra of the direct or ten-
sor product H, X H,. Thus we multiply Hilbert
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spaces in g theory when we multiply sets in the ¢
paradigm. Algebraic quantization of the product-of
sets gives the (direct or tensor) product of Hilbert
spaces. This is one entry in the tabulation that
follows. The others are obtained similarly.

It is required that the steps 1, 2, and 3 be
intrinsic or natural. Natural is a concept of cat-
egorical algebra. We begin with the map S~ S*
from sets to their algebras. This is natural in the
following sense: When a map of S into another set
T is carried out, a map of algebras (a unit pre-
serving, * preserving homomorphism) is induced
(from T into S*). A natural map such as this map
from sets to their algebras is called a functor. We
always enter step 1 with some functor of sets, and
leave it with a functor of commutative algebras.

In the example, we entered with S, XS,, a functor
from two sets to one, and left with S*xS2, a func-
tor from two commutative algebras to one.

Thus in step 1 we seek a correspondence of func-
tors. This correspondence too is to be natural. It
is then called a functor map (natural transforma-
tion, functorial morphism).

In step 2 we extend a functor from commutative
algebras to algebras.

In step 3 we restrict a functor from algebras to
irreducible algebras. The given correspondence
from Hilbert spaces to their algebras is again
natural, a functor. '

We may seek also a functor of Hilbert spaces,
the product in the above example, with a natural
map (functor map) to a specified functor of alge-
bras, that resulting from step 2, if we wish finally
to express our concepts in Hilbert space rather
than algebraic terms.

The use of the categorical algebra of Eilenberg
and Maclane made here, though rudimentary, was
essential. It would seem that categorical algebra
is for metaphysics (as it is for metamathematics)
much what group theory is for physics. The use
of categorical algepra was suggested by a remark
of Giles and Kummer? and saved much trial and
error.

Let us now apply algebraic quantization to the
systematic construction of a q logic adequate for g
dynamics.

IV.A SYSTEM OF q LOGIC

The extensions of q logic needed for ¢ dynamics
are summarized here. Section IV A gives the cal-
culus of classes for a simple system pretty
much as in the work of Birkhoff-von Neumann, and
some ways to make a new system out of an old one.
Section IV B deals with the calculus of classes of a
compound system, a theory of binary relations,
and ways to make compound systems out of a sim-

ple one. Section IV C gives ways to make complex
systems out of a simple one.

Our format tabulates each concept followed by:
its general algebraic form; (c) its ¢ form; (q) its
q form; and possibly remarks.

A. One System

A system S to which all concepts defined in this
part are implicitly relative is given in general by
an algebra S* (always with * operation and the com-
plex numbers € understood), the quantities of S. A
system map m: S; - S, is given by a contragredient
algebra map m,: S2—SA. For c systems, S*is
commutative, the algebra of all functions on an
underlying set I(S). For q systems S* is irreduci-
ble, the algebra of all maps of an underlying inner-
product space I(S). In this part all concepts defined
are relative to one implicit system S. Purely q
concepts are shown under the caret.

Class (of a system S): =projection (quantity equal
to its * and square) in S*; (c) a subset P, @, ... of
the underlying set of S; (q) subspace B, @, ... of
the underlying linear space of S*.

PCQ, P is included in @ (of classes P, @): =the
basic eigenvalue equation PQ=P; (c) the subset
inclusion P C Q; (q) the subspace inclusion P C Q.

I and @, universal and null class : =quantities 1
and 0; (c) I(S) and @; (q) Z(S) and the O vector, as
subspaces of I(S).

PUQ, Por Q (afijméction): =sup(?, Q); (c) set join
PUQ; (q) span PUQ (the set join of two subspaces
never being required).

PNQ, P and Q (conjunction): =inf(P, Q); (c) set
meet PN Q; (q) subspace meet PNEQ.

Q is a complement of P: =PUQ=I, PNQ=%; (c)is
the set complement of P; (q)  is a complementary
subspace to P.

~P, the negation of P: =1-P; (c) same as comple-
ment of P; (q) orthogonal complement of subspace
P.

P1Q, P excludes Q: =PQ=0; (c) PNQ=0; (q) P and
@ are orthogonal subspaces.

P com@, P is compatible or commutes with @ :
=PN(QU~Q)=(PNQ)U(PN ~Q), or PR=QP; (c)
trivially true for all classes; (q) a basis exists for
1(S) adapted to both subspaces P and §.

f(S), a coordinate f of S: =map f: S—~e; (c) com-
plex function on I(S); (q) spectral family dP,(z) of
subspaces, z a complex variable. Any coordinate
f may be represented by a coordinate quantity f
= f zdﬁ,(z), where the projection-valued measure
dP,(z) is defined by the algebra map f,: e* —S%,
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PC, Q, P is just included in @: =PC X CQ if and
only if P=X or X=@; (c) @=PU one additional
point; (q) @=PU one additional 1-space.

|P|, the measure of P: =the length m of a chain
0C,P,C,* * -C,P,=P.

o, a singlet: =projection o with |o|=1; (c) point of
I(S); (q) a ray or 1-space of I(S).

If G is any group of maps g: S-S and G, is the
group of induced algebra maps, we then define as
follows:

S/G, S over G: =the algebra S*\G,, the collection
of those quantities of S* invariant under G,; (c) the
point set of equivalence classes of I(S) modulo G.
(q) the algebra of operators on I(S) commuting with
all members of the (unitary) group G. Even if S is
a q system, S/G generally is not.

S\G, S under G: =the algebra S*/G, resulting from
S by identification with respect to G; (c) the sub-
set of I(S) consisting of all fixed points under G; (q)
no simpler expression available.

Let P be a class of S:

S\ P, S under P, the restriction of S to P: =the al-
gebra PSAP taken with the +, X, * of S but with
the new unit P; (c) the subsystem defined by a sub-
set PCI(S); (q) the subsystem defined by a sub-
space PC I(S).

The system 1: =the system whose algebra is e; (c)
phase space with just one point; (q) system with a
one-dimensional Hilbert space. The system 1 is
both a ¢ system (commutative) and a q system (ir-
reducible).

B. Two Systems

S+ T, the sum of (systems) S and T: =the direct-
sum algebra S*+ T%; (c) the disjoint union I(S)+I(T)
=I(S+T); (q)the direct-sum Hilbert space I(S)+I(7)
=I(S + T) with projections on I(S), I(T) as super-
selections. For q systems there is also a cokerent
sum S+ T, represented by the direct-sum Hilbert
space (without superselection). 3)S; and 3)S; are
defined similarly.

The system n: =1++--+1 (n terms).
The system 7 : =1%+--31 (n terms).

SX T, ST, the product of (systems) S and 7T': =the
direct-product algebra SA7T#, in which the two sub-
algebras SA, T commute; (c) the Cartesian pro-
duct I(S)x I(T); (q) the direct-product Hilbert space
I(S)xXT). Similarly for IIS;. Associative and dis-
tributive laws hold for xand +, and for X and %.

S®T, a binary relation ® between systems S, T:
=a class of ST; (c) subset of the Cartesian product

I(S)XI(T); (q) subspace of the direct product 1(S)
x I(T).

S~T, similar systems S, T: =two systems S, .T
provided with an equivalence map e: S~ T (map
with inverse); (c) two sets with a 1-1 map onto e:
1(S)~I(T); (q) two Hilbert spaces with a unitary

e: I(S)~1(T). We designate corresponding projec-
tions in S, T by P(S)~P(T). Replicas of a system
S are similar systems obtained from S by attach-
ing labels, e.g., S;~S,.

S=T: =for similar systems S~ 7, the class
Uy0(S)o(T), the union extending over all singlets
o(S)~o(7T); (c) diagonal subset of the Cartesian
product; (q) symmetric subspace of the direct
product.®

Reflexive relation: = relation SRT with (S=T)
C(S®T); (c) subset of I(S)xI(T) including the di-
agonal; (q) subspace of I(S)x X(7) including the
symmetric subspace.

RT, the transpose of R: =exe *(R) where e: S~ T
is the equivalence map of S~ T and R=SRT.

Symmetric relation: =relation S=5T,

Transitive relation: =relation T with S,7S, S, S,
CS,TS,.

Functional relation: =relation S T =U,074(0),
where o ranges over the singlets of S, and f:S—=T
is a map; (c) the graph U (f{0)X0o) of a point map
F:I(S)~I(T); (q) the graph U,(6 % f4(8) of an algebra
map f,: T4 -S4,

seq,S, the 2-sequence of S’s : =the product S,S, of
two replicas S, ~S, of S; the ordered pair of two
S’s.

dia, S, the diagonal 2-sequence of S$’s: =seq,S\
[S,=S,], the restriction of S,S, to the class [S,=5,].
(c) the diagonal of I(S;)xI(S,); (q) the subspace of
symmetric tensors in I(S,) X I(S,); dia,S~S for ¢
but not q systems.

Let G be the symmetric group on two similar
systems, S, ~S,.

ser,S, the 2-sevies of S’s : =seq,S/G with G as
above; (c) the set of unordered pairs of points of
I(S); (q) the subalgebra of S*xS” invariant under
transposing; the direct sum of the subalgebras of
the symmetric and antisymmetric subspace of
1(S) < 1(s).

C. Many Systems

seq, S, the n-sequence of S’s: =I1,,S, (m=1,...,n),
where S,,~S are similar systems; (c) the Cartesian
product of » replicas of I(S); (q) the direct product
of n replicas of 1(S).
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seqsS, the sequence of S’s: =3 ,seq,S #=0,1,...);
(c) the disjoint union of the seq,S; set of all termi-
nating sequences of points of 1(S). (q) the Maxwell-
Boltzmann Fock space over I(S), with the number
operator N as superselection'rule. For q systems
we also define the coherent sequence SeqS:
=)..5€q,S (=0,1,...).

dia, S, the diagonral n-sequence of $’s: =seq, S\
[S,=+--=8,]; (c) set of sequences of « repetitions of
one point of I(S); (q) the space of symmetric ten-
sors of degree n over i(s). For c systems but not
q, dia,S~S.

diaS, thediagonal sequence of S’s: =3, dia,S
(2=0,1,...); (c) set of terminating sequence of
repetitions of one point of 1(S); (q) the Bose-Ein-
stein Fock space over I(S), with the number of
systems N as superselection. For c systems but
not q, diaS~NS, where N is the system of the non-
negative integers. For q systems we also define
diaS, the cokerent diagonal sequence of S’s :

=f},, dia,S, represented by the Bose-Einstein Fock
space over 1(S) without superselection.

Let G be the symmetric group on the systems in
a sequence seqS. Then we define as follows™:

serS, the series of S’s: =seqS/G. (c) the unor-
dered sequence of S’s; (q) the subalgebra of seqS*
invariant under G.

V. A CATEGORICAL DUALITY

If S is a system and G is a group of maps of
S-S, we have noted two G-invariant systems
within S, the quotient system S/G (for which G is
ignored), and the invariant subsystem S\G (for
which G is ignorable), with S\GCS/G. For exam-
ple, if S is the plane and G is its rotation group,
then S\G is the origin 0, and S/G is the set of all
concentric circles and 0.

The processes /G and \G are dual. The subsys-
tem has the quotient algebra; the quotient system
has the subalgebra:

(S/G)*=SA\G,,
(S\G)A=S%/G,,

where G, : S* ~S* is the map of quantities induced
by the map G: S-S, S*\G, is the subalgebra of S*
made up of all quantities invariant under G,, and
S%/G, is the algebra made from S* by adjoining all
the relations g =gq for all quantities ¢ of S% and all
group elements g of Gy. This kind of duality is
familiar in categorical algebra.

V1. q DYNAMICS

A principal difficulty in q dynamics has been to
understand the concept of one quantum system act-

ing upon another, as Ton M or Il on II, in the
present primitive state of q logic. We understand
this now as follows. Consider two general systems
X and Y. They are typically specified by their al-
gebras of physical quantities, X* and Y#, respec-
tively: commutative algebras for ¢ systems, ir-
reducible for q systems. We wish to define a map
X - Y. The algebra X* is a contravariant functor
of the system X, Therefore a map X - Y is given
by a map Y* - x4,

Even the classical dynamics (1) is equivalently
and familiarly expressed by a map

MA~ TAxMA (1%

contragredient to (1), mapping each quantity ¢ of
the system M into its time-dependent form g¢(?).

.Here g is in M4, ¢(t) in T*xM*2. And the familiar

cq dynamical law ¢(f) = e ge~** is of the form (1%).
Likewise a process dynamics (2) may be under-
stood as a contragredient map I, OIl,:

mA-mAxmA 2%

and a projection D in II4, This is our concept of a
general process dynamics. The specialization to q-
process dynamics is clear.

The c-process dynamics includes Newtonian
dynamics as special case; evidently. The cq-pro-
cess dynamics includes the Heisenberg dynamics
as a special case, as may be shown from the work
of Feynman and Dyson. There the projection D is
constructed from the Feynman-path amplitude. It
seems to us most natural to describe the world by
a q-process dynamics.

It is straightforward but instructive to discover
by algebraic quantization what it means for a q
product II,OII, to obey such laws as closure, as-
sociativity, and commutativity. It is a matter of
setting down the map diagrams that express these
notations for a ¢ system II, replacing II by its
algebra of quantities I1#, and reversing all the
arrows. When all this is done, associativity is
expressed by (I1,0I1,)OII, = [1,0(I,OI1,) and commu-
tativity by II,OIl, =II,OIl,. It is simply a matter of
learning to read backwards; for example, remem-
bering that II,OIl, is a map M4~ T4 x4, not M4
XA - IT4,

VII. q BINARY PROCESS

The model of time we now take up has a classi-
cal prototype in the game of checkers. Each man
is confronted by a binary decision: forward to the
left or forward to the right. We designate these by
0 or 1, the elements of the system we denote by 2.
A process II is a sequence of moves such as
010111:

II=seq2,
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and processes are multiplied to form products
I1,OII, by concatenation. The possible displace-
ments p undergone by a man are defined by pro-
cesses II with the order of moves ignored and form
the system

p=ser2=(seq2)/G,

where G is the group of move interchanges. This
is the future cone of the theory. The null cone is
the system

n=dia2

of paths which are diagonal sequences and appear
as bishop’s moves.

In the picture we started from these descriptions
of I, p, n, constitute the g theory, the paradigm.
Now by algebraic quantization we form the corre-
sponding q theory, the q binary process. We as-
sume the alternatives 0 and 1 are coherent in the
quantum sense by replacing 2 with 2. The system
2 is that described by the two-dimensional complex
linear space {x} with inner product x*x’. We call
the system 2 in this application the chronon x. A
process is a sequence of chronons,

Il = Seqy.

The future displacement, the resultant of II, is
p=8ery=II/G,

and the null cone is
n= aiax.

The algebras formed by the quantities of these
three systems are

" = Seqy?,

ph=sery?=11%/G,,

n® =diax®.
The process has as quantities the maps (linear
operators) of the Maxwell-Boltzmann Fock space
of an indefinite number of chronons. The quanti-
ties of pare the quantities of II that are invariant
under exchange of chronons. The quantities of »
are the maps of the space dia{y}, the symmetric
tensors over x space, a Bose-Einstein Fock space
for an indefinite number of chronons.

We take p=sSery and compute the limit of classi-
cal time. The classical limit is the algebra gen-
erated by the additive quantities of p, with commu-
tators neglected in comparison to products. The
additive quantities of p are the same as those of
I, and have the form

N
()= a,,

where a, is an isomorph for the nth chronon of a

one-chronon quantity «. Since Z(w) is linear in a,
it can be expressed in the form

S(a) =trpa=3)p 5 a*™®,

where tr is a trace over y space and the statistical
operator p is a map of {y } xser{y}. With respect
to any basis {x,} for the y’s, p is represented by
a form (p,*5) whose components are additive quan-
tities of Sery, with the properties

p=p*
[a=a* implies Z(a)=2(a)*] and
p=0

[@=0 implies Z(a) >0].

In the classical limit p* is generated by the four
quantities p x5 taken commutative. The conditions
on p become

p=p*, detp=0, trp=0.

These are more recognizable if we introduce four
real combinations x* of the p 5, taking

K =trpo*,

where the o* are, say, the 2x2 Pauli matrices,
with ¢°=1. The conditions on p become

= at (X0 = (x1)2 = (022 = (2%)220, x°>0.

Therefore the displacements have the four-di-
mensional structure appropriate to special rela-
tivity. Spatial rotations are induced by unitary
transformations of x, which transforms according
to the spin-3 representation: Chronons have spin
3. To determine the composition pOp’ of displace -
ments we must consider the law of composition
II,0II, =1I; of processes. In the limit of many
chronons the statistical operators p, and p, add
for such a composition just in case the processes
are uncorrelated, incoherent:

Py+Pz=Ps3. @)

This implies the addition of the four-component
objects x{+x5=x4. The system p in this limit is
invariant under

p—~AFpA

for arbitrary unimodular A, because the trace
trpa is a unimodular invariant as well as a unitary
invariant. Under this transformation, x* under-
goes the isochronous Lorentz group. Thus Poin-
caré invariance emerges at least with future
translations.

It remains to provide the class D of dynamically
allowed processes. The class D is a projection in
M4, In theories with interaction D will typically
be recursively defined, as it is defined by differ-
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ence or differential equations in ¢ theories. In the
simplest theories it is possible to give D directly
in closed form. For example, the simplest dy-
namical law in recursive form is, “make the same
move again,” a primitive expression of Newton’s
first law of motion. The g form of this recursive
law is

(1) geDb, xeDb,
() @en)N(x=x(m)=(xIec D),

where X(IT) is the last binary decision or chronon
in the sequence II. The integrated form of this
law is

D =diay,

where y is the ¢ system 2, By algebraic quantiza-
tion we obtain the q dynamical theory

D =Eliax,

where y is the chronon 2. Itis easy to see that
this simplest q dynamics describes a spin-3 par-
ticle moving on the q null cone. In the limit of
classical time the quantum travels with the speed
of light and is therefore described as having mass
0. This similarity between &iax and the two-com-
ponent neutrino is being studied further, as well
as the natural inference from the electron theo-
ries of Dirac and Feynman that paths traveling
backwards in time, ensembles of “antichronons,”
should be needed to describe massive or interact-
ing quanta. Moreover, de Broglie’s fusion theory
of light, depicting a photon as two neutrinos trav-
eling together, is difficult to express without self-
contradiction in the continuum space-time of cq
dynamics, but is a self-consistent and simple con-
cept in q dynamics.

VIII. DISCUSSION AND PROSPECTS

We showed a system subject to a quantum binary
process will in the limit of many chronons appear
to be moving in the space-time of special relativ-
ity. If our picture is to be trusted, time is the
number of chronons, and the chronon has spin 3.

It is possible that this asymptotic agreement be-
tween quantum binary process and special relativ-
ity is fortuitous. It is also possible that chronons
really exist and do have spin 3. In territory this
wild, we are lost as soon as we move ahead of our
formal theory, but as we plod along it is sound to
watch for encouraging signs. Two marks that we
may be approaching the Great Divide come in sight
during the present work.

Mark one is the multitime nature of this q dy-

namics. I II, and II, are dynamical systems, then
there is always a natural sum I, +II, (in the usual
sense that the nucleon is the sum # +p of the neu-
tron and proton) and a natural product II, XII, (in
the usual sense that the deuteron is np). The gen-
erators of II, XII, are those of II, together with
those of II,, each system bringing along its own
time. In c dynamics we go back to one time T by
equating T, and T,, selecting the diagonal

dia,T <« T in the product T,T,, but in q dynamics
this is not an invariant procedure, &iaZT is not
isomorphic to T, and some kind of interaction
seems necessary in order to compare T, and T,.
It is good to meet even this familiar relativistic
nuisance when we are so far from home.

Mark two is the noncommutation of world paths,
and-the nonadditivity of displacements. Quantum
mechanics and general relativity are both theories
of a nonclassical noncommutation; of quantities in
the one case, temporal displacements in the other.
In q dynamics the two kinds merge into one, the
noncommuting of II. This quantum noncommutation
in the microscopic world will survive in the ¢ limit
of many quanta only for the right statistics and
then only to an extent that depends on the coher-
ence of the constituent quanta. We were led to de-
scribe null rays as Bose-Einstein ensembles of
chronons on purely logical grounds. But now this
seems to open the possibility that gravity is a
quantum effect, somewhat similar to superfluidity
in this respect, but with a much smaller quantum
coherence, judging from the weakness of gravita-
tional interactions, and a coherence of chronons,
not quanta of matter. It is just in case of coher-
ence that the concatentation of paths does not obey
the law of vector addition (3), and the phenomenon
of curvature seems to arise.

Before anything more decisive can be said about
these questions, the concept of interactions must
be added to our scheme of things. The problem of
doing this in the q domain so as to get a correct
correspondence with the established results of the
cq domain in the limit of classical time seems to
be a definite one. It leads to developments of no-
tation and concept outside the scope of this paper.
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lQuantum space-time geometry was considered in STC
[D. Finkelstein, Phys. Rev. 184, 1261 (1969)] which
should not have been written, let alone read, before the
present work. In STC as in many other world systems
including those of Ptolemy, Newton, and Einstein (special
relativity) the natural order for the construction of the
theory is L, G, D: first a world Logic, then a pure world
Geometry, and finally a Dynamics [ef. D. Finkelstein, in
Boston Studies in the Philosophy of Science, edited by
R. S. Cohen, Vol. 4 (1968)] . But when we start from a
q logic we find it impractical to maintain this order of
development. In particular, the formulation that par-
ticles may interact when they are at the same point be-
comes hard to express when the particles move in a q
space, which in one sense has no points. We seem
driven now to the inverse formulation, that particles
are said to be at the same point when they interact. Our
order of development is now L, D, G.

Operationally speaking too, the order L, D, G is more
natural, for nine parts out of ten of the geometric infor-
mation imparted by the metric tensor at a point may be
distilled from observations of the dynamics of many test
objects. We now tend to consider that geometrical con-
cepts such as time and distance are secondary and sta-
tistical, much like temperature, and that certain dynam-
ical concepts are the primary and real ones.

There are also differences between the q logic of STC
and that given here. In order not to penalize a reader of
STC, the differences will be footnoted as they arise.

2Chronons have been considered at least since 1913
(Poincaré); see Milit Capek, Philosophical Impact of
Contemporvary Physics (Van Nostrand, New York, 1961),
especially Chap. 13, for discussion and many early ref-
erences., Also related to efforts towards q theory are
H. Snyder, Phys. Rev. 79, 38 (1947); such work of C. F.
~ von Weizsiicker, Naturwiss. 20, 545 (1955); E.J. Zimmer-

man, Am. J. Phys. 30, 97 (1962); R. Giles and H. Kummer,
Queens University, Kingston Report No, 1970-12 (unpub-
lished). But the distinction between g time and c discrete
time (Zeno) is crucial.

The mixed ¢ and q elements of present-day quantum
mechanics are admirably dissected in C, Piron, Helv.
Phys. Acta 42, 330 (1969).

3In STC (See Ref. 1) the limit of classical time is worked
out for some space-time q geometries. We have not pre-
sented here the corresponding limiting process for q dy-

namics.

4Collected in Selected Papers on Quantum Electvodynam-
ics, edited by J. Schwinger (Dover, New York, 1958).

1. E. Segal, Mathematical Problems of Relalivistic
Physics (Am. Math, Soc., 1963), and other references
there given, For us the algebra of a system is the ana-
lytic expression of the same body of information whose
synthetic expression is the ortholattice of the system.
See D. Finkelstein, in Paradoxes and Pavadigms, edited
by R. G. Colodney (Pittsburgh Univ. Press, Pittsburgh,
Pa., 1972); Ref. 1; and Trans. N. Y. Acad. Sci. 25, 621
(1963).

éWe hesitated to adopt this definition in STC (see Ref.
1) because, setting [S|=7,

IS1=Sy =n for ¢ systems S
=1in(n+1) for q systems S.

Now we regard this difference as just another fact of life.

In STC (See Ref. 1) we confused a sequence whose order
is ignored (a series) with a sequence whose order is im-
material (a diagonal sequence). The Bose-Einstein en-
semble is actually the latter, and we were misled by its
measure to identify the Bose-Einstein ensemble with the
former.

Now it is clear why the model called sery in STC (see
Ref, 1) led only to a model of the Minkowski null cone
and not the entire future cone as the checkerboard para-
digm sugggsted. What was in fact computed, we can see
now, was diaﬁ, and that a diagonal sequence of null vec-
tors should have null resultant is gratifying, not puzzling.

This confusion between a constant sequence of quanta
and an unordered sequence of quanta also appears in
D. Finkelstein, in Fundamental Intevactions at High
Enevgy I, based on the proceedings of the 1969 Coral
Gables Conference on Fundamental Interactions at.High
Energy, edited by T. Gudehus, G. Kaiser, and A. Perl-
mutter (Gordon and Breach, New York, 1969), p. 324.

In STC (see Ref. 1) where we attempted to model space-
time points, the persistent appearance of conical ¢ space-
time” in the simplest models required cosmological in-
terpretation. Now that we are modeling space-time pro-
cesses instead, these conical structures are identified
with the future cone of a generic point, and the cosmo-
logical question can be put off to a more reasonable stage
of the work,

I am indebted to M. Aizenman for the distinction between
diaS and seqS\G. The latter vanishes in the q case and
coincides with diaS in the c case.



