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Since we define the Pomeranchon to be the leading singularity of the "potential, " and Gnd
that a high-energy particle resembles an expanding black disk if this singularity is located
at J& 1, we study as a model the generation of such a singularity by the ladder diagrams in

theory. We find that, when the coupling constant is sufficiently large, there are Regge
poles located at Z&1. Thus the Pomeranchon in this model is a Regge pole with 0. (0) & 1.
This conclusion is reached by solving the Bethe-Salpeter equation to determine, in the strong
coupling limit, the positions of the Regge (or Toiler) poles at t = 0. We find a family of ap-
proximately equally spaced Toiler poles. The position of the leading singularity, but not the
spacing, depends critically on whether the exchanged particle is massless or massive. Some
numerical results are presented.

1. IMPACT PICTURE AND REGGE POLES

About a year ago, we obtained' definite predic-
tions on several fundamental quantities in high-en-
ergy hadron physics on the basis of a physical pic-
ture which emerges from the high-energy behav-
ior of massive quantum electrodynamics. This
physical picture has more recently been confirmed
also from Q' theory' provided that the coupling con-
stant is sufficiently large. More specifically, at
extremely high energies an electron in quantum
electrodynamics and a scalar particle in (Ij)' theory
both behave like a Lorentz-contracted disk with a
black core that slowly expands with increasing en-
ergy. The presence of this black core is due to
the production, in the c.m. system or more gen-
erally in any C system, ' of slow eIectron-positron
pairs in quantum el.ectrodynamics or slow scalar
particles in the P' theory. Because of the produc-
tion of such slow particles, a target becomes
more and more absorptive as energy increases,
and scattering necessarily becomes appreciable
at larger and larger transverse distances from
the target. Thus' the total and the elastic cross
sections both rise indefinitely with the energy,
the diffraction peak shrinks, and the imaginary
part of the forward elastic amplitude dominates
over its real part.

Experimentally, it is much more interesting to
deal with hadronic scattering processes at very
high energies rather than electromagnetic inter-
actions of electrons. In the c.m. system, the pro-
duction of slow hadrons due to hadronic scattering

appears to follow the same pattern as that of slow
electron-positron pairs in quantum electrodynam-
ics and that of slow scalar particles in f' theory.
This is supported by the preliminary detection of
pionization products. Possible further experimen-
tal tests have been discussed elsewhere. '' If pi-
onization products indeed exist in the predicted
manner, ' it follows that a target must become
more and more absorptive as energy increases.
Thus a hadron must also act as a Lorentz-contract-
ed disk with a slowly expanding black core. There-
fore, all the conclusions stated in the previous
paragraph about the total and elastic cross section,
the diffraction peak, and the ratio of the imaginary
part to the real part of the forward elastic ampli-
tude must hold for hadronic processes as well as
in quantum electrodynamics and Q' theory.

Consider the proton-proton scattering amplitude
in the impact-factor representation~'.

gg--,'is dx, e' '& x, 1-e "'"~"
N x,

(1 1)

where S~(X~) is the proton impact factor in the po-
sition space x~, s is the square of the c.m. energy,
n, is the momentum transfer, and (1 —e ""~")is
an operator. We remark parenthetically that this
exponential form e " "~' should not be taken too
literally, as discussed previously. " This situa-
tion with exponentiation or eikonal approximation
is particularly transparent in the case of high-en-
ergjj potential scattering 'Equatio. n (1.1) is a gen-
eralization of Eq. (9) of Ref. 1. Let us write down
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the power-series expansion

1 —e = GA" .
a= 1

(1.2)

2. STATEMENT OF THE PROBLEM

Since the restriction a(0) ( 1 no longer holds, it
becomes interesting to study the extreme ease
where u(0) is large. In a preceding paper, '4 we
hyve treated the case of potential scattering. This
case is well defined and the solution for large cou-
pling constant is completely straightforward. It is
the purpose of the present paper to study in detail
the ladder diagrams with scalar particles, again
in the limit of large coupling constants. Although
we do not believe that the other diagrams are un-
important in this case, we nevertheless can gain
some knowledge from the ladder diagrams alone.
In particular, we find that the two eases where
the mass of the exchanged particles is zero or
nonzero are vastly different. When this mass is
nonzero, the Regge pole is almost independent of
the other masses involved.

The mathematics employed in treating the ladder

If A(x„s) is of the order of s' as in quantum elec-
trodynamics and Q' theory (with possible addition-
al factors of lns ignored), then the nth term on the
right-hand side of (1.2) is of the order of s"'. We

shall define the term on the right-hand side of
(1.1) proportional to A" as the amplitude of n-Pom-
eranchon exchange. The fact that the amplitude
for n-Pomeranchon exchange is of the order s""'
suggests that the Pomeranchon, as a singularity
in the angular momentum plane or the J plane, is
located at J= 1+a. This definition of the Pomeran-
chon as the J-plane singularity of the "potential, "
rather than the scattering amplitude itself, is dif-
ferent from the conventional one, but we believe
that it is the correct way to extend the Regge the-
ory' to relativistic processes.

From this point of view, the restriction that
a(0) (1 for the Pomeranchon is unnecessary. ""
Instead, the Pomeranchon is located at J & 1; it
is most likely either a moving Regge pole or a
fixed branch point. In either case, the leading sin-
gularities of the scattering amplitude in the J
plane are always two moving branch points: For
t(0 (spacelike), these two branch points form a
complex conjugate pair on the line ReJ = 1; at t =0,
both reach the point J = 1; for t) 0 (timelike), they
move on the real J axis, one to the right and the
other to the left." For processes involving the
exchange of quantum numbers, the additional ex-
change of Pomeranchons leads to a suppression
of the amplitude, as well as the existence of a dip
related to the width of the diffraction peak.

diagrams is rather complicated. Roughly, the pro-
cedure is as follows. Wick" and Cutkosky" have
reduced to differential equations the case where
the mass of the exchanged particle is zero. It is
thus fairly easy to obtain, for this case, the solu-
tion for large coupling constants g. With this
knowledge, we can study is some detail the effect
of introducing a mass. It is found that the Wick-
Cutkosky case is greatly modified already when
this mass is proportional to some inverse power
of g. In this way we can trace the effect of in-
creasing this mass systematically up to a value
of order 1. In Secs. 3, 5, and 6, this procedure
is carried out for forward scattering.

Throughout this paper, we consider only the
case of forward scattering where t =0. The pro-
cedure used here can be easily extended to deter-
mine asymptotically, for te0, the mother (or par-
ent) trajectories, but there may be difficulties
with the daughter trajectories. ""

3. WICK-CUTKOSKY LADDER DIAGRAMS

A. Exact Solution

We wish to consider the simple ladder diagrams
in the t channel when the coupling constant is large.
The mass A of the exchanged particle is in general
taken to be different from the masses m, and m,
of the scattering particles. Except for brief ex-
cursions such as Sec. 4, m, and m, are taken to
be equal: m, =m, =m. All the particles are as-
sumed to be scalar particles.

In this section, we consider the simplest pos-
sible case where

X=t=o. (3.1)

b(z) = b(0, -z, -z)
satisfies the integral equation '"'

(3.3)

b(z) = T dz'b(z')(z'+1) '(z'/z)&
0

for z) 0. In (3.4)

d*'b( ')(*'+() ') (3 4)

y = a(0)+1,
~ =g'/(16sm y),

(3.5)

(3.6)

In general, for the scattering of two particles of
masses M, and M,' into two of masses M& and Mf,
the Regge residue factors:

P(t M ' I 'I" M") = b(t M ' M ')b(t M" M")

(3.2)

When (3.1) is satisfied, the function of one variable
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and we have taken m =1. Note that the y here is
not the same as y used in Ref. 2.

The exact solutions of (3.4) are

(3.7)

a most useful guide, we first treat this solvable
case A. =O of Wick and Cutkosky.

Since y is large for g large, assume a solution
of the form

with n=0, 1, 2, . . . , and
b(z) =A(z) e &@'l . (3 9)

b(z) = (z + 1) ~ "F( n, --y —n; y+ 1; -z), (3.8}

where I is the hypergeornetric function. " The
particular hypergeometric function in (3.8) is ac-
tually a polynomial of order n.

B. Approximate Solution

The Wick-Cutkosky solution"'" of the Bethe-
Salpeter equation"'" is possible only for A. =0.
For XcO, we must resort to approximate meth-
ods, making use of the large coupling constant g.
Since there is no general method of solving inte-
gral equations approximately, special procedures
must be devised for each particular problem. As

~/y = 7, + ~,/y + ~ ~ ~, (3.10)

where 7, and 7, are numbers independent of y.
Let

0 =y
I
z - z'I . (3.11)

Then the explicit evaluation of (3.4) with (3.9}
gives that

From the exact solution (3.8), we know that this
form (3.9) is indeed correct. When (3.9) is sub-
stituted into the integral Eq. (3.4), the right-hand
side is of the order v/y if the integrand peaks near
z' =z. Thus T/y = O(1). We need to expand to two
terms in the form

(~ yr /y) 'A(z) = @[A(z)—y '$A'(z)](z+1) '[1+2y '$(z+I) ']e '(1- 2y '$'/z )e' ' [1—2y '$'Q"(z)]
dp

~0

+ dg[A(z)+y $A'(z}](z+1} [1—2y $(z+I) ] e ' [1 —zy '$ Q "(z)]
p

=(z+1) 'A(z){[P'(z) —zQ'(z)~] '+y 'B(z)j+y '(z+1) A'(z)[1 —2z&j&'(z)][/'(z) —zP'(zP]

(3.12)

where

B(z) = z[1 —zQ'(z)] f 2z(z + 1) '[1 —z Q'(z)] —1-z'Q "(z))—[Q'(z)] '[2(z+ 1) 'P'(z) + Q"(z)] . (3.13)

In writing down (3.12), we have assumed

zP'(z) (1 (3.14)

(z + I)'[P'(z) —z P'(z)'] = r, ,

or more explicitly

(3.15)

P'(z) =[1+z + [(1+z)' —4T,z]'"j/[2z(1+ z}].

for all z. The leading terms of (3.12) can be used
to determine Q'(z):

if the minus sign is used. From (3.17) we see that
e &~~*l is unbounded near z =0, while from (3.18)
we see that e &~ ' fails to approach zero as z -~.
Thus both choices of sign are unacceptable, and
the conclusion is reached that there is no nontriv-
ial solution for Tp(1.

This lack of solution does not happen for 7,) 1.
Since we are interested in the leading Regge pole
or the nearby Regge poles in the sense of Sec. 1,
we must have

(3.16}

The appearance of the + sign in (3.16) is of cru-
cial importance. Suppose first that Tp &1 so that
the square root in (3.16) is positive for all z. In
this case, we have the following behaviors for z
either large or small: and

P'(z) =(1+z) '

Vp= l.
With (3.19), the two soiutions (3.16) are

(3.19}

(3.20)

y'(z)-z ' (3.17) y'(z) = z-'(1+ z)-'. (3.21)

if the plus sign is used, and

P'(z)-7, (1+z) ' (3.18)

The second solution (3.21) is unacceptable for two
reasons: e &+' is unbounded near z =0 and also
fails to approach zero as z- ~. We therefore get
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P(z) =in(1+z) . (3.22)

(1 —z')A'(z) + (r, —1)A(z) = 0 .

Accordingly

A(z) = const[(1 —z)/(1+z)]!" '!~'.

(3.23)

(3.24)

The addition of a constant to Q(z) merely changes
the normalization of the solution.

It remains to determine T, and A(z). By (3.19),
(3.20), and (3.13), Eq. (3.12) reduces to

Secondly, we can see the failure of our approxi-
mation near the critical point more explicitly
since the exact solution is known for this Wick-
Cutkosky case.""More precisely, let us com-
pare the approximate solution (3.27) with the ex-
act solution (3.8). If the constant in (3.27) is cho-
sen to be unity, then (3.27) and (3.8) agree exactly
when n=0 and 1. Since this agreement is absent
when n) 2, it is instructive to consider in some
detail the case n=2. In this case, the exact solu-
tion is

q, =1+2n, (3.25)

In order that A(z) is not singular at z =1, it is nec-
essary that b(z) =(z+1) ~ F(-2, -y —2;y+1;-z)

=(z+1) ~ '[(1—z)' —2z j(y+1)]. (3.30)

with n=0, 1, 2, . . . . Thus

A(z) = const [(1—z)j(1+z)]", (3.26)

Thus (3.27) gives a good approximation except in
the vicinity of the critical point. More precisely,
it is not correct when

and, by (3.22) and (3.9),
I
z —II = O(y-'") . (3.31)

b(z) =const(1+z) ~ "(1 —z)". (3.27)

Furthermore, by (3.6), (3.10), (3.19), and (3.25),
we have

More generally, by quadratic transformation of
the hypergeometric function, "the solution (3.8)
can be written in the form

or

T =y+1+2n

1 /
7 = &g/'m —2 —n,

(3.28)

(3.29)

b(z) = (z + 1) F(- ,n, y—+—,n+ —,'; y + 1; 4z/(z + 1)'),

(3.32)
or alternatively"

which agrees with the exact solution (3.7) for
large g.

We therefore have a procedure of locating the
first few Regge poles approximately when the cou-
pling constant g is larger. In Sec. 5, we shall ap-
ply this procedure to the case where A. is small
but not zero.

C. Critical Point

By assuming that the solution is of the form
(3.9), we have found that in general there a.re two
possible Q'(z)'s as given by (3.16}. When r/y is
fixed at a value less than unity, both solutions are
unacceptable, either because of the behavior as
z —0 or due to the failure to vanish as z -~. We
have determined 7/y to the zeroth approximation
by requiring the two solutions to be real and inter-
secting. The intersection occurs at z =1, as seen
from (3.20) and (3.21). We shall call this point
z = 1 of intersection the critical point.

The critical point is interesting for many rea-
sons. First, if 7., is not chosen as specified by
(3.25), the approximate solution (3.24) has a sin-
gularity at the critical point. But we know that
the solution of the integral equation (3.4) cannot
have such a singularity. Thus the presence of the
singularity in (3.24) must mean that the approxi-
mation is not valid. How, then, can we use the
absence of a singularity to determine 7yl

b(z) = (z + 1) ~ (-2) (2N —1)!![I'(y + 1)/ I'(y +N+ 1)]

xF( N, y+N+-, -; -', ; (1 —z)'/(I +z)')

when n=2N is even, and

b(z) =(z+1) & '(1 — )(--', )"

(3.33)

z = I+z/Wy, (3.35)

and consider N and z to be fixed as y- ~. In this
limit, when n is even, it follows from (3.33) that

b(z) =(z+ 1) &(-2y) «(2N —1)!!4(N, z
—'z 2)-

and similarly for n odd from (3.34)

b(z) = -(z+ 1) &(-2y) «(2N+1)!!(z z/Wy)

" @(-Ni z, e z')
=-(z+1) "(4y) " "'H»„(-,'z) .

ln other words, near the critical point, b(z) is
given approximately by

b(z) =(z+1) &(4y) "~H„(—'y'~ (I —z)) . (3.36)

x (2N+ I}!![F(y+I)/I'(y+N+1)]

XF( N, y+N+ —', i —,-', (1 —z)'/(1+z) )

(3.34}
when n=2N+1 is odd. These are the convenient
forms for the vicinity of the critical point. Let
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In this derivation, 4 is the confluent hypergeomet-
ric function" while H„ is the Hermite polynomial. "
Thus (3.27) is not a valid approximation if n & 2
and 1 —z = O(y '~2).

We therefore raise the question how (3.36) can
be obtained from the integral Eq. (3.4) without us-
ing the exact solution. We must use a procedure
similar to that of Sec. 3B so that the step there

from (3.24) to (3.25) can be justified. Indeed the
proper procedure is strongly suggested by this
answer (3.36): Since Hermite polynomials satisfy
second-order ordinary differential equations, we
must keep terms proportional to A"(z) in addition
to those proportional to A(z} and A'(z) as shown
in (3.12) and (3.23). With these additional terms,
(3.12) is revised to be

(so+a, /y) 'A(z) = d([A(z) —y '(A'(z)+ &y $ A (z)](z+1) '[1+2y '((z+ I) ']
0

x e-K/s(I y-1)2/z2) eKljl (4j [I & -1(2ye(z)]

+Jt d([A(z)+y 'gA'(z)+ —,'y '$'A (z)](z+1) '[1—2y '$(z+I) ']e ' [I - —,y '('Q"(z)].
0

(3.37)

Therefore, the extra terms to be added to the
right-hand side of (3.12) are

=y '(z+1)(z'+1)A" (z)

(3.38)

by (3.20). Instead of (3.23), we get

y '(z+1)(z'+1)A" (z)+(1 —z') A( )z+(r, —1)A(z) =0.
(3.39)

For large y, this additional term is indeed negli-
gible except when z is close to unity. When z is
close to this critical point, we use the change of
variable (3.35) to get

4d2A/d Z' 2z dA/dz+(~, 1)A =0—. (3.40)

This is indeed the differential equation for Hermite
polynomials. Since we do not want exponential
growth for both signs of z, we again get (3.25)
and (3.36).

We can now justify writing down (3.25) from
(3.23) as follows. Equation (3.23) is not valid near
the critical point z = 1, and an additional term of
the form constA" (z) needs to be added. No matter
what this constant is, (3.25) follows from the re-
sulting differential equation for Hermite polynomi-
als. In other words, the coefficient 4 for the first
term of (3.40) does not affect (3.25), but of course
enters in the solution (3.36). Therefore, if we are
only interested in locating the Regge pole for large
g but not the details of the Regge residue for z
close to the critical point, we do not need to know
the coefficient of A" (z), and the procedure of Sec.
3 B is sufficient.

4. MOTHER AND DAUGHTERS

We have found only a small subset of solutions
for the Wick-Cutkosky case of the ladder diagrams.

As seen from the exact solution (3.7), these Regge
poles are one unit apart for t =0. It is therefore
natural to ask whether the solution for n=0 is the
mother (or parent) trajectory, while the others
are daughter trajectories. " ' We shall show in
this section that this is not the case, i.e., we do
not have any daughter trajectory at all. This is
accomplished by finding that the spacing is no
longer unity if the masses m, and m, are unequal.

When m, and m, are not necessarily equal, the
integral equation (3.4} is replaced by, still with
t =X=0

b(z) = 7 t dz'b(z')(z'+m, ') '(z'+m, ') '(z'/z)&
0

+ dz'5 z' z'+m, ' ' z'+m,

(4.1)

-e*(e*+m,') '(e*+m, ') ' (4.4)

Thus b(z) satisfies the differential equation

zb"(z}+(y+1)b'(z)+ 7 y(z+m, ) '(z+m~ ) 'b(z) =0.
(4.2)

If m, ze m, ', this equation (4.2) has four regular
singularities at 0, -m, ', -m, ', and ~. Since func-
tions of the Fuchian type are too complicated, we
resort immediately to approximate methods for
g large.

Let z =e*, then by (3.6)

[d'/dx'--, 'y'

+(4z) g'e*(e" +m, ') '(e*+m, ') ']e&*~z b =0.
(4.3)

The situation is therefore similar to the one treat-
ed before for potential scattering. " Since the po-
tential
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has a minimum at

x = ln(m, m, },
we use the approximation

(4.5)

(4.4)--(m, +m, ) '[1—(x —x,) m, m2(m, +m2) '].
(4.6)

With (4.6), the problem is again reduced to that of
the harmonic oscillator and the result is

the case where ~c 0 in this and the next sections.
The approximation scheme of Sec. 3 must be

valid when X is sufficiently small, provided that

g and hence y are large. The first question is:
What is the order of magnitude of this small ~
when significant deviation from the case X=0 first
appears?

This question is easily answered. From Sec.
3B, we know that we must consider the region

or

—,
' y' = (4v) 'g'(m, +m, )

'
—(n+ —,')(4v) 'g(m, m, )'~'(m, +m, } ', (4.7)

z =o(1).
From (3.11}we get

z'-z=o(y ').

(5.1)

(5.2)

[4m,m, (m, +m, ) ']'". (4.9)

Unless m, =m„ this spacing is not unity. There-
fore, by continuity, there is no mother-daughter
relation between the various poles.

It is interesting to note that the spacing (4.9) is
always less than unity unless m, =m, .

y = (2w) 'g/(m, +m, ) —(n + ,')[4m—,m, (m, +m2) ']'" .

(4.8)

When m, =m, =1, (4.8) reduces correctly to (3.29).
Since n is a non-negative integer, the spacing of

the Itegge poles (4.8) is given by

In the presence of A. but still with t = 0, the inte-
gral equation satisfied by b(z} is" "
b(z) =r t dz'b(z')(z'+1) '

4p

(z+z'+ X') —[(z+z'+ A')' —4zz']"'
2g

(5.3}

where m is still taken to be unity. Let the square
root in (5.3) be written in the form

[(z —z')'+2k'(z+z')+ 34]"'

Then we see that, in the region specified by (5.1)
and (5.2}, A.

' cannot be neglected when

5. CASE OF SMALL)L

A. Magnitude of X
~ = o(y-'). (5.4)

So far we have given essentially no new result
for the ladder diagrams, since all the answers
for the Wick-Cutkosky case can be obtained with-
out the elaborate approximation scheme of Sec. 3.
This approximation scheme will now be applied to

This is the desired answer. We accordingly de-
fine

(5.5)

and consider A to be a fixed positive number while
y~QO ~

B. Approximate Differential Equation

For the present case, we want to obtain an approximate differential equation like (3.23). Even though
the exact solution is no longer available, the procedure of Sec. 3B can be followed.

In the region (5.1), (5.2), and (5.4), the last factor in the integral Eq. (5.3) may be approximated as fol-
lows:

where

(= y(z' —z).

2z
x exp(--,' z '[(g'+4zA')"2 —(]}, (5.6}

(5.7)
When the form (3.9) is used, (5.3) becomes

(7, +r, /y) 'A(z) = df[A(z)+y 'gA'(z)](z+I) '[1—2y '((z+I) ']

x(I+-,' &y 'z '(g'+4zA ) ~ 2[($'+4zA )'~~ t] —'
~f2y "(z)}

exp( (&e'(z)+-'z '-[(&' 4 A+')z"' &] }}. - (5.8}
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Because of the form of the exponent, it is appropriate to use the change of variable

(= 2Az)" sinh(8 ——,
' In(P'(z)/[z ' —P'(z)]}},

and in this way we get a rather large number of modified Bessel functions. The result is

(5.9)

(5.10)

, I 7, 1 - 2zy'—,'( ()'y' —( — ' 4(*) A(*) K,(2A(g' —*P")"') ( , ( —
2 , ( , (~ —2"*0''" —'"))

0 0

y
' (~ ~ ) 1 —zp' P' 4, "(1—zP') 1 —zQ' (z+1)P' z+1

2gf( )K (2A(4, I z4, /2)1/2)

The leading terms of (5.10) give that

(z + 1)' = 2Ar, (P' —z4'") "'K (2A(P' —z4'")"')

while the terms of order y
' give the desired differential equation

--,'(z+ 1)'T, 'T,A -'(y' —-zy")A(z)

(5.11)

=A(z) (-—'A(Q' —zP") "'(1—2zg')(Q" —2z@'Q' —Q")K,(2A(4" —zQ")'~)

+[3zg" —P "Q' '(1 —zP') ' —z4 "(I—zP') ' —2(z+1) '+4z4"(z+1) ']K,(2A(P' —zQ")"'))
+(1 —2zg')A'(z)K, (2A(P' —zP")'") . (5.12)

C. Critical Point

We apply the argument of Sec. 3B, and consider
(5.11) as an equation for determining p'=4'(z). If
T, is too small, the resulting P'(z) are not ac-
ceptable. Therefore, for the leading Regge poles,
we must require

13

12

P' —zQ" = const (5.13)
10

to have a double root somewhere. Hence 2zg'=1
and

r, '=Max4Az'"(z+1) 'K (Az "
)

z&0
(5.14)

or equivalently

vo '= Max 4A'"(A'+ &') 'K)(g).
g&p

(5.15)

0

6
Note that, for given A, this maximum is reached
at a unique value of z (and g).

As in Sec. 3C, we define the critical point z, as
the value where the coefficient of the A'(z) term
vanishes. Thus

2z, ft),
' = I, (5.16)

where we use the shorthand notation 4't = P'(z, ).
At (5.16),

(a/sy') right-hand side of (5.11)=0 (5.17)

for fixed z, simply because this derivative always
has a factor 1 —2zg'. Therefore, at this critical
point z„

0
0

I I

4 p 5

FIG. 1. Plots of zp and 7 p as functions of A.
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(s/sz)[(z+1) '(p' —zp") '"K,(2A(p' —zp")'"}]=0

(5.18)

In other words, the maximum is reached at the
critical point. If we define

with fixed Q'. But, for z =z, and any differenti-
able function f, then by (5.15)

(5.22)

(~/&z)f(4' zA-") = 0 "-f '(0' z4-")

=-(4z') 'f'(-'z ')

= (d/dz)f ('z ').--
It therefore follows from (5.18) that

(d/dz)[(z+1) 'z"'K (Az '")]=0
and a comparison with (5.14) shows that

' = 4Az "'(z +1) 'K (Az ' '}

(5.19)

(5.20)

(5.21}

4A2g 3(A2 + g 2)-2K (I ) (5.23)

Given A, gp is also the positive solution of the
transcendental equation

2(A' —4'}K,(4) —(A' + y.')r, K.(r..) = o . (5.24)

Since explicit solution is not possible for (5.24),
we plot in Fig. 1 both the value of 7, and the posi-
tion z, of the critical point as functions of A. It
is interesting that these two curves are close to
each other.

D. Positions of Regge Poles

It remains to find the generalization of (3.28) to the present case Ac0. For this purpose we n:ust study
(5.12) in the neighborhood of the critical point:

——,'(z, +I)'7 'T,A '(P,' —z,P")A(z)=(A(z)[3z P" —P,"P,' '(1 —z,P,') '

-z,P,"(I- z,P,') ' —2(z, +1) '+4z, y,'(z, + I) ']
+ (1 —2zy')A'(z) jK,(2A(y,' —z,y")' ')

or, by (5.16) and (5.21),

2(7,/T3}A 'z, '~'K, (Az3 '~ )A(z)=(2z3 '+z3$3')[A(z)+2(z —z3)A'(z)]K, (Az '~2).

(5.25)

(5.26)

To simplify (5.26) further, we rewrite (5.24) in
the form

4A'K, (t..) —(A'+ C.')C.K.(I.) = 0

and substitute into (5.26) to get

(5.27)

,'(T, /r&&)(z, +—1)z&& 'A(z)

= (I +2z,2/3')[A(z)+ 2(z —z, )A'(z}] .

(5.28)
This differential equation is of exactly the same
form as (3.23), and hence

—,'(T, /T3)(z, +1)z, '(I+2z, 'Q3') '= I+2n (5.29)

is the generalization of (3.25). In other words,

T = 23[y+4(1+2n)z3(z3+1) '(1+2z32$3)], (5.30)

or, by (3.6),

16w2r3[y2+ 4(1+2n)z3(z3+ I) '(1+ 2z, 2/3 )y] =g2,

(5.31)
or

y=~gT3 '~2/z —2(1+2n)z3(z3+I) (I+2z32$3"}.

(5.32)

In these results, Pp" is determined by taking the

derivative of (5.11) and evaluating the result at
the critical point. In order to eliminate Pp", we
expand (5.11) near the critical point z,:

1+2z 'p" =-'z '(z3+ I) "'[8z ' —A (z3+ I)']' '
(5.33)

Therefore,

y= .gT, '"/v -—(n+ ')(z 2+1)-"'[8z '-A'(z +I)2]'~2

(5.34}

E. Spacing Between Regge Poles

The above result (5.34) is not explicit for the
following reason. The desired quantity y appears
not only on the left-hand side but also on the right-
hand side through r„which is defined by (5.14) or
(5.21). Remember that, due to the definition (5.5),
A depends on y. Accordingly, (5.34) really gives
g as a function of y, but not y explicitly as a func-
tion of g. In order to find the distance between the
Regge poles corresponding to successive values
of n, the dependence of Tp on n cannot be neglected.

Let 5y, 5Tp p and 5A be the changes of y, Tp
and A, respectively, when n is changed by unity.
Of course g is held fixed. Since, from (5.34),
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(4v) 'g=yT, "'+T,'"(n+ —', )(z, +1) "'
x [8z,' —A'(z, + 1}']"'

we get

5(yT ' )=T " (z +1) ~ 2[8z —A'(z +I)']'&'

(5.35)

6. CASE WHERE X=O(m)

In Sec. 3 we consider the Wick-Cutkosky case
A. = 0, while in Sec. 5 we deal with the case X

=O(y '). We now try to increase X further.
Take the results of Sec. 5 and let A be very

large. First

where, on the right-hand side, g, is held fixed
and only A is varied. Thus

5~ '=~ -'(2A5A)[A-'-2(A'+t. ')-']
= (2r, '5A/A)[1 —2z, /(1+ z,)], (5.37)

and furthermore

5(yT, ' ') = 2TO' 2zo(1+zo) '5y. (5.38)

The substitution of (5.38) into (5.35) then gives the
spacing between Regge poles as

5y= 1z &(I +z ) &[8z 3 —A&(z + I)2]& 2 (5 39)

In this formula, we may use

A-(-'g ."'/ )~= ."'[~g/(4 )] (5.40)

On the other hand, it follows from (5.15) and (5.23)
that

(5.36}

g =limp

exists, and satisfies, from (5.24),

Numerically,

g, = 2.386 736.

By (5.15), in this limit of large A,

T, =-,'A'[g, 'z, (g,)]-'

= 0.215 991 5A~

and of course

zo = 0.175 546 1A2.

In this limit, (5.34) reduces to

I + 2z 24 II (8 g 2}1/2

= 0.379 431 4.

(6.1}

(6.2)

(6 3)

(6.4)

(6.5)

(6.6)

We therefore get more explicitly

5y= zz, '(1+zo) "2]8z,' —To(zo+I)'[Xg/(4&)]'}'~'.

(5.41)

It is fortunate that &, 2v'2. Otherwise the situa-
tion would become very complicated. Finally, the
substitution of (6.4} and (6.6) into (5.31) and (5.32)
gives that

In Fig. 2, we plot this spacing 5y as a function
of Xg/(4v). It is interesting to note that (1) 5y
changes less than -', for all X; and (2) 5y has a
small peak for yg/(4v) -0.55. or

16m~(0. 215 991 5)X y [y + 3.035 451(n+ z)y] =g' I

(6.7)

y = 0.171 226 8 gX 'y ' —1.517 725(n+ 2) . (6 8)

I.05-

I.O
O

CL

~0.95

0.9-

0) 0.85
L:o 08

0.75- Limit ing value

I I I I I I I I I I I

0 lO 20 50 40 50 60 70 80 90 IOO IIO l20 ]50
Xg

4' m~

FIG. 2. The distance between successive Regge (or
Toiler) poles as a function of the mass of the exchanged
particle.

We have obtained these results by first assum-
ing a large y and then let A be large. Thus we
have implicitly assumed that A, although large,
is small compared with y. However, this assump-
tion is unnecessary. This point can be seen in
many ways. First, since the result can essential-
ly depend only on A/m for dimensional reasons,
we can let m be small instead of large A. In the
development of Sec. 5, m appears only in a trivial
way, in the denominator (z'+m') '. Thus it is
not difficult to check that small m does not cause
any complication. Alternatively, we can repeat
the calculation of Sec. 5 with finite X, taking care
of the fact that both z, and ~0 are of the order of

We can thus use (6.7) and (6.8) for finite X to
get

~(0) = 0.413 795 7(g/&)"' —1 —0.758 863(n+-,').
(6.9)
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Note that this is dimensionally correct, and hence
m does not enter. In particular, even for m, ~m„
(6.9) is still valid in the limit of large g with fixed
A, IO, m„m2, and n.

It is very interesting to compare (6.9) for Xx0
and (3.29) rewritten in the form

o(0) = (4v) 'gjm —n ——,
' (6.10)

for A. =O. First, the leading Regge pole in the
sense of Sec. 1 is located, for g large, very rough-
ly at a point of order g for A. = 0, but of order g"'
for A, c 0. Thus, increasing the coupling constant
for A. c 0 is much less effective in pushing the
Regge pole to the right. Secondly, while the spac-
ing between Regge poles is 1 for A =0 (although
they are not daughters as shown in Sec. 4 and also
seen from Sec. 5), the spacing is only somewhat
smaller for Xw 0, as seen from (6.9):

5@=5n(0) = 0.758863. (6.11)
Of course this result (6.11) can also be obtained
readily from (5.41). This limiting value is
marked on Fig. 2.

7. DISCUSSIONS

(A) As already mentioned, the results of Sec. 6
hold even when m, &m, . However, the curve
shown in Fig. 2 is correct only for an m, =m„
although the asymptotic value has a more general

validity. Since the special case m, =m, is not a
particularly simple one, the appearance of the
peak is perhaps not surprising.

(B) A natural question to ask is: Why are the
daughter trajectories" "not seen'P This ques-
tion has a very simple answer: the integral equa-
tion that we study is really the equation for Toiler
poles. " Since a Toiler pole leads to a family of
Regge poles, daughter poles are already included.
From this point of view, the result of Sec. 4 is
immediate. What we have found here is, for large
coupling constants, a family of approximately
equally spaced Toiler poles.

(C) As stated in Sec. 2, the procedure here can
be extended at least partially to nonforward di-
rections. We believe that the difficulty with the
daughter trajectories is only a technical one, not
of fundamental nature. However, a great deal of
further work remains to be carried out in this
direction.
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