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We study the problem of scattering by an attractive Yukawa potential. In particular, the
positions of Regge poles are found approximately when the coupling constant is large.

1. INTRODUCTION

It is the purpose of this and the following paper'
to study the behavior of Regge poles2 when the cou-
pling constant is large. Since Regge poles were
originally found in connection with the scattering
by a superposition of Yukawa potentials, we treat
here first this case of potential scattering. Al-
though the procedure of this paper is applicable to
a large class of superpositions of Yukawa poten-
tials, we shall restrict ourselves to the case of a
single Yukawa potential, where the answer is
more explicit in some cases.

In Paper II we shall consider the case of ladder
diagrams in Q theory, again in the limit where
the coupling constant is large.

The differential equation for a partial wave is
d2
d, —tP —/(I+I}r '+ g'V(r) &=0,

where ia is the momentum of the incident particle,
and V(r) is given by

V(r}=r 'e-

In (1), I is considered to be a continuous variable.
I et

then it follows from (1) that

2g, —x e"—( I'+)* g+'e"V(e'} g, = 0. (4)

This is an attractive potential when g is suffi-
ciently large. For large g, its energy levels can
be found approximately by replacing U with a har-
monic potential located at the minimum of U.

For the Yukawa potential (2), Eq. (4) is more ex-
plicitly

2

2
—g e ' —(I+—', ) g~+ee~' g, =0.

We are thus interested in the behavior of the po-
tential

U=z e '-g e'e "' .
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2. CASE OF ZERO MOMENTUM

zp = -ink. , (V)

The case a =0 is particularly simple. The min-
imum of U is located at

complex if 2&0. However, wheng- with A. and
-8 fixed at positive values, the imaginary part
of l is exponentially small due to barrier penetra-
tion. Accordingly, (15) holds for z & 0 as well as
a ~0.

and furthermore, if z is close to z„
U- -(Z'/e~)[l- z(z —z.)']. (8)

4. CASE OF LARGE MOMENTA

The above results, (15) and (16), hold when

(I + —,')' -g'/eA —(n+ —,')(2g'/ex)'~ ' (9)

When this approximation for U is used in (5), we
find that

(1V)

Otherwise, (12) does not follow from (11).
We now consider the case where ~)('

~
and Xg' are

comparable. Let

I-g(eX) '~' ——,
' —(n+-,')/W2, (10)

u =E(C) (18)

when ran=0, 1, 2, . . . is a non-negative integer. Note
that the spacing of Regge poles is I/v 2. (We have
taken g to be positive without loss of generality. )
Note also that the Regge poles given by (10) are
located at l » 1. They do not include the infinite
number of Regge poles at l =--'„ for example.

3. CASE OF SMALL MOMENTA

To find the location of the minimum of U, we
differentiate (6):

g (1 —A.e')e '=2/Pe'.

be the solution of the equation

(1 —u)e "=2Cu. (19)

At this point, the value of E(C}is

F(C,) =-,'(1+v 5) =1.618034. (21)

In terms of this function E, we have from (11)

Equation (19) has more than one real solution for
C & 0; we choose the branch where E(0}= 1. In
Fig. 1, we plot this E(C), defined for C& C„where

C, = --,'(3 —)(5 )exp[-', (1+)(5 )]= -0.03V 869 6V.
(20)

When 2 is sufficiently small, (11) is satisfied at
z, =-lnA+InE(z X 'g '). (22)

zo —-In). —2ez /(Xg') .
Moreover,

U-- — j- 2 —
p z —zp &+

(12)

(13)

In the vicinity of this minimum at zp,

U - -)('~-'F'(I —E)-'

x[(l+F) —(1+F-Ez)(z —zo) ], (23)

in the vicinity of this minimum at z,. Therefore,

or

and hence

(I+ -'.)' - H~-'F '(i —E}-'(i+E)
—(n+-', )[4)( X 'F'(1+F -F')/(I -F)]'~

(24)

3
1 (;(81) '~'(1 —,

)
—-', —( ~ —,')~((+ 1 ~)

(15)

This is the desired answer. In particular,

dl
d(-2)

--', e'~'g lx 3~'+3(n+-')2 '~'ez 'g '

(i6)
This result, (15), for large g has been obtained

here for 2 ~ 0. For all z' the U of (6) has one rel-
ative minimum located at z, which satisfies (11),
provided that g is sufficiently large. Only for
a ~ 0, this relative minimum is also an absolute
minimum; otherwise U is not bounded from below
when z-~. Therefore, l is real for a -0, but
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FIG. 1. Plot of the function 5' that appears in Sec. 4.
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or

I-zX 'F[(I+F)/(1-F)]'~'
——,

' —(n +-,')[(I+F—F')/(I+F)]'~'. (25)

For ~ c0, the approximate results here may be
expected to be less accurate. This is most dra-
matically expressed by (27). With X =1, the valid-
ity of (27) requires

In (23)-(25), E of course stands for F(dX 'g ').
The approximate formula (25) certainly fails

when

(26)

or

Qg ))1

g»26.
(29)

In other words, for extremely large g, the Regge
pole moves rapidly away from the real axis at
roughly

This is to be compared with g' = 30, the largest
value used by Lovelace and Masson' in their nu-
merical calculation. The values used by Ahmad-
zadeh, Burke, and Tate are smaller.

-a' = Jc, f
zg' .

5. SPECIAL CASE OF THE COULOMB FIELD

(27)
7. DISCUSSION

The limiting case A. -O is rather singular. This
special case can be solved exactly in terms of
confluent hypergeometric functions. In particular,
as shown by Singh, ' for 2 =0 all the Regge poles
are at infinity. This is consistent with (9), and
also with (27) where the right-hand side is zero.

In the Wick-Cutkosky case of the ladder dia-
grams, ' the exchanged pa;ticle is massless.
This case therefore bears some resemblance to
the potential case of the Coulomb field. This sug-
gests that for large coupling constants, the Wick-
Cutkosky case may be rather different from the
ladder diagrams where a massive particle is ex-
changed. We shall see in Paper II that this is in-
deed the case.

Our main interest here is to study the behavior
of Regge poles for ladder diagrams in field theory
when the coupling constant is large. In Paper II
we shall study some simple aspects of this prob-
lem. The considerations in this paper on the po-
tential problem serve as a useful introduction.
For this purpose, it is sufficient to restrict our-
selves to the cases where the Regge pole is real,
at least approximately.

The extension of the present considerations to
Regge poles not close to the real axis is fairly
straightforward. We mention in particular the
following special cases:

(i) repulsive Yukawa potential;
(ii) superpositions of Yukawa potentials;
(iii) the case where

6. REMARKS
g2y-~g-2 (g (30)

In the analysis of this section, we assume that
g'-~. It is useful to have some idea as to how
large g2 should be. Without loss of generality,
let A. be normalized to be 1.

Let us consider first the case ~ =0 of Sec. 2.
It is seen from (10) that we need

n+ z(( g. (26)

For a given large g, (10) is most accurate for the
leading Regge pole, but becomes less and less
accurate as n increases.

where C, is defined by (20). It is interesting to
have these cases worked out in detail, although at
present they seem to be too complicated to be rel-
evant to the ladder diagrams.
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