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In order to test the general validity of the impact picture which was extracted from quan-.

tum electrodynamics at high energies, we make a systematic study of high-energy scatter-
ing amplitudes in P3 theory. The method we use is the one developed in our treatment of
quantum electrodynamics, and it enables us to obtain in closed forms the asymptotic ampli-
tudes for multiple exchanges of Regge poles and scalar particles. Our results are nonper-
turbative and are valid to all orders of the coupling constant. We show in various examples
that (i) the longitudinal momentum of the incident particle is always distributed in positive
fractions by the particles created; (ii) an exchanged particle, either composite (Regge pole)
or elementary, can carry only transverse momentum; (iii) the scattering amplitude satis-
fies the impact factor representation; (iv) except in the leading order of the coupling con-
stant, the simple-exponentiation form of the eikonal approximation does not appear. The
eikonal approximation fails in P3 theory because of particle creation: More than one particle
may share the incident longitudinal momentum and it is impossible to single out a particular
particle to be associated with the eikonal path. The above conclusions are reached by a
study of the one-ladder amplitude and the amplitude for the double exchange of a ladder and
a scalar particle. An integral equation for the Regge parameters of a ladder was derived
and many properties of the Regge parameters were given. In particular, in the Wick-Cutko-
sky model, the Regge pole at zero invariant mass G. (0) = 1 when the coupling constant g is
equal to 4u6mm, where m is the mass of the scalar meson. Thus the physical picture of
an expanding black disk in quantum electrodynamics is also realized in the Wick-Cutkosky
model as long as g & 4v 6'�.The scattering amplitude for the double exchange of a ladder
and a scalar particle is given explicitly in terms of the Regge parameters of the ladder
diagrams. Throughout our investigation of P theory at high energies, there is exact corre-
spondence with the results in quantum electrodynamics at every step. This reaffirms our
belief of the general validity of the impact picture.

I. INTRODUCTION

Since 1967 we have been pursuing a program of
learning about high-energy hadronic scattering by
studying relativistic quantum field theories. For
this purpose, it is only natural for us to concen-
trate on quantum electrodynamics, the "best"
field theory in the sense of producing theoretical
and experimental triumphs in the past. During the
last few years, we have obtained a number of con-
crete results' about the high-energy behavior of
quantum electrodynamics, and it is very gratify-
ing indeed that each of these results has a simple
and natural physical interpretation. In this way,
it is possible to apply our results from quantum
electrodynamics to hadron physics to obtain a num-
ber of definite predictions. "Whether this extra-
polation to hadron physics is justified can only be
determined by comparing these predictions with

future experiments.
On the theoretical side, it is an interesting ques-

tion whether our results are peculiar to quantum
electrodynamics, i.e., whether they also hold for
other relativistic quantum field theories. An af-
firmative answer to this question would be impor-
tant evidence supporting our physical interpreta-
tions, which depend mostly on very general prop-
erties such as time dilation and Lorentz contrac-
tion. As a small step in that direction, we have
studied scalar electrodynamics, 4 and found that
there is no qualitative difference from quantum
electrodynamics. However, because of the close
similarity between the two cases, this result is
to be expected. As a nontrivial test of our physical
interpretations, another field theory must be
chosen.

Because of the necessity of investing a large
amount of time and effort in determining the high-
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energy behavior of any theory, we must be care-
ful in choosing this field theory for purposes of
comparing with quantum electrodynamics. From
an experimental point of view. , there is no useful
field theory aside from quantum electrodynamics.
From a theoretical point of view, we must restrict
ourselves to renormalizable field theories. The
simplest renormalizable field theories are, be-
sides quantum electrodynamics and scalar electro-
dynamics with either a massless photon or a mas-
sive vector meson, the following:
and g y, g ft). All these theories are fundamentally
different from the cases of quantum electrodynam-
ics and scalar electrodynamics in the absence of
a vector particle. Since the vector particle plays
a rather major role in our previous calculations
of high-energy behavior, a comparison of any of
these four renormalizable field theories with quan-
tum electrodynamics is of great importance.

The choice is basically between p' theory on the
one hand and Q', PgQ, and gy, gP theories on the
other. In the latter three cases, it is necessary
to renormalize a four-scalar-particle vertex. The
renormalization program for this vertex has been
carried out' a number of years ago, but is very
complicated by any criterion. We believe that the
renormalization of this vertex renders it difficult,
without making additional unjustifiable assumptions
about this renormalization constant, to determine
the high-energy behavior of the elastic scattering
amplitude of two scalar particles. By this process
of elimination, we study in this paper the high-en-
ergy behavior of ft)' theory.

Since 1962, the high-energy behavior of p' theory
has become a mell-explored field. '' Much of the
previous work is based on summing leading terms
for classes of diagrams, and is valid only in the
weak-coupling limit. Unfortunately, Q' theory,
unlike quantum electrodynamics, is not very inter-
esting in such a limit. One of the reasons is that
all cross sections vanish rapidly at high energies
if the coupling constant is small. This does not
agree with the realities in hadron-hadron scatter-
ing. A detailed discussion on this point can be
found in Sec. 2A.

Since P' theory is interesting only if the coupling
constant is appreciable, a result in f' theory is
meaningful only if it holds for all values of the
coupling constant. In the context of studying Feyn-
man diagrams, which are perturbative in nature,
our attitude must be that of extracting physical
principles with general validity. Thus we must
distinguish the results which are independent of the
size of the coupling constant and the results which
are not. In p' theory, one of the former is that
the one-ladder amplitude is asymptotically of the
form P(t)s"~", and one of the latter is that a(t)

= —I.
The same considerations hold for the multi-lad-

der amplitude. The observation that the two-lad-
der amplitude has a Regge cut' is independent of
the value of the coupling constant, while the recent
result that the multi-ladder amplitudes can be
summed' "into the eikonal form" " is true only
in the weak coupling limit. As a consequence, the
conclusions of Chang and Yan' on the inelastic dif-
ferential cross sections, one-particle spectrum,
multiplicity, and number distribution have no
physical relevance. This is especially true since
the eikonal approximation" "indeed breaks down

when the coupling constant is not small, as we
shall show in Sec. 5.

In this series of papers, we shall study P' theory
with the goal of gaining general physical insights.
We shall first give a discussion on the one-ladder
amplitude as a function of the external masses.
This discussion is necessary for our later pur-
poses and we have not been able to find it in the
literature. " " We shall then concentrate on the
amplitude for the exchange of a ladder and a sca-
lar particle and the amplitude for the exchange of
two ladders, and calculate these amplitudes to all
orders of the coupling constant.

A physical picture already emerges from such
calculations. It is precisely the impact picture. ~3

More specifically, we have shown that, in P'
theory, the following are true:

(i) If the longitudinal momentum of an incident
particle is called co, and if this particle turns into
a group of N particles with longitudinal momenta
x, co, i=I, 2, . . . , N, respectively, then O~x, & I
for all f with Q ", x, = 1.

(ii) A Regge pole which is exchanged in a high-
energy collision process can carry only transverse
momentum. Specifically, if q„ is the momentum
of a Regge pole in exchange, then q, and q, are both
of the order of w '.

(iii) The scattering amplitude satisfies the im-
pact-factor representation. ' In particular, the
amplitude for the process a+b -c+d with the ex-
change of two Regge poles is in the form" of the
impact-factor representation'

In (1.1), a, and a, denote the two Regge-pole ex-
changes, r, +q~ and r, -q denote the rnomenta
carried by the two Regge poles, respectively, and
~' and t~ denote the impact factors. The impor-
tant point is that 8 is independent of b and d.
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Equation (1.1} is satisfied regardless of whether the
particles exchanged are composite or elementary.
Thus, when vector mesons are exchanged, a, =+2
= 1 and (1.1}is the impact-factor representation
established in quantum electrodynamics. ' In the
double exchange of a ladder and a scalar meson,
a, =o., the Regge pole of the ladder diagrams,
and a, = 0. Equation (1.1} clearly demonstrates
that if one of the particles exchanged is composite
(o. not a constant), the scattering amplitude has a
Regge cut. It further shows that the discontinuity
across this branch cut is factorized into a product
of the impact factors.

(iv) Just as in quantum electrodynamics, "the
simple-exponentiation form, which characterizes
amplitudes in the eikonal approximation, does not
occur if the coupling constant is not small. This
important point was emphasized in our earlier
paper" but has apparently been overlooked by
other workers in the field. The failure of the eiko-
nal approximation in field theories has a natural
interpretation: An eikonal path cannot be defined
if the incident particle turns into one or more
particles with longitudinal momenta comparable
to ~. When the coupling constant is small, the
creation and annihilation processes, being of high-
er order in the coupling constant, can be neglected,
and one of the particles takes up all of the longitu-
dinal momentum ~ throughout the collision pro-
cess. An eikonal path can then be defined with
respect to this particle, and the eikonal approxi-
mation is expected to hold. It is one of the major
goals of this series of papers to demonstate ex-
plicitly the failure of the eikonal approximation
when the coupling constant is not small.

In the first paper of the series, we shall con-
centrate on the amplitudes for the double exchange
of a ladder and a scalar particle. The amplitude
for the exchange of two ladders will be studied in
the second paper of this series.

2. MAGNITUDE OF COUPLING CONSTANT

A. Case of Small Coupling Constant

When the coupling constant g for the Q' theory is
sufficiently small, the high-energy behavior of
scattering amplitudes can be determined complete-

ly in a very simple way. The result is merely that
of one-particle exchange, and is therefore uninter-
esting. We discuss this trivial remark in some
detail.

Consider the two-particle elastic scattering
amplitude. In perturbation theory, the lowest-or-
der diagrams are the three shown in Fig. 1, where
the s channel is from the left to the right while the
t channel is from the bottom to the top. In the
limit s-~ with fixed t, only the diagram of
Fig. 1(a) is important and gives

(2.1)

Thus, to this order, the amplitude is of the order
s . Since for Q' theory no numerator ever appears
in the Feynman rules, no diagram can give an
amplitude of a larger order of magnitude. Indeed,
the asymptotic behavior for z- ~ and t fixed can
be found to all orders of the coupling constant by
considering only diagrams of the form shown in
Fig. 2, and the result is simply

Jg(s, t}=-[F(t)]'S (t}+o(1). (2.2)

as s-~ with t fixed. In this sense it is a state-
ment about perturbation expansion. Equation (2.2)
also holds uniformly in order when the coupling
constant g is sufficiently small, as seen from a
comparison with the early calculations with the
ladder diagrams. ' The amplitude obtained from
the ladder diagrams in the t channel is of the or-
der of

~-), +o( 2) (2.4)

for small g, and is therefore negligible. However,
when g is not small, the expression (2.4) may be
unbounded as s-~. In other words, there is a

In (2.2), I'(t) and S~(t) are respectively the renor-
malized vertex function and propagator, where the
corresponding bare functions are g and (t -m'+ i@) '.

Equation (2.2) holds to all orders of the coupling
constant g. More precisely, to every finite order
of the coupling constant,

(2.3)

(a) (b) (c)

FIG. 1. The lowest-order diagrams for two-body
elastic scattering in Q theory. The s channel is from
left to right and the t channel is from bottom to top.

FIG. 2. General form of the diagrams which give
amplitudes of the order s in $3 theory.
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critical couPling constant g, such that the simple
result (2.2) holds only for

B. Comparison with Quantum Electrodynamics

When (2.2) holds, we have

do/d t O(s=') (2 6)

as s-~ with fixed t. This is very different from
the case of quantum electrodynamics, where do/dt
is roughly of the order of 1, not counting factors
of lns. The result of quantum electrodynamics
corresponds much more closely to the experimen-
tal data of hadronic scattering. In all known cases
of elastic scattering, such as pp, w'p, m-p, np,
etc. , the differential cross section do/dt remains
roughly constant, at least when t is not too large.
Therefo."e, both for comparison with the previous
results of quantum electrodynamics and for pos-
sible extrapolation to hadron physics, the case
where (2.2) and hence (2.6) hold is of no interest.

Suppose g is slightly larger than g, . Then (2.2)
and (2.6) fail but do/dt still approaches zero as
s- ~, although not as fast as s-'. Only for signifi-
cantly larger values of g, do/dt does not go to
zero as some inverse power of s. VFe can define
a second critical coupling constmgt g, as the great-
est lower bound of the positive values of g such
that s'do/dt, as a function of s, is unbounded for
some t and all positive e. Clearly

gc ~gc ~ (2.7)

For our purposes, we are interested in the case

(2.5)

but not for all Ig I
larger than g, . (It may or may

not hold for g=+g, ).
In this paper, we shall not be concerned with

the uninteresting result (2.2). Therefore, we must
consider the coupling constant g to be of the order
of m, not a small quantity.

C. Potential Theory

Since exponentiation""" is of central interest
here, we turn briefly to the case of high-energy
potential scattering" '" where exponentiation is
most clearly seen. Ne shall follow the procedure
of Ref. 19, and study the Schrodinger equation

(v'+ k' —V)g = 0 (2.11)

for large k with fixed V/k. In this limit, the ma-
trix element is given by

ik dx' dy ex -i b, ,x+ b,,y
r-

& 1 —exp ——,
'

iJ dz U(x, y, z

(2.12)

where Z=(h„A, ) is the momentum transfer, and

U=V/k. (2.13)

The appearance of the last exponential factor is
referred to as exponentiation.

The important point is that, for high-energy po-
tential scattering, exponentiation holds 8vhen V/k
is fixed If instead . V is fixed as k-~, then it is
rather vague to ask whether exponentiation holds
or not. Surely (2.12) remains a good approxima-
tion because it agrees, to leading order, with the
Born approximation

a black core whose radius increases logarithmical-
ly with energy. Consequently, ' the total cross sec-
tion rises indefinitely with energy, the ratio of the
total elastic cross section to the total inelastic
cross section approaches unity, the product of
diffraction width with the total cross section ap-
proaches a constant, and, for forward elastic scat-
tering, the imaginary part of the amplitude domi-
nates over the real part. This physical picture is
also realized in @' theory if

I g I& I g, I.

I g IC (2 6)
dx dy dzexp-i bp+62y V x, y, z,

(2.14)
If the mass of the particles in the ladder rungs is
equal to zero, it is shown in Appendix A that

and

g, = 4W2mm

g, = 4vTmm.

(2.9)

(2.10)

It is perhaps of interest to recall briefly the
physical picture, called the impact picture, that
we learned from quantum electrodynamics. Accord-
ing to this picture, in a high-energy collision a
particle acts like a Lorentz-contracted disk with

which does not contain an exponential factor of the
potential. Since, in this limit of fixed V, (2.12)
is no more accurate than (2.14), there is no com-
pelling reason to include an exponential factor in
the matrix element.

The matrix element (2.12) is of the order k for
fixed V/k, but of the order 1 for fixed V. A com-
parison with (2.2) for P' theory shows that the p'
case, with small coupling constant, is closer to
the potential case with fixed V. This is a further
reason why the case of small coupling constant in
ft)' theory is not very interesting.
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3. LADDER DIAGRAMS IN THE t CHANNEL

A. Motivation

As we have mentioned in the Introduction, we
shall study diagrams in which ladders are insert-
ed. Some examples are illustrated in Fig. 3. Since
the external lines of a ladder may represent vir-
tual particles, we need to know, for our purpose,
the dependence of the one-ladder amplitude on the
external masses. Now the one-ladder amplitude
is asymptotically of the Regge form. Thus we
must first study the dependence of the Regge pa-
rameters on the external masses.

One of the popular methods to study asymptotic
amplitudes is summing leading terms. As an
example, let us consider the ladder diagrams in
Fig. 4. Let us call the amplitude corresponding
to the n-rung ladder in Fig. 4 g'" 3g~~~, where

g is the coupling constant, and put

(3.1)

P and o. have the perturbation expansion'

a =-1+O(g'),

P =-g +O(g ) . (3.4)

Thus we make the expansion

s =s ' g(lns)" (n+1)"/n! .
n=0

(3 5)

It is found that the largest terms in the summa-
tion above are those with

n =O(lns) . (3.6)

Q+1=gg +bg +'' '

thus

(3 'f)

This can be shown easily if we use the Stirling
formula for n!. Now (n+ 1) has the perturbation
expansion

n=1 (o+ 1)"/g'" =a"+na" 'bgm+ ~ (3.8)
The method of summing leading terms consists of
obtaining the asymptotic form for ~~~ in the high-
energy limit, and then summing up these asymp-
totic terms. In other words, we make the follow-
ing replacement in the limit s- ~ with fixed t:

asymptotic form of 3R~

=asymptotic form of g g'"3g~&!
n=1

- p g'"xasymptotic form of 3!t~~&.
n=1

The method of summing leading terms is equiv-
alent to replacing the right-hand side of (3.8) by
a". This is not justified, as the next-order term
na" 'bg' is always larger than the leading term a"
for n =O(lns) in the limit s-~, no matter what
value the coupling constant is.

We may also understand the method of summing
leading terms in the following way. Instead of
(3.5}, let us expand s in the Taylor series of the
coupling constant:

(3.2}

We wish to emphasize that we must be cautious
in using this method in the above limit. To see
this, we start with the well-known formula

s" =s 'Pg'"A„.
n=1

Then by (3.V) and (3.9)

A„=(a lns)"/n! +a" 'b(lns)" '/(n —2)!+ ~

(3.9)

, -Ps, (3.3) (3.10}

the Regge asymptotic form. The Regge parameters The method of summing leading terms is equiva-
lent to replacing the right-hand side of (3.10) by
the leading term (a lns)"/n! . This is justified only
if the next-order term a" 'b(lns)"-'/(n —2)! is
smaller than the leading term, which is true only

r] l! r p jir2+r]
2

p-ra 1! l Ep+r)

(a) (b)

FIG. 3. Two of the diagrams for the double exchange
of a ladder and a scalar particle. A ladder with dots
inside represents the sum of all ladder diagrams. FIG. 4. Ladder diagrams.
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for g~lns-0, (3.12)

n' = O(lns) . (3.11)

g -0
in such a way that

Equation (3.11) means that the next-order term is
already of the order of the leading term when n is
of the order of (lns)'I', while by (3.6) the impor-
tant terms are those with n of the order of lns.
Thus the method of summing leading terms cannot
be justified.

If, instead of the limit s-~, we consider the
following limit,

then it is justified to replace the right-hand side
of (3.8) by s . It is in this peculiar weak-coupling
limit that the method of summing leading terms
is justified.

Since we are interested in P' theory with arbi-
trary coupling constant, we must not resort to the
method of summing leading terms. Instead, we
shall derive below an integral equation satisfied
by 0. and P to all orders of the coupling constant.
This equation turns out to be the same as that de-
rived by Amati, Stanghellini, and Fubini20 long
ago. However, we shall give our derivation here
for the purpose of retaining continuity.

B. Equations for the Regle Parameters

We shall adopt our usual notations' y„y„and r, for the momenta. The meaning of these momenta can
be seen from Fig. 4. We put

(r, —r,)' =M, ',
(r, +r,)'=M, ',
(r, + r,)' =M,",
(r3 —r, ) =My

We also have

s = (r, +r, )2 and t = 4r,2 .
We shall study the Regge parameters as functions of t and the external masses M„M'„M&, M&.

With reference to Fig. 4, the Bethe-Salpeter equation for %~(r„r„r,) is

(3.13)

K~ r„r„r,) = g' s —X' -'+ig' 2v ' d' 3)I (r, P, r )'[( -p)'-". ][(p~,)'- " ][(p-,)'- " ] '

where m is the mass of the particle in a vertical internal line and A. is that in a horizontal internal line.
We keep m and A. distinct because, at t=O, the case A. =O can be solved in closed form, as is done in Ap-
pendix A. In Eq. (3.14), pie the independent variable while r, and r, are regarded as constants. Hence
M', and Mf are regarded as constants in (3.14).

In the limit s- ~ with t and the external masses fixed, we have

3R~(r„r„r,)-P(t M ' M )s (3.15)

the Regge asymptotic form. The Regge parameters a and p are functions of M,' and Mf'also. However,
since M~ and M& are held fixed in (3.14), for simplicity we shall not exhibit the dependence on these masses
here. Substituting (3.15) into (3.14) and assuming that

Reo. & -1,
we get

P(t M 2 M 2)sa(t At& .NP ) .ig2(2&)-4 d4p P(, (P —r.)', (P+r,)')[(r, +P)']
[(rn —p) —A. +i ]a[(p+r,)' m'+i&][(p —r-,)'-m'+is] '

(3.16)

Let us put'

P'~ =Po+P3

and
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p+ = 2(dX .
Also, we have

(3.18)

y, -[(u+(4(o) '(2r, '+M, '+M~'), ~, 0], (3.19)

where the quantities in the above bracket are the energy, the z component of the momentum, and the trans-
verse components of the momentum, respectively. Then

(r, —p)2 —Xm+ is - (1-x)[r,'+ p(M, '+M~') —2(op ] —p~' —z'+ te,

(p+r, }'-m'+it x[+-—,'(M~'-M, '}+2&up ] —(p, + r,)'-m'+is . (3.20)

We also know that, considered as an analytic function of M, ' (M&'), 3II~ is regular in the upper half-plane
ImM, '~0 (ImM&'~0). Thus, considered as an analytic function of M, ' (Mz'), the Regge parameters n and

P are regular in the upper half-plane ImM, '~0 (ImM&'~0). Therefore, we may carry out the integration
over p in ($.17) by closing the contour in the complex plane of p . It is ea.sily shown that unless

0&/&1, (3.21)

we can always close the contour in such a way that no singularities of the integrand are enclosed. When
(3.21) is satisfied, we close the contour to the upper half-plane of p, and (3.17) becomes

P(t M a M a)sn(t, sP, sy )

+1- pg'(2v) ' dp, dx(1 —x)
Q

p(t p,
'

p, ')(xs)"
gp~+ (1 —x)r,]'+ (1 —x)m'+ xaam —x(1 —x)M&' —is j[[p~ —(1 —x)r, ]~+ (1 —x)m2+ xX 2 —x(1 —x)M, ' —i ej '

(3.22)
where

p, ' = -gp, —(1 —x}r,]' —x(1 —x)M, '+xZ'j/(I —x}

and

[[p +(1 —x)r,]'-x(1 —x)Mi'+xA, 'j/(I -x) .
Since the two sides of (3.22) have different s dependence unless

a(t, p, ,', p,~') =n(t},

we conclude that (3.25} must hold, and thus (3.22) becomes

P(t, M(, M~ )

+x
=-, g (») 'J dp Cx(1-X}x

s 0

(3.23)

(3.24)

($.25)

X p(t p) pf )
([p +(1 —x)r,] +(1 —x)m +xA, -x(1 —x}M~ —je j([p —(1 —x)r,]s+(I —x)ms+ Xa x(1-x)M s —te'

(3.26}
Notice that Eq. (3.26) is indePendent of s, M,', and M&. The factors in the denominator of (3.26) are f~il-
iar —similar factors also appear in high-energy amplitudes in quantum electrodynamics. ' In fact, they
are the denominator factors in the impact diagram rules. "

Equation (3.26) is an eigenvalue equation, with n the eigenvalue and P the eigenfunction. Since (3.26) is
homogeneous, p can be determined only up to a factor f which is independent of M, ' and Mz'. This factor f
is a function of t, M,', andM&. Thus

(3.27)P(t' M M 'M' M')=f(t M' M')b(t M M )

which exhibits explicitly the factorization of the Regge residue function P. In (3.27), we have written out
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the dependence of P on all four of the external masses. Notice that b(t, M, ', M&') is now independent of M f
and M~, as these two masses do not appear in (3.26}. If all of the external particles are the same scalar
meson, we may choose by symmetry

and

P(t; Mq, My, M(', M~' ) =b(t, Mq', My' )b(t, M(, M~ ) . (3.28)

Substituting (3.28} and (3.25} into (3.15), we get

II (r„r„r,)-b(t, M, M, '}b(f, M, ",M, ")s '".
Also, Eq. (3.26) can be written as

b(i, Mq, My )

(3.29)

1
=-'g'(») '

dp dx(I -x)» '"
~I 0

b(t, p, ,', p.y')

[[p~+(I-x)r,]~+(1—x)ml+xA2-x(1 —x)M&' —ie][[p -(I —x)r,]2+(1 —x)m2+xX' —x(1 —x)M, ' —ie] '

(3.30)
where p, ' and p&' are given by (3.23) and (3.24) and b is determined up to a factor which depends on I only.

In summary, we have found that (a} the Regge trajectory o is a function of t only, and is independent of
the external masses; (h} the Regge residue p is factorized in the form (3.28); (c) the functions a and b are
determined by the eigenvalue equation (3.30). All of these conclusions are of course well known.

It is particularly gratifying that for high-energy scattering, 0&x & 1. This confirms (i) of the physical
picture discussed in Sec. 1. It is also interesting that the denominator factors in the impact diagram rules
also appear in amplitudes of f' theory. In fact, the formulas here are in striking resemblance to those in
quantum electrodynamics.

C. Properties of the Regge Parameters

We shall here list the properties of the Regge parameters a(t) and b(t, M, ', Mz'). The derivations of
these properties are given in Appendixes A, B, and C.

The perturbation series for the Regge parameters are'4
2 ~l

o,(f) =-1+, Cx[-x(1-x) t+m' —ie] '
16m2 0

4
+ ~ dp~B(t, -(p~ —r,), -(p~+r, ) )[(p~ r+, )~ +m] '[(p~ r~) +m-2~] '+O(g~)

and

b(t, M, , M& ) = f(t)[1+g'B(t, M, ~, M& )+O(g )),
where

B(t, Mq, My )

(3.31)

(3.32)

wl
=(16v')-' dp, dxx '

4 ~0

1 —x
[[p +(I-x)r ] +mn(I-x)+y x-x(1 x)M& —ie—H[p~ -(1-x)r,] +m (I-x)+& x-x(l-x)M, —ie}

1

fS.~,)* '1IS.—,)' ~ 'I) ' (3.33)

and f(t) is an over-all factor which cannot be de-
termined from the integral equation (3.30). From
previous calculations, ' we know that

[f(I)]' = g"'+ o(g') . - (3.34)

In the limit (~M, ~

'+ ~Mz~')-~ with t fixed, we
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have 1 5

The over-all constant c(t) cannot be determined
from (3.30). It has the perturbation expansion6

2

c(f ) = fg [I+ 0(g )] (3.36)
FIG. 6. Another way to draw the

diagram in Fig. 5.

The case t =A.'=0 can be solved in closed form.
We have

2I

and

n(0) = —' + [ ' +g'/(16w m')]' (3.37)

1' 5'

In particula, r, n(0) =0 if

g=+4v2vm.

Also, n(0) =1 if

g =~4v%mn.

(3.38)

(3.39)

(3.40)

corresponding to Fig. 5 in the high-energy limit
to all orders of the coupling constant. The calcu-
lation is actually rather straightforward, as we
shall soon demonstrate. Most interestingly, we
found that this amplitude is in the form of the im-
pact-factor representation. '

A. Preliminaries

Therefore, the Froissart bound" is violated by
the one-ladder amplitude if g&4v%m and a parti-
cle resembles a black disk with a radius increas-
ing logarithmically with the energy. '

Before we plunge into the calculations, let us
first decide if there are other diagrams which con-

4. THE EXCHANGE OF A LADDER AND A

PARTICLE

Mandelstam' first pointed out that the diagram
in Fig. 5 gives the Regge cut arising from the ex-
change of a ladder and a scalar particle. The cor-
responding high-energy amplitude has been calcu-
lated explicitly by the method of summing leading
terms. "'4

In this section, we shall calculate the amplitude

r2-r&
1

r)+q g

5I

p'+ri l
~ r3-r~ -p'+q

FIG. 5. A diagram for the double exchange of a ladder
and a scalar particle. This diagram gives a Regge cut.

FIG. 7. More diagrams for the double exchange of a
ladder and a scalar particle.
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[(r~+q)' —m +ie] '-(2&uq +r, +i&) ', (4 1)

[(r, -q)'-m' ie]+'-[-(r, -q, P -m'] ', (4.2)

tribute to the exchange in consideration. For this
purpose, it is appropriate to take hints from quan-
tum electrodynamics.

In quantum electrodynamics, we have gone con-
siderably further in the study of exchanges of com-
posite or elementary systems. " For simplicity,
let us restrict ourselves to electron-electron scat-
tering. Then the counterparts of ladder diagrams
are tower diagrams. ' ' We have shown in this
connection that, to the leading order, an eikonal
form is obtained if we include all multi-tower ex-
change diagrams with different permutations of the
tower legs. To go back to Q' theory, this means
that, in addition to the diagrams in Fig. 3, we
must consider the diagrams in Fig. 6 and Fig. 7.

We first note that the diagram in Fig. 6 is pre-
cisely the Mandelstam diagram in Fig. 5. This
can be seen by comparing the arabic numerals in
the two figures. Next we observe that the scatter-
ing amplitudes corresponding to the diagrams in
Fig. 3 and Fig. 7 are negligible in the high-energy
limit. " Although this observation is well known,
we shall give an explanation of it from our view-
point. In the process of doing so, we shall also
justify (ii} of the physical picture discussed in
Sec. 1.

All of the diagrams in Fig. 3 and Fig. 7 share
one feature: Either their top or bottom halves, or
both, are of one of the forms illustrated in Fig. 8.
Let us denote the momenta carried by the Regge
pole and the scalar particle exchanged as r, +q
and r, —q, respectively. We shall assume that

q, q is small and shall justify this assumption in
a moment. Then it is fairly easy to show that if
we carry out the integration over q (=q, —q, }, we
get zero. Consider first the diagram 8(a). The
q -dependent factors in the scattering amplitude
are

where (3.29} has been used. All of the above fac-
tors are regular in the upper half-plane of q .
Also, by the asymptotic form (3.35), the Regge
parameter b vanishes when one or both of the ex-
ternal masses approach infinity. Thus we may
close the contour in the upper half-plane of q and
the integral over q vanishes. The same consid-
erations apply to diagram 8(b).

It is probably worth pointing out that if we re-
place the Regge parameter b by its lowest-order
term ig, the above argument would not go through,
as the integrand does not vanish fast enough at in-
finity. This is one example of the pitfalls in using
leading terms.

We shall now justify the assumption that q+q is
small. In brief, if we keep q, q, there are, in
the q plane, additional singularities which are,
in the high-energy limit, so far away that they do
not contribute. For the sake of clarity, let us
treat the diagram 3(a) in detail. The correspond-
ing scattering amplitude is proportional to

d~qb((r, +q)2, m, (rl+q) )

x b((r, +q)', m', (r, —q)') s"

x[(r2+q) —m'+is] '[(r, —q)'-m +is] '

x [(r, -q)'-m'+is] '. (4.4)

Now

(r, + q}'-q, q —(r, ~ q, )',

(r, + q)'- (2m+ q+)[q + (m'+ r, ')/(2ur)] —q~~,

(4.5)

(4.6)

(r, —q)'-(2&@ —q )[-q, +(m'+ r,~)/(2ur)] —q '.
(4.7)

Substituting (4.5)-(4.7) into (4.4), we find that the
integrand in (4.4) is an analytic function in the
complex q plane and, unless

-2(u ~q, ~0, (4.8)

b((r, +q)', m', (r2+q)')

-b(-(r, +q, )', m', 2(oq +r,'+m'),
the singularities are always located on the same
side of the real axis. Thus we may set

(4 3) q+ = -2(dX
y (4.9)

r2+ g rp+rq
and restrict ourselves to 0 & x & 1. The singulari-
ties from

jar& -q (r, + q)'-m'=0
are located at

(4.10)

(a)
FIG. 8. The top halves of the diagrams in Fig. 3.

(aq =0(x-').

Thus, evaluated at these singularities,

(4.1 1)
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(4.12)

Hence, if x is very small, b((r, +q)', m', (r, +q}')
vanishes like x™+1as a result of the asymptotic
form (3.35}. Qn the other hand, if x is nonzero,

(r, —q)'- 4(o'x, (4.13)

and b((r, +q)', m', (r, —q)') vanishes like (ur')

In either case, the contributions by the singulari-
ties deterimined from (4.10}are negligible.

In the same way, we may see that the singularity
in the q plane from

(r, —q)'-m' =0

is also of negligible contribution. Thus alladdition-
al singularities arising from retaining q q have
negligible contribution.

In general, the longitudinal momentum carried
by a Regge pole is always small compared to
those of the incident particles. Otherwise the
Regge parameter b would become very small as
a result of (3.35). Thus we have verified (ii) of
the physical picture discussed in Sec. 1.

We wish to emphasize that the composite nature
of a Regge pole is crucial to the validity of our
arguments above. For example, if the Regge pole
in Fig. 3 is replaced by a scalar particle, the
amplitude corresponding to the diagrams in Fig. 3
is no longer negligible. For an individual dia-
gram with exchange of elementary particles such
as the one in Fig. 9(a), q+q cannot be neglected.
Only when we consider the sum of all diagrams
with different permutations in the ordering of the
exchange can we neglect q, q . For example, it

FIG. 9. Some sixth-order diagrams.

is justified to neglect q q if we consider the sum
of diagrams in Fig. 9, but we should not neglect
q, q if we consider any particular one of the dia-
grams in Fig. 9.

Applying the above arguments, we see that, for
the exchange of two composite systems, the legs
of the two systems must be intertwined, both for
the top and the bottom parts. More precisely, if,
in either the top or the bottom parts of a diagram,
the legs of one system can be completely separ-
ated from the legs of the other by cutting one in-
ternal line, then this diagram is negligible.

B. The Impact-Factor Representation

Let us calculate the amplitude 3R~~ corresponding to the diagram of Fig. 5. We have

x[(r, +r, —p-q) —m'+is] '[(r2-p)'-m +is] '[(p'+r, )'-m +i&] '

x[(p'-q) —m'+i@] '[(r,-p') —m +is] '[(r,-r, -p'+q) —m +ie] '

x[(r, q) —m'-+is] '3}I~(p+q, p'-q; p-r„p'+r, ). (4.14)

In (4.14), 3g~(pf, p&,
' p„p,') is the amplitude for the sum of ladder diagrams discussed in Sec. 3, and

(r, + q) is the momentum carried by the ladder. The external particles will be taken to be on the mass
shell and all particles except those in the ladder have mass m.

In the c.m. system, we have

+2+ 2coy

2(d
y

where

(4.15}

s -4(d .
We put

(4.16)
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P+

p = 2x (i)~

(4.1V)

(4.18}

then by (3.29),

3]I (p+q, p'-q; p-r„p'+r, )-b((q+r, )', (p-r, )', (p+q) )b((q+r, ), (p'+r, ), (p'-q) )(xx's)" "'1 ].

(4.19}Also,

(p- r, ) —m + i e - 2 x&u p - (pd - r, ) —m +i e,

(r, +r, —p- q)'- m'+ ie —(1-x)(r, '+ m'- 2~p —2&uq )- (r, —p, —q, )'- m'+i e,
(p+q)'-m'+ie-2»(d)(p +q }-(p,+q, )'-m'+is,
(r2-p)'-m'+is-(I-x)(r2'+m'-2(d)p )-p '-m'+ie,

and similarly for the other factors dependent on p'. Let us call

(2 2)= —r(2 (2 ) fd pdq [(3 2) — ' -'
] [(2 2)'- ' ( ]

x[(r2+r, -p-q} —m'+ie] '[(r,-p) -m +in] '

&&b((q+r }', (p-r )', (p+q)')» """"'.
Then by substituting (4.20)- (4.23) into (4.24} and carrying out the integration over p and q, we get

(r„q,)=d'(32 ') 'fdp, d*[(p 0)' (1-*~ 3 ) '] '
0

&&[(p,—Q) +(1-x+x')m'] 'b(-(q +r )' a '
][. 2)x

wher

= -[(p,—Q)'+ x'm']/(1- x),
][.~' = —[(p, + Q)'+ x'm']/(1- x),

with

Q= 2q. + (2- x)r, .

In deriving (4.25), a translation in the integration variable p has been made.
»om (4.14), (4.19), and (4.24), we finally have

32' =2'(2 ) fdq ' '"' '[3 ( q, )]'x[(q —r )' '] '

which is the impact-factor representation.

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

FIG. 10. The crossed ladder.
FIG. 11. A diagram for the double exchange of a

crossed ladder and a scalar particle.



3182 H. CHENG AND T. T. WU

The integral in (4.28) does not converge at the infinity of q . This divergence can be cured by putting in
the signature factor for the Regge pole. The amplitude corresponding to the sum of ladder diagrams in
Fig. 10 is asymptotically

eisa(()tt)(t) a(&) (4.29)

Thus the scattering amplitude corresponding to the diagram in Fig. 11 is asymptotically given by the im-
pact-factor representation

2((2 ) fdt( s t-\ ) )-; (-~ ) ~(1 (r t( )) l(t( i ) ~ )

Adding up the amplitudes (4.28) and (4.30), we get

5tI, -2i(2s) 'Jtdqs , ""'' ' '(1+e " ""'"'))[(t '(r„q, )]'[(q, —r, )'+m'] '.

(4.30)

(4.31)

The integral in (4.31) converges as the signature factor vanishes at [q,)-~.
We once again emphasize that no assumption on the size of the coupling constant has been made. Thus

(4.31) gives the asymptotic form of the high-energy amplitude for the exchange of a ladder plus a scalar
particle, with the neglected terms smaller than (4.31) by a power of s.

If n(t) is a, monotonically increasing function of t, a steepest-descent calculation easily reduces (4.31) to

5It~s-i(2v) '[n'(0)lns] 's ' '(-t+m') '[1+e" (o)][8~ (r„r,)] [1+0((lns) ')],
where

n'(t) =dn(t)/dt .

(4.32)

5. BREAKDOWN OF EIKONAL APPROXIMATION

Let us first give a precise definition of simple exponentiation. By simple exponentiation of a Regge ex-
change and a scalar-meson exchange, we mean that the scattering amplitude can be written in the form

2is dx, e ' ' "~(1—exp( ,'i[A(s—,x,)+B(s,x~)])), (5 1)

where the terms in (5.1) proportional to A, B,AB, . . . are equal to the amplitudes for the exchange of a
Regge pole, the exchange of a scalar meson, the exchange of a Regge pole plus a scalar meson, . . . , re-
spectively. Thus

[ +Ie"~ ' ()]3K(s, t)-s dxe '~ "'A(s, x,), (5.2)

g'(-t+m') '-s dxe '~'"~B(s, x,), (5.3)

and.

3g~s(s, t)--,'is dx, e ' '"~A(s, x,)B(s,x,),

etc. By a Fourier transform (5.2) and (5.4) become

(5 4)

and

A(s, xj ) s i(2v) 2 dt), ei~ ' (3g (s t)(1 + ei((n(t)) (5.5)

B(s,x~)-s '(2)i) 2 dZei() "ig2(~2~ma)-1

Now (3.29) reads

3(II,(s, t) -I)'(t, m', m')s~")

"e" the ex«»al p»ticies are on the mass shell, gubstih, t ng (5 7) jn'to (5 5)

(5.6)

(5.7)
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&(s, x ) - s '(2s} '
Jt dZ e'n '"~[b(t, m' m')]'s" t' (1+e' " "). (5.8)

Substituting (5.6) and (5.8) into (5.4), we get

3RLs(s, t)- —,'is '(2v) ' dq~[b(-(r, +q, )', m', m')]'s ' t'~'~i' '

p

yg2[(r q )2+ m2] 1(1 i 1m( (t&wqj) )

if simple exponentiation holds.
Since K~s is given by (4.31), the test for the validity of simple exponentiation is

2s ~s
(r~, q~) =gb(-(r, + qi)2, m2, m2) .

A. The Leading Order

In the limit g'-0, we have by (3.32) and (3.34) that

b(t) -ig,
and by (3.31) that

a(t) - -1+g'a, (t),

where ao(t) is given by (B4). Thus (4.25} becomes

(5.9}

(5.10}

(5.11)

(5.12)

s~s(r» q~)-, ' dp~ dx[(p~+Q)~+ (1 —x+ x')m2] '
p

x[(p -Q)'+(1 —x+x')m'] 'x "' ~0 (5.13)

Now f, x "' "odx is of the order of g ', which diverges as g'-0. The divergence occurs in the neighbor-
hood of x=O. Thus, in the leading order, we may set x=0 in the other factors of the integrand in (5.13) and

obtain

s~s(r„q~)-(32m') 'ig2[ao( —(q~+r, )')] '
I dp~[(p~+~q~+ —,'r, )'+m'] '[(p~ ——,'q~- —,'r~)' +m]2'= —,

' ig2,

(5.14)
where (4.27) and (B4) have been used. Equations (5.11) and (5.14) show that (5.10) is satisfied in the lead-
ing order. Thus simple exponentiation holds in the weak-coupling limit. '

Substituting (5.12) and (5.14) into (4.32), we also get

K&~sl(s, t)-=,'g'a, (0)[a,'(0) lns] 's""0'" '(-t+m') '

From (B4), we have

a, (0) =(16s'm2} '

and

a,'(0) =(16m'} 'm ' x(1 —x}dx=(96m'm') '.
4 p

Thus (5.15) becomes

3)I'I's---,'g'm's "~ ("" "l(lns} '(-t+m'} '.

(5.16}

(5.17)

B. General Order

It is clear that (5.10) cannot hold in general. This is because the left-hand side of (5.10) is a function of
two variables, r, and q~, while the right-hand side of (5.10) is a, function of r, +q~ only.

To verify the failure of (5.10) explicitly, let us consider the case r, =q~=A. =O. Then we have from (4.25)
and (A21) that

S~s(0, 0) =g2(32'') ' dp dxc[p +(1 —x+x )m ]
' «(I —x)" '

a 4 p

j.
= cgm (32' y) 'm «J dx(1 —x+x } "(1—x)

p
(5.18)
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where y is given by (A14). Since

(5.19)

where the equality sign holds only if g'=0, we see that (5.18) is finite as long a.s g'x0. However, by (A21)
we see that

b(0 m' m') =b(-m') =~. (5.20)

Thus (5.10) does not hold and the eikonal approximation is not valid.
Just as in quantum electrodynamics, "the failure of the eikonal approximation here is due to the fact that

there are two particles sharing the incident momentum, and it is not justified to favor any particular one
by associating the eikonal path with it. More precisely, referring to Fig. 5, we see that the incident par-
ticle with momentum r, —r, splits into two particles with momentum p —r, and r, —p, respectively. Ac-
cording to (4.17), the ratio of the longitudinal momenta of these particles is x/(1 —x). Since the full range
0 ~x & I contributes to zz defined by (4.25}, we cannot associate the eikonal path to either of these parti-
cles. Thus the eikonal approximation in the most straightforward form fails. In fact, if we substitute
(4.25) into (5.10), the resulting integral equation has a kernel which is equal to that of (3.30) only when
x-0, the limit in which we can associate the eikonal path with the particle with momentum r, —p.

Throughout this paper, we have used the ladder diagrams to represent the exchanged Regge pole. Al-
though this is an oversimplification, the above discussion makes it clear that the violation of simple expo-
nentiation is by no means limited to the ladder diagrams.

In closing, we emphasize that our experimental predictions' are independent of the validity of the eikonal
approximation. As long as ~g~&g, so that the one-ladder amplitude violates the Froissart bound, the scat-
tering at large transverse distances must increase with the energy. ' A particle then acts like a black disk
with a radius increasing with the energy. Thus the impact picture is realized in qb theory when the cou-
pling constant is sufficiently strong.
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where

a = n(0).

Let us put

x [y+(1 —x)m +xA. +x(1 —«)z] z,

(A4}

(A5)

r, =o.
As a result of (Al),

(A1)

APPENDIX A

The integral equation (3.29) for the Regge param-
eters is considerably simpler if the momentum
transfer is zero, i.e.,

y+ xh.'gz+ =z';
1 —x

then (A4) becomes
2

t
1

b(z}= dxx "'
16m' 4o

(A6)

dz 'b(z ')/(z'+m')'.
4 XS+X~ /0-X)

(A7)

M)=Mf.
Let us introduce the notations

&=-M =-M2 2
f

b(z) =b(O, M, ,M, );
then (3.29) becomes

(A2)

(A3)

If A. 40, (A7) is reduced to

b(z) = dz'b(z')(z'+m') '
~ dxx

16m

Ib(z l)(z I ~ 2) z (x(D)+1g'[I+a(0}] '
16m o

(AS)

where

g2 ~ tl
b(z ) = dy dx(1 —x)x

4O 4O

x~ = [z +z ' + A.
' —[(z + z ' + A, } —4zz ']" )/2z .

(A9)

xb m+1 In the rest of this appendix we shall concentrate
on the Wick-Cutkosky case, i.e., the case A. =O." ~
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When )(=0, (AS} becomes

z[1 ~ n(0) 1-~
b(z ) = g

l dz 'b(z ') (z ' pm z
) (z '/z )

16m

The largest Regge pole corresponds to n =0:

Q=/ —2

g2 1/2

2' 4'16m'm' (A20)

Differentiating (A10}, we get

(A10) which satisfies (3.16}for all values of the coupling
constant, and

d d
z a(0)+1 b(z} g b(z}(z ym2)-2z a(0)+1

dz 169

b (z ) = c (z +m')' )'

=c(z+m') " ', (A21)

or

(All�)

2 4 16 (A14)

d [n(0)+2] d
(z

+ g'(16r'} 'z '(z+m') 'b(z) =0.

(A12)

The solution of (A12) is

b(z)= (z+m )"[aF(y+n+1, y', n+2; -z/m )

+a'z 'F(y, y —n —1; -n; -z/m')],

(A13)

where a and g' are constants, F is the hypergeo-
metric function, and

where c is a constant. It may appear peculiar that
when the external particles are on the mass shell
(z = -m2), the residue function b(z) diverges. How-
ever, we remember that, since A. = 0, the scatter-
ing amplitude gg~ itself has an infrared divergence
if the external particles are on the mass shell.
Thus b(z) has a divergent branch point at z = ~2.
The function a is independent of the external
masses, and therefore has no infrared diver-
gence. Equations (A18)-(A21) were first obtained
by Nakanishi with a different method. ~ "

In the strong-coupling limit g- ~, we have

(A22)

Thus n can be much larger than 1 at I;=0, if the
coupling constant is sufficiently large.

In the weak-coupling limit g-0, we have

Since the solution of (A10) cannot diverge like
z ' at z = 0, we require that

and

16m m (16m m~) (A23)

a'=0 (A15) b(z) = c[1+0(g')] . (A24)
or

b (z ) = a(z +m )~ F(y + n + 1,y; n + 2; -z /m ) .

(A16)

Notice that b(z) has no infrared divergence in the
lowest order of perturbation.

APPENDIX B

&+2 —y= ~, '&2=0, 1, 2, . . . (A17)

Since, by (3.16), n must be greater than -1, (A17)
should be modified as

n=y n —2, n=0, 1, 2, . . . , [-y] —1 (A18)

where [y] is the largest integer smaller than y.
Equation (A18) shows that more and more Regge
poles satisfying a & -1 appear as the coupling con-
stant increases. From (A16) and (A18), we get

b(z)=a(z+m )&F(2y -n —1,y;y n;-z/m }-
=am &' (z+m )' )'F(1 —y, n;y —n;-z/m ). -

(A19)

Also, the solution of (A10) cannot approach a con-
stant as z - ~. Thus from (A16) and the asymptot-
ic form of the hypergeometric function, we have

n(t) = -1+g'n, (t)+g'n, (t)+

b(t, M, ', M~') = f (t)[b,(t, M,.', Mf')

+g b, (t, M', M,2)+ ~ ~ ~ ].
We shall calculate n„n„b„and 5, .

(B1}

In this appendix we give the first two terms in
the perturbation series for b(t, M, ', Mz') and
[1+n(t)]

Consider g'-0 in (3.30). Then the right-hand
side of (3.30) appears to be smaller than the left-
hand side by a factor g'. Thus (3.30) can hold only
if the integral diverges in the limit g -0. This
can happen if

lim n(t) = -l.
g2 ~p

Let us therefore express a and b in the perturba-
tion series
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A. Leading Order

To obtain a, and b„we note that fo x"dx diverges at x=0 if [x=-1. This means that, in the integration
over x, the important region is the neighborhood of x=0. Thus we set x=0 in the other factors in (3.30),
obtaining

b (t (p rl) (pd + r2) )
jp +r, j +m —ieJjp r1) +m zEJ

(B2)

Since the right-hand side of (B2) is independent of M, and Mz, b, is independent of M, and Mz. Thus we

may choose

bo(t, Mb, Mt') = 1

as the t-dependent factor can be absorbed by f(t) defined in (Bl). Then (B2) becomes

a(t)=(12,2') 'f dp[(p, r, )'+m' —it] '[(p —rP m' —i&J

1
= (16}}')' dx[-x(1 —x)t+ m ]

0

Equation (B4) is well known. '
9. Next Order

(B3)

(B4)

We shall now calculate a, and b, as defined by (Bl).
Substituting (Bl) and (B3) into (3.30), we get

1+g b, (t, M, M~2}- I, +g2I2,

where

(B5)

1 1
=-,'d'(2 ) 'f dp f d*(1 —*)*'" &'&" &'&([p, (1 —*)r ]' (1 —*) ' ~ *1'—*(1—*)Mt' —i} '

2-
2

0

x {[p, —(1 —x)r, ]' + (1 —x}m' + x][' —x(1 —x)M, ' —i' '
b, (t, p,.', }[t') ' (B6)

where p,. and g~ are defined by (3.23) and (3.24).
For I„we need to calculate only the leading term (of the order of 1). This calculation is fairly easy: We

simply replace x "' ~0" ~1 by x "' o and set x=0 in the other factors of the integrand above, obtaining

1

I, --,'d'(2 ) 'fdp, d** "' '"[(p ~ 2)'+m' — r] '[(p -r p ' — ] b( (p, —2&p', -(p +r )')
0

1 2}}
dp~[(p, +r,P+I' —ie] '[(p, —r, )'+m' —ie] 'b, (t, -(p, —r, )', -(p +r,)'),

2 o(0 t

(B'f)

which is independent of M; and M&.
The function I, can be written as

I, -A+ g2B,

where

1
d —Jd'(2 ) fdp, d** "d d"" ""[(p.+r)' ~ ' —'] '[(p, -rp '-'rl '

0

and

-1+ a & +B-—'(2 ) fdp d**" d' ' &'&((1 — )([p ~ (1 — ),J'+(1 —*)m +m'-*(1 —*)M'-ir}
0

x {[p -(1 —x)r, ]'+ (1 —x)m2+ x][' —x(1 —x)M, ' —ie)

—[(p~+r, }'+m'-ic] '[(p~ —r, }'+m' —ie] ').

(B8)

(B9)

(Bio)
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By carrying out the integration over x and making use of (B4), we easily get

& - ~.(t)/[~. (t)+g 'u, (t)1 . (Bll)

For B, we keep the leading term only. Since the quantity in the bold parentheses of (B10)vanishes at
x=0, we may replace x "' ()'' "' in (B10)by x ' and obtain

1
B= (2 —',) fd'p, d** '((1 —*)[[p ~ (1 — ),]' ~ (1 — )

' ~ dt' —*(1—*)Mi' —']
0

x ([p —(1 —x)r, ]2+ (1 —x)m2+ x]].2 —x(1 —x)M —i'
-[(pd+r, ) +m' —ie] '[(pd —r, )'+m —ie] ').

Substituting (B8) and (Bl1) into (B5), we get

b (t, M,2, Mf2) = F(t)+ B(t, M;2, M~ ),
where

F(t) = -(2, (t)/(2()(t) +12(t}.

(B12)

(B13)

(B14)

The function B(t, M, ', M~2) is completely known and is explicitly given by (B12). The function F(t) is
arbitrary and cannot be determined from the integral equation. This is related to the fact that b(t, M, ', Mt2)
is determined up to a factor which depends on t The functi.on F(t) can be absorbed into f (t) and we obtain
(3.32).

The function (2, (t) can be determined by substituting (B13)and (B14) into (B7). The result is

d (t)=(lpr') ' fdp B(t-(p —r , )', -(p ~ l )')[(p ~ r )' ~ ' — ] '[(p —,)'+ ' —'t] '. (B15)

The results in this appendix may be checked by comparing with the results in Appendix A. Setting
r, =X =0 in (Bl), (B4), and (B15), we easily obtain (A23).

APPENDIX C

In this appendix we calculate the asymptotic form of b(t, M, Mt2) when one or both of -M, ' and -Mt2 ap-
proach infinity.

Case 1: rz =0

Let us first consider the case r, =0, which implies that M, = Mt and that b satisfies (A8):

b(z) = a
o[(0}+1

dz $ z z + yfg2 z+z +g z+zt+g2 2 4zzI l/2 &++~0~ 2z

where

g 2/1 8v2

(Cl)

(C2)

z —-M; = -Mg

In the limit z-~, we have

z+ z'+ t[. —[(z+z'+ 1[. } —4zz']' - 2iz'.

Thus we get, from (Cl) and (C3),

b(z)-cz + ' z- ~

where

(C3)

(C4)

C= a l b(zl)(zl +m2)2ztl+(((o)
(2(0) + 1 (C5)

We notice that, with the asymptotic form (C4}, c is a finite number because the integral in (C5) is conver-
gent Indeed, .(C4) is in agreement with the closed-form solution (A21).

Since b(z) can be determined from (Cl) only up to a factor, c is undetermined. In the weak-coupling
limit g- 0, we know that
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thus

b(z) tgz~ /M)) )))2 z ~ g 0

Case 2: rz ¹nzero and Fixed

Consider the limit
I M, P+ I M& P-~ with r, nonzero and fixed. Let us put

M, /(IM; I'+ IM, I') = p. ,

M, '/( I M, p+ I M, p) = p, .
Let us study the integrand of (3.30). We observe that if p, and t(z' are kept fixed, by (3.23}and (3.24) «
must be very small. Thus, putting

y = «(I M; I'+
I M~ I')

we reduce (3.30) into

b(t M(', M'()- (c)t(IM(l'+ Ill') '" ',
where

2

cW=, ~. f~) fd&.~ " «)-, -)),(,—(,)', ~, )~))-(,)*)-

x[(p, +r, )'+ m'+y] '[(p, -r, }2+m'+y] ',
which is dependent on p; and pz. We also know that in the weak-coupling limit

c(t} ig-
Thus in the limit (C7) and for small coupling constant

b(t, M, ', M, ')-tg(IM, I'+ IM, P)-" "",
where a, (t) is given by (84).

(C7)

(C8)

(C9)

(C10)
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We study the problem of scattering by an attractive Yukawa potential. In particular, the
positions of Regge poles are found approximately when the coupling constant is large.

1. INTRODUCTION

It is the purpose of this and the following paper'
to study the behavior of Regge poles2 when the cou-
pling constant is large. Since Regge poles were
originally found in connection with the scattering
by a superposition of Yukawa potentials, we treat
here first this case of potential scattering. Al-
though the procedure of this paper is applicable to
a large class of superpositions of Yukawa poten-
tials, we shall restrict ourselves to the case of a
single Yukawa potential, where the answer is
more explicit in some cases.

In Paper II we shall consider the case of ladder
diagrams in Q theory, again in the limit where
the coupling constant is large.

The differential equation for a partial wave is
d2
d, —tP —/(I+I}r '+ g'V(r) &=0,

where ia is the momentum of the incident particle,
and V(r) is given by

V(r}=r 'e-

In (1), I is considered to be a continuous variable.
I et

then it follows from (1) that

2g, —x e"—( I'+)* g+'e"V(e'} g, = 0. (4)

This is an attractive potential when g is suffi-
ciently large. For large g, its energy levels can
be found approximately by replacing U with a har-
monic potential located at the minimum of U.

For the Yukawa potential (2), Eq. (4) is more ex-
plicitly

2

2
—g e ' —(I+—', ) g~+ee~' g, =0.

We are thus interested in the behavior of the po-
tential

U=z e '-g e'e "' .


