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The second paper in this series is devoted to the formulation of a renormalizable pertur-
bation theory of Higgs phenomena (spontaneously broken gauge theories). In Sec. II, we re-
formulate the renormalization prescription for massless Yang-Mills theories in terms of
gauge-invariant renormalization counterterms in the action. Section III gives a group-theo-
retic discussion of Higgs phenomena. We discuss the possibility that an asymmetric vacuum
is stable, and show how the symmetry of the physical vacuum determines the mass spectrum
of the gauge bosons. We show further that in a special gauge (U gauge), all unphysical fields
can be eliminated. Section IV discusses the quantization of a spontaneously broken gauge the-
ory in the R gauge, where, as we show in Sec. V, Green's functions are made finite by the
renormalization counterterms of the symmetric theory (in which the gauge invariance is not
spontaneously broken). The R-gauge formulation makes use of redundant fields for the sake
of renormalizability. Section VI is a discussion of the low-energy limits of propagators in
the R-gauge formulation. In Sec. VII we show that the particles associated with redundant
fields peculiar to the R-gauge formulation are unphysical, i.e. , they do not contribute to the
sum over intermediate states.

I. INTRODUCTION

In this paper we give a renormalization method
and a proof of finiteness of renormalized Green's
functions of spontaneously broken gauge theories.
For definiteness we consider a very simple model
in which SU(2) gauge bosons are coupled to a trip-
let of scalar mesons. There is an extra complica-

tion when chiral fermions are included in the mod-
el, as pointed out by Veltman, ' and more recently
by Gross and Jackiw. ' This difficulty can be cir-
cumvented in a realistic model of electromagnetic
and weak interactions. We shall not discuss this
problem further in this paper, but postpone the
discussion until we deal with the renormalizabil-
ity of a realistic theory in a sequel to this paper.
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We give in this paper a method of renormaliza-
tion which is based on the observation that, in a
spontaneously broken symmetry theory, diver-
gences in Feynman integrals can be classified ac-
cording to, and identified with, those of a com-
parison theory in which the symmetry is not bro-
ken. ' This method is successfully used for the cr

model and we borrow many concepts and tech-
niques from that study.

Let us summarize the contents of this paper. In
Sec. IE, we give a brief recapitulation of the re-
sults of the first paper on the renormalization of
a massless Yang-Mills theory. We write down ex-
plicitly the effective action in terms of renormal-
ized fields and gauge-invariant counterterms. The
renormalized version of the Ward- Takahashi iden-
tity for the generating functional of renormalized
Green's functions is recorded. The reader who is
not particularly interested in the details may be
able to gather enough background for the subse-
quent discussions by studying Secs. II and V of the
previous paper concurrently with this section.

Section III is a discussion of group theory of
Higgs phenomena. To a large extent, this section
is a review of Kibble's work. ' The discussion here
is carried out in the context of classical field the-
ory. We show how the instability of the symmetric
vacuum arises, and how the symmetry of the phys-
ical vacuum determines the mass spectrum of
gauge bosons. The study culminates in a theorem
which shows which gauge bosons become massive
in a spontaneously broken gauge theory. The the-
orem is an analog of that due to Bludman and
Klein, ' which shows in what quantum channels
Goldstone bosons appear in a spontaneously bro-
ken symmetry theory.

There exists a special choice of gauge in which
Goldstone boson fields combine with gauge boson
fields to form massive vector fields with three
degrees of polarizations. This is the gauge used
by Kibble' in his discussion of Higgs phenomena.
In this gauge, there are no redundant fields and the
physical interpretation of the theory is straight-

forward. We shall call this gauge the U gauge
(unitary gauge). Unfortunately the renormaliz-
ability of the U-gauge formulation is not obvious,
even though indications are that the T matrix in
this formulation is renormalizable. ''

In Sec. IV, we quantize the simple model men-
tioned at the beginning in a class of gauges, which

includes, in quantum electrodynamics, the trans-
verse Landau gauge and the Feynman gauge. We
shall call these gauges collectively as A gauge
(renormalizable gauge). The R-gauge formulation
contains redundant field components so that the
unitarity of the $ matrix is not manifest. As we
show in Sec. V, Green's functions in the 8-gauge
formulation are rendered finite by the renormal-
ization counterterms of the corresponding sym-
metric theory. Here lies the advantage of this
formulation. Since the renormalization counter-
terms which make the theory finite are gauge in-
variant, the renormalized Green's functions of a
spontaneously broken gauge theory satisfy appro-
priate Ward- Takahashi identities.

In Sec. VI we discuss the low-energy limits of
propagators in the R- gauge formulation.

In Sec. VII we show that renormalized T-matrix
elements are independent of the parameter which
characterizes a particular g gauge chosen, and
the redundant massless scalar fields peculiar to
the R-gauge formulation are unphysical, i.e., they
do not contribute to the sum over intermediate
states when one computes the absorptive part of
T -matrix elements by the Landau-Cutkosky rule. "
These discussions are based on the Ward- Taka-
hashi identities. For the proof of unitarity of the
R-gauge formulation, we have identified the set of
relations that are needed. The proof is worked
out in detail for intermediate states containing
one, two, and three such unphysical quanta.

In the sequel we wish to consider the renormal-
izability aspect of Weinberg's theory of weak and
electromagnetic interactions in detail and the
equivalence of the 8 matrix in the U and R gauges.

II. GAUGE-INVARIANT COUNTERTERMS

As Bogoliubov and Shirkov' have shown, the p operation can be formally implemented by the inclusion
of counterterms in the Lagrangian. The discussion in the previous paper implies that these counterterms
are themselves gauge-invariant. We can in fact reexpress the effective action (12. 10) (where the prefix I
refers to the equations of paper I) in terms of the renormalized field A„" and the renormalized coupling
constant g„,

A& = Z '~2A&
3 t'

and making explicit the renormalization counterterms.

+r Z3

With
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we write

d' x(--,'(a "A„"-6"A„"-g„A„"x A„')'- (I/2a„)(s„A„")'-—,'(Z, —1)(s"A„'-e "A„")'

with

Z,/Z, = Z, /Z,

+-,'g„(Z, —1)A„„xA (e)'A„"- s'A)')- —,'g, '(Z, '/Z, —1)(A„"xA„')')

— T 1 (l-z. t A"a ia*)-'T 1 1 ~, - — [(z, —1)a*-z,(z, —1)t A'a„]I,r r |J „t A

(2.1)

(2 2)

which is a restatement of Eq. (16.4). We may choose Z, and Z, such that

[&„,(k)], = g„, + + + gauge-dependent terms,kpkv 1

P~-g2 (2 3)

[9(-a')]„=-1/a'

and Z„so that

lim tl"i~„',(p, q, r) = e'"([(p —q) „qi„+(q —r)i g„„+(r —p)„g„i]+ ~ },
P2 Kq2 =P2 =(22

(2 4)

(2.5)

as we described in Eq. (I 6.7).
Clearly the construction of Eq. (2.1) can be extended when there are matter fields present in the Lagran-

gian. The part that has to do with the gauge invariance, for the triplet of scalar fields discussed in paper
I, is

2
—,'(s„(p„-g„A„„xy„)'+-,'(Z, —1)(a„j„)'+g,Z, —a —IA('. (y„xa„q)„)+-,'g„' ' ~ —1(A('xq,„)', (2 6)

where Z, may be chosen to ensure the normalization condition for the scalar propagator, Eq. (I 7.15),

lim [b, '(k')]„-k'+a' —M'.
JP-+ -g2

(2.7)

It is perhaps useful to rephrase the Bogoliubov-Parasiuk-Hepp (BPH) renormalization procedure in terms
of the Lagrangian of (2.1) and (2.6). First we include the regulator term (I 5.7) and other regulator terms
in the Lagrangian. Feynman integrals are now finite and we can choose the renormalization constants,
Z's, which depend on the cutoff A', in such a way that the renormalization conditions (2.2)-(2.5) and (2.7)
are satisfied. As A -~, the renormalized Feynman amplitudes are well defined and finite.

If we make the scale change

JP —Z &/2 JP

K =Z -'/'K
2 r

in the definition of the generating functional of Green s functions, then functional derivatives of Z with re-
spect to the renormalized sources are the renormalized Green s functions. The Ward- Takahashi identity
(3.13) may be written in terms of renormalized quantities:

8„.. .+()" '&J( )Wx- ig, Z, yd z J,
'"( )yg&, ( y—z)t (, T a G~ (z, x; j5/5J„)g =0, (2.6)

where

g„"„(x-y)=g„„5'(x-y)+ &„&.Dr(x- y)

and

G(x, y', i 5/5 J ) = Z,G„(x,y, id/5 J„),

G„(x,y, i5/6J„)= x s' —ig„t &„- + (Z, —I)s' —ig, (Zt —1)t.e„- yJlgJ (2.9)
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III. GROUP THEORY OF HIGGS PHENOMENA

We will describe here the Higgs phenomenon"'
in the context of classical (nonquantized} field the-
ory. Alternatively, one may interpret the follow-
ing discussion as applying to the tree approxima-
tion to quantum field theory. The following dis-
cussion is essentially a review of Kibble's work. '
We include it here, mainly to make this paper
self-contained and to establish notations, termin-
ology and concepts. For simplicity, we shall con-
sider the system of gauge bosons interacting with
scalar mesons.

Let G be the local gauge symmetry (compact,
but not necessarily semisimple} of the Lagran-
gian. We denote by [L.) the set of generators of
the group G. The Yang-Mills gauge bosons (A,")
belong to the adjoint representation of the group
G, so they can be put in one-to-one correspon-
dence with the generators (L,). We assume that
there are scalar multiplets p of dimensional-
ities n

(3.1)

The multiplet p' transforms like an irreducible
representation of the group G. We denote by [L
the matrix representation of the generators. The
renormalizable Lagrangian in which the gauge
bosons are coupled in the minimal way is of the
form

——,
' g (a "A;—O'A,"-gf, ,A "A;)'- V(y),

a

(3.2)

where &, is a function of space-time.
The vacuum expectation values of the scalar

fields g' =v' ' are determined by the conditions

(3.6)

6'v(@)
g p(a)g p(8) (3.7)

~( cr) ( a) (3.8)

may be null vectors, in which case the vacuum is
invariant under G. It may be that the minimum of
V occurs at some finite v~ ~. Let [1] be the sub-
set of [L}which map all of v' 's to null vectors:

l(n), ( n) 0
5

(3.8)

Then the set I l] generates a subgroup S of G. We
call S the little group of the vacuum.

The nature of the little group S depends on the
polynomial V(g}. We give some examples below.

Example ~. Let

v(4) = —,
'

i 'y'+ —,
' ~(y')',

where fIt) is an n-dimensional real vector. The
group G of invariance is O(n). The parameter A.

has to be &0 in order that
~ p ~

is bounded, or the
Hamiltonian is positive definite. If p, ~ 0, the
minimum of V(g) occurs at / =0 and the little
group S is equal to O(n). If p, '& 0, the minimum
lies in the orbit

~ p (' =- p, '/A. . Because of the in-
variance of V(g) under O(n) we can always put v

in the standard form

(- ~*A)"*)0

The second condition (3.8) is necessary in order
that the physical masses of the scalar particles be
non-negative. The solutions of Eqs. (3.6) and
(3.7),

where D„ is the covariant derivative

D = e +igL"" A
[5 p

f,~ is the structure constant,

(3.3)

[L„L]=if, ,L, , (3.4)

~(~) ~L(~) ~ ~ .(~)-e
A .L- e'"' ~A .L e-5" ~

P

(3 6)

—(s s&L ' ~)s
g

and V(p) is an invariant polynomial in the p' ',
which is at most quartic in the scalar fields. The
Lagrangian (3.2) is invariant under the local gauge
transformation

The little group of the vacuum is O(n- 1).
Example ~. Let

8
M„'= Q (~,.).,(s'+ip'),

5=0

where ~„i=0, . . . , 8 are Gell-Mann's 3&3 matri-
ces with X, =(2/3)'~' 1 and o. , j3=1, 2, 3. s and p
are nonets of scalar and pseudoscalar fields. We
consider

V(s, p) =a Tr(MM )'+p[Tr(MM")]'

+y(detM+detMt)+ 6Tr(MM ),
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which is SU(3)xSU(3) invariant. Let us concen-
trate on the case in which parity is conserved, so
that the minimum V lies on the hyperplane p,. = 0,
i =0, . . . , 8. Let us assume that the minimum oc-
curs at

vector fields B' by

L.A =e'" L.B e '( ' ——(8 e' ')e

(s.12)

M=M =v,

where v is a 3x3 Hermitian matrix. We can diag-
onalize v by an SU(3) transformation so v takes the
form

The mapping (A„, p )- (B„,p'" ) expressed in
Eqs. (3.11) and (3.12) is a gauge transformation
(3.5) which leaves the Lagrangian (3.2) invariant.
We have

2 = Q [A„(v ~ + ~«)]i .[Au ( (~«+ (~«)]

cj

—g Q (8"B," —8 "B," —gf,~, B~~B;) —V(v + p) .

(3.13)

Equation (3.6) then demands that

4aa + 4Pa(a' + I«' ~ c') + 2«bc+ 2 5a = 0

Here h„stands for

= ap+gi L') -Bv (3.14)

and two more equations obtained from the above by
cyclic permutations of a, b, and c. The three
equations imply that the three eigenvalues a, b, c
cannot be all unequal. Therefore, the little group
S cannot be smaller than SU(2).

When p' 's have nonvanishing vacuum expecta-
tion values we can perform nonlinear canonical
transformations on (It 's and eliminate a certain
number of field components from V(P). Let the
dimensionalities of G and S be N and M, respec-
tively. There are, then, m =N-M generators,
[t) of G, which span the cosets S 'G:

(I)+if) =«) . (s. lo)

We may choose the generators to be orthonormal
with respect to the Cartan inner product. Let us
write

y(~«D(~«[ i('&]( (4 (&«)

where g has m components and choose p 's, such
that the mapping

4,(a«(g (a«)

is canonical. [A nonlinear mapping g,. —p,.({4i,.))
is called canonical if (54i,./Dp, ) ( =, is a nonsingular
matrix. ] Both t' and p( «'s have null vacuum ex-
pectation values. The collection of p~ 's will have
[(P n )-m] components. Clearly, V((ti) is inde-
pendent of the fields $ since the invariance of V
under G implies V(Q) = V(v+ p). If there were no
gauge bosons, the Lagrangian would depend on (
only through 8 g, arising from the terms (8„p( ')
&&(8" iti( «) in the Lagrangian. Consequently, the
fields $ would represent massless scalar parti-
cles, coupled to other particles gradiently. They
would be the Goldstone fields.

When the theory is invariant under local gauge
transformations, the g fields can be eliminated
from the Lagrangian completely. We define the

so that the vector-meson mass matrix is given by

(M') =2g'g(v' ', I. I.,v' '). (s.15}

It is convenient to adopt the following convention:
We order L,'s so that L, , a =1, 2, . . . ,M form the
set [l). We see from Eq. (3.15}that M' is block
diagonal, the upper M&M diagonal matrix being
zero. The lower ygxm matrix is positive definite
(the lower matrix cannot have a null eigenvalue,
for if it did, the little group would have a dimen-
sion larger than M).

Let us summarize the result of this section in a
theorem [Kibble's theorem~]: Let G be the gauge
symmetry of the Lagrangian and S, G&S, be the
little group of the vacuum. The generators [L) of
G can be divided into two sets, the generators [l)
of S and the rest 1 t). The gauge bosons corre-
sponding to [l) are massless. The gauge bosons
corresponding to (t) are massive. This theorem
is an analog of that of Bludman and Klein' to spon-
taneously broken gauge theories.

If the symmetry is not spontaneously broken,
i.e., G = S, the gauge bosons are endowed with the
two transverse polarizations. If the symmetry is
broken, some gauge bosons become massive and
have three polarizations. How do the longitudinal
components of massive vector bosons come abouts
We see from Eq. (3.12) that

L.B =L A ——7.8 (+O(g')
g

i.e., the would-be Goldstone fields serve as the
longitudinal components of the massive vector
bosons.

Some of the gauge bosons are no longer massless.
As the vector-meson mass term, we have

'Q(v, L, L, v }B'Bg"'
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The discussions given above can be generalized
to quantum field theory, if we use the generating
functional of proper vertices instead of P in Eqs.

(3.2), (3.6), and (3.7). This was done for the v
model in the last paper of Ref. 3.

IV. QUANTIZATION OF HIGGS PHENOMENA

In the preceding section we disposed of the general group-theoretical problem associated with the Higgs
mechanism in the context of classical field theory. We shall now proceed to the quantization problem. To
be specific we consider a simple model: SU(2) gauge bosons coupled to an isotriplet of scalar fields. The
inclusion of fermions will be discussed in a sequel, when we discuss a more realistic model.

The Lagrangian of this model is, with p, '& 0,

2= ——,F„„~F"'+—,(D„Q)' —2p ](]' —4 X(@ ) —25p —p',
where

(4.1)

D„=8„—gA„x,
F„„=e„A„—a„A„-gA„xA„,

(4 2)

and 6 p,
' is the scalar mass counterterm. If p,

' is positive, we can quantize the theory in the manner de-
scribed in Sec. II, and choose, for example, M' —a' = p', where M' and a' are defined in Eqs. (2.6) and

(2 'I)

Irrespective of the sign of g', we can write the generating functional of the Green's functions as

w=e p] z[J„K]]=f]dA]]d j]exp '(S]J„,K] ~ d' ]K j—Z, .A]] ]}

where S is the effective action:

(4 3)

S = d'x g(x)- —[s A]'(x)j' iTrln 1-—g7 A s]'—
2a g2 (4 4)

The important fact one should bear in mind is that Eq. (4.3) applies equally well to the broken-symmetry
case as it does to the symmetric case, and therefore the same functional Ward Takahaski i-dentity (I 7.1),

—s„, — d'y J~(y)D~[i5/5J] "G"(y, x;i5/5J)W ig d'yK'(y}t' ', G '(y, x;ii]/6J}W=0, (4.5)
~ ~6J'„x m'(y)

(4.6)

and define the free Lagrangian as the quadratic part in the new expansion parameters of the Lagrangian.
Let

holds in the broken-symmetry case also.
If we were to write down the Feynman rules for the Lagrangian (4.1}as in the symmetric case, then we

would get imaginary masses for scalar bosons. The correct way of generating the perturbation expansion
for the generating functional (4.3) is to expand the V(4]) about its minimum

v(y) = -'z(p)'+-.'q'y'

(4.V)

We shall write

V=VX/y

where

v' = -p'/]].

(4.8)

(4.9)

and q is a unit vector in the isospin space, pointing in the 3 axis, say. We shall denote the components of
an isovector transverse to q by the subscript t: thus

(y, ), =(6,, —n, n, )@, .

We shall further define

(4.10)



SPONTANEOUSL Y BROKEN GAUGE SYMME TRIES. . . II. . . 3143

g'Q= v+g~

g A~ =A&.

We shall insist that v is the vacuum expectation value of the field q ft}= ft)„so that

5Z =v ~

«K(x) r„-K=a

Equation (4.9) should really be thought as defining the part ]A' of ]A,
' = ]A'+ 5[A'.

The generating functional (4.3) may be written as

(4.1i)

(4.12)

(4.18)

W= dA, dA dp, dg expi S A,",A", ft}, , g +S A,",A", y, , (

+ d' [xK ~
Q +K(v+g) —J" A, —J"A„](x)

where K=K, and J"= J,". In Eq. (4.14), S' and SJ are respectively

(4.14)

S' = d'x(-,'(a„(t},}'+-,'(s„y)' ——,'(2zv') y'

——,'(S„X,—S.A„)'+ —,'(gv)'(~ x A„)' +gv~ (Apxa„j) —(I/2u)(a„A]'}') (4.15)

and

d'x(-,'gA„x A„(SKAp- S'A]') ——,'g '(A„x A, )'+@A (y && aK (t})+-,'g'((t} x A„)'

—,}]((4},'+ [)}')'

yves(y'+

j,') ——,'5g'(4},'+(T}')—v+Pi})—i Tr ln(1 —g7 A„s"/&') .

The perturbation expansion for the generating functional (4.14) is obtained from the formula

(4.16)

W[J„,K]= exp( d' K( } exp'J' —, ,—,——IW [J„,K],eJ,„' e~„'
where

w, [le, K]=J[dA][ d[dd ]] d}xe']s d' [K, P, KP J„A"](}I.

The right-hand side of Eq. (4.18) may be evaluated by the elementary method~ and yields

Wo[J» K]=exp Jl d xJt d y (K—, (z).D~(x- y)K, (y}+K(x)rA(x-y,' 2]]v )K(y) —J"(x)D&,](x- y)J'(y)

—J,"(x) &"( -xyg' v) J(J)y'+i2J" &'„'(x-y)K, (y)j J

where

(4.17)

(4.18)

(4.19)

8 (x-y)

3(x- y; g')

i],[„](x- y)

k'+ se
1

k' —p.'+ sfdk;.(, ) y ~ 1 krak k k
(») & k'+ ie "" k' (k')'

1 kgkI kPkf,
K+ is (-e}(p kK (kK)K

gvk„(k'+ie) '

(4.20)

Equation (4.17), together with Eq. (4.19), gives the Feynman rules and the Dyson-Wick expansion theorem
It is convenient to expand the Green's functions in powers of g with g'v' and ]].v fixed (this implies ](. -g').
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It was shown' that such an expansion coincides with the expansion in the number of loops in Feynman dia-

grams.
The interaction Lagrangian in Eq. (4.16}contains the term linear in g

-vip. g.
Since g is supposed to have no vacuum expectation value,

(4.21)

5K3 P -g ()P

[dA] [d(t, ] [dg] g(x)e' (4.22)

the role of the term (4.21) is to cancel the (-to-vacuum diagrams with one or more loops (the so-called
tadpole diagrams). Let ivS(v, X) be the sum of the contributions from such diagrams .Then

v[S(v, X) —Bp'] =0,
which determines 6 g =- i(.,'+ Xv'. As we shall see, we can express Eq. (4.23) more elegantly:

(4.23)

(4.25)

v~, -'(o)=o, (4.24)

where A+(k') is the full propagator for the g, field. Equation (4.24) is the mathematical expression for the
Goldstone theorem. A detailed consideration shows that A& (0) does not suffer from infrared divergence.
Contributions from intermediate states of two massless particles to the self energy of p, are explicitly
proportional to k to within logarithm in the Landau gauge for example, so that ~& (0) is finite (see Appen-
dix D).

In the next section, we shall show that Green's functions are finite if we choose Bp' to satisfy Eq. (4.23)
or (4.24), and renormalize fields and sources according to

(v, 4, 4,)=Z, ' '(v, 4, 4,), ,

K = z, -'"(K)„,
and coupling constants according to

g = g, z,/z, '"=g„z,/z, z, '",
x = ~„z,/z, ', (4.26)

where Z„Z„Z„ZA, Z„and Z, are to be chosen to make the symmetric theory (the theory with the same
X and g but with p & 0) finite. These renormalizations can be implemented in Eq. (4.14) if we write S' and
S in terms of renormalized quantities and add to S' counterterms. We shall omit the subscript r. The
expression S' remains the same as Eq. (4.15) and

S~= right-hand side of Eq. (4.16)

+ d x (Z —1)[-(B„Q,)'+ -(B„g)'] + (Z, —1)A.v2$' —(Z —1)—'(B„A,—B,A„)'
4

Z2 Z
~ -', (z )* ' A-( (xxA„)' z z, —1)x A'xx, j

3 3 3

2

—,z(z, —1)A„A„~(li A' —8"A")——,z'( ' —1)(A„xA,)' z z, -z —1)A ~ (Axx"A)
3 3

2

+zg ~-1 Q&A„—~~ Z —1 Q +(t) —Av Z —1 P Q, +g
3 3

——,'1A'(z, —1)(j,' ~ A*) — 1x*(z,—()AI

l-' ""I+,z g.„-„[(Z.—1)B'-g(Z, —I)X.A~B /B ]
(4.2'I}



SPONTANEOUSLY BROKEN GAUGE SYMME TRIES. . . II. . . 3145

V. PROOF OF FINITENESS

The discussion in the previous section may suggest to the alert reader that all we have to do to renor-
malize the Green's functions of the spontaneously broken gauge theory is to construct the generating func-

tional (4.3) of the renormafized Green's functions for p &0, and then continue the resulting functional ana-

lytically to g' &0. Unfortunately, the Green's functions are not analytic in p' at p.'=0, ' so that we need a
little bit of machinery to implement the above idea.

Let us set up this machinery. We consider the generating functional of Eq. (4.3) for p' &0 and expand the

generating functional about J„=O and K=@, where y is a constant vector in the isospin space. The expan-
sion coefficients are the Green's functions of the theory whose formal action is given by

s (jj=jd *(i( 1 —(1/2 j[a'A„( )1' ~ j j(1)— T 1 (I —gf A„a"/e'). (5 1)

Of course, the action of Eq. (5.1) does not follow from any local Lagrangian which makes sense. The ac-
tion (5.1) is just our device of connecting the g' &0 and p' & 0 cases, as we shall see.

The term fd'xy p(x). induces a vacuum expectation value of p(x). Let

v,.(y) =5Z/6A, (x)~; =, ;=-, .
ji

As we shall see v and y are necessarily parallel, and we write

P=Cg y

v(y) = v,g.
We shall now decompose the fields ~t) and A„as

4=4~+% .v0+}

A~ =A~+qA~,

with j p, =q A," =0. The action (5.1) can be written as

where

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

+gv, j (A~ xa„j)—(1/2o. )(a~A„)'),

with

m =p +Ac, '

and S~ is given by Eq. (4.16) with v = v, except that the linear term in g should now be written as

fc- v, (m'+ 5g')] g.

(5.7I)

(5 6)

(5.9)

Note that Eqs. (4.15) and (4.16) are recovered from Eqs. (5.7)-(5.9) as we let c=0 and m'=0. Again, the
role of the term (5.9) is to cancel the (-to-vacuum diagrams with one or more loops. Let iv, S, be the
sum of the contributions from such diagrams. Then

v, (m'+ 6p' —S,) = c. (5.10)

We will now give a brief summary of the ensuing argument. We will first show that the Green's functions
for the action (5.1) are renormalized by the counterterms of the symmetric theory (p.' &0, c=0). We shall
then show that the renormalized Green's functions of the spontaneously broken gauge theory (g' &0, c =0)
are obtained from those of the action (5.1) in the limit c =0, m'=0. We shall make precise the meaning of
this limit in due course. In the course of our discussion, it is important to note whether jLj.

' or p~ is kept
fixed.

Following Jona-Lasinio, we will introduce the generating functional I' of the proper (i.e., single-particle
irreducible} vertices. First define

4,.(x}=6Z/M, .(x) (5.11)
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and

-g~"e'„(x) =5Z/5J'„(x).

The generating functional I' is obtained from Z by a Legendre transformation:

(5.12)

r[(2„,C]=Z[J„,K] —
J

d x[K 4 —J" (2„](x).

We have the Maxwell equations dual to Eqs. (5.11) and (5.12):

-SC,.(x) = 5r/M, (x)

and

g u Jo (x) = 5r/5(2 (x)

In particular, we obtain

e(x)II' =. ; -, =v(y) =v, q

(5.13)

(5.14)

(5.15)

(5.18)

and its dual

-y(=5r/5@(la =0, 2=.(„) (5.17)

According to the analysis of Jona-l. asinio, the expansion coefficients of I' about 8 =0, 4 =v() ) are the

proper vertices for the action (5.1):

where we have written

5"'"'r[(2„,c]
8 =0 4=v

(5.18)

C =et+gC

and suppressed all isospin and tensor indices. We define the Fourier transform II by

(2(r)'5(ZP+Zq+Zr)ll(p, p„;q, ~ ~ q; r, ~ ~ ~ r, I v)

~ ~ ~

~ ~

l

Qd x;e ""gd y,
e''' ' gd e e'"~' )(II(x, x„,y ~ ~ y;e, ~ ~ ~ e, lv). (5 19)

i=1 j=1 A=y

The expansion coefficients of I' about 8„=0, 4 =0 are the proper vertices II(. Iv=0) of the symmetric
theory. Therefore, we have for ]Li,')0, and g' held fixed,

II(p, p„;q, q;r, r, lv, g, X)=, ll(p, p„, q, q, r, . r, oo 0lo, g, X).
(v)'

st (5.20)

Where 00 ~ ~ ~ 0 consists of s factors. Equation (5.20) expresses a proper vertex for the action (5.1) in terms
of those of the symmetric theory which we know how to renormalize. The proper vertices appearing in the
right-hand side contain (I+ s)(p, lines of which s lines disappear into the vacuum. We recall from Sec. II
that the renormalized vertex II„( ~ Io, g„,X„),

llr(pl Pn s q, " q.; r," r, r(+ I 0, g„&,)
=—(Zs)" '(Z2) ""''II(P, . P„;q, q;r, r„,lo, g„Z,Z, 'i', A.„Z,Z, '), (5.21)

is finite with an appropriate choice of Z» Z» Z„Z4, Z„and Z, with Z, Z, =Z, Z, . We define the re-
normalizations of the left-hand side of Eq. (5.17) by

11 (Px'''p jqi'''q iri' 'r(lv g &)

-=(Z, )" '(Z, )'"'" '11(p, p„;q, q;r, r, lZ, ' 'v„,g„Z,Z, -' ' X„Z,Z -') (5.22)

Then we see that

,( . ~ Iv„,g„,~„)=g '", ll, (" oo olo, g„, )(„) (5.23)
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where 00 0 consists of g factors. It shows that

if we renormalize the wave functions and coupling
constants, and choose the mass counterterm 6p.'
as in the symmetric theory, then the proper ver-
tex II„( ~v„) is finite if v, =Z, '~'v is. [ Note

added in proof. The expansion of Eq. (5.17}en-
tails in part developing the vector-boson propaga-
tors in powers of v'.

The terms with n~ 1 will cause infrared diver-
gence of the integral. This is a reflection of the
fact that II is not analytic in v near v =0. To cir-
cumvent this difficulty we may replace the nth

term (n& 1) by

e' d~x J„'(x) c( )+K'(x) ~( )
W=O.

(5.25}

Differentiating Eq. (5.25) with respect to K and

taking the limit J„=O and K = y, we obtain

r& &, (0) = v(r-),

which shows r and v are parallel [see Eqs. (5.3)
and (5.4)] and

(5.26)

defined by Eq. (5.24) as an independent variable.
How does one determine v„ in Eq. (5.23) 7 It

must be determined from Eq. (5.10) which is the

condition that p have a null vacuum expectation
value. To determine the structure of S„we turn
to our sheep, the Ward-Takahashi identity (4.5).
We show in Appendix A that Eq. (4.5) implies

k'+ i~ k'+ A.'+ ie 2c„=v„m (5.27)

Since primitively divergent parts which include
this term are at most logarithmically divergent,
renormalization constants of the symmetric theo-
ry render them finite. After the summation in-
dicated on the right-hand side of Eq. (5.20) is car-
ried out, A.

' may be let go to zero. This process
gives the desired II„( ~v„, g„, h.„), which is in-
dependent of A.

' and finite. Alternatively, we may
define a modification of the series in Eq. (5.17).
We substitute for massive vector-boson propaga-
tors the expression

1 1
( ), 1

k'+ i~ k'+ i~ k'+ A,'+ i ~

and for scalar-boson propagators similar expres-
sions. A Feynman integral for II becomes a sum
of terms. In these terms, subdiagrams consisting
entirely of the propagators of the symmetric theo-
ry are made finite by the counterterms of the sym-
metric theory. Subdiagrams in which one of the
propagators is replaced by the second term above
are at most logarithmically divergent. Diver-
gence in such a subdiagram is also removed by a
symmetric counterterm. See reference for a
similar discussion for the o model. ] In the sym-
metric theory, 5 p.

' and Z, may be chosen to satis-
fy Eq. (2.7) with g' = M' —a', for example. For
the purpose of making II„( ~ ~ (0) finite, however,
we need not choose the finite parts of 5p. and Z,
in this manner. For our purpose, it is more con-
venient to choose 5p' so that A&, (0) has the value

Aq (0) =-m ', (5.24)

where m' is the quantity appearing in Eq. (5.8)
(see Appendix D). Obviously the vertices
II„( ~ ~

~ v„) may be regarded as functions of m'

rather than of p, . Henceforth we shsll treat re'

where
Z/2c„—cZ2 (5.28)

Equation (5.27) is the renormalized version of Eq.
(5.10). Thus if c„ is finite, so is v, .

Let us summarize the results so far. We have
shown that the Green's functions for the action
(5.1) become finite if we renormalize the fields,
sources and coupling constants according to

(5.28)

g=g„(z,/z, '")=g,(z,/z, z, '"),
z = ~,(z,/z, '),

and choose 5p' and Z, to satisfy Eq. (5.24), and
other Z's to be those of the symmetric theory. By
the regularization method developed in paper I,
the renormalizations implied in Eqs. (5.21) and
(5.23) are made unambiguous and to preserve
gauge invariance. That is to say, the Green's
functions constructed from II„( ~ ~ )v) of Eq. (5.23)
satisfy the Ward-Takahashi identities generated
from Eq. (4.5) by expanding Z about (J„)„=0 and
K„=y„.

Equation (5.27) is the Goldstone theorem. In the
spontaneously broken case, c„=c=O, so that ~'
=0, which is Eq. (4.24). In this case, the renor-
malization conditions given in this section reduce
to those of the last section. The finiteness proof
of Eqs. (5.23) and (5.27) applies to the spontaneous
breaking case (i.e., c„=0, v„ finite) as well.
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VI. LOW-ENERGY BEHAVIORS

OF PROPAGATORS

In this and the following sections we will deal
exclusively with renormalized quantities. We shall
therefore drop the subscripts x consistently.

From Eq. (4.5) we learn that the longitudinal

part of the vector meson propagator is unrenor-
malized. The derivation of this fact is completely
analogous to that given in Sec. IV of the previous
paper. Therefore, the full vector propagator has
the form

aq„(k) = (g„,—k„k„/k')f(k )+ uk„k„/(k')'. (6.1)

For the g =1 and 2 components of the vector
propagator, Eq. (6.1) leads to useful relations.
Let I'„„ I'„, and I be defined by

r„k r„, k -g& ~, k -~,.k

(6.6)

r „„(k)= -g„,A(k') + k„k.B(k'),

r„(k) = fk„c(k'),

r(k') = k'D(k') .
(6 'I)

When the above expressions are substituted into
Eq. (6.6), we obtain for A„,

A„,(k) = (g„,—k„k, /k )A

We shall parametrize the proper vertices of Eq.
(6.3) as

i"( - y) = 5'r [f2„,4]/«'„( )«.'(y) I-. —., -.--. ,

r&(x-y)=5'r[K„, C)/W, '„(x)54'(y)l-. =, ;=-, , (6.2)

k}1kv D
k' D(A —k2B)+C ' (6.8)

r(x-y}=5'r[8„,4j/5e'(x)54'(y)l-, . -, -„

and

fpv ~pv

I-' (x-y)=1
2

.* '"-' r" (k).I d'k
(2v)' (6.3}

u (AD —BDk + C ) = k2D, (6.9)

which is the desired relation.
The propagators in Eq. (6.5) can be written as

h„,(k) =(g „— ", A 'k2 2

Comparing the longitudinal parts of Eqs. (6.1) and

(6.8), we obtain

In Eq. (6.2) v is chosen to be along the third axis
of the isospin space, and is determined by the con-
dition

and

&ua„(k) —su (,), (6.10)

ar
0

The propagators defined as

(6.4)

1 u C '
} k'D(k') (k')' D

Let us consider the low-energy limits of propaga-
tors in Eq. (6.10). Now taking the limit k2-0 in
Eq. (6.9), we find that

dk g, .5 z/5Id'(x)M (y)lI =-
2

e' —
' ' ' a(k'),

4
lim (AD+ C') =0.

p
(6.11)

4

5'Z«Z'„(x)5Z'(y)IT -„0=
(2 ).e"'*-"'d, (k),

(6.5)

5'z/5z'„(x)5z'„(y)lT =-,=.= Ji 2, .e' ""&""(k),

It is instructive to see what happens in the g =3
channel. The invariances of the Lagrangian and
the vacuum expectation value under py 3 +fy 3,
p2 ——p2 and A„'-+A„', A'„'- -A„" imply that
C(k') =0 in Eq. (6.1}. Equation (6.9) becomes

u(A —k'B) = k'.

and the proper vertices of Eq. (6.3}are the in-
verses of each other, in the sense that

Writing A = k't we see that

I'„„(k)= —(k g„,—k„k,) J- (1/u)k„k, . (6.12)
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VII. GAUGE INDEPENDENCE AND THE UNITARITY OF THE S MATRIX

By using Eq. (2.8) repeatedly, we obtain, for k ~ l,

~

~ ~ ~
1

~ ~

k gk+ E ~ g
a ~x", sx» 6J„(x,) ~ ~ ~ 5J„(x,)5J„(y,) ~ ~ ~ 6J, (y,), = =,

k E

W ' d'zg," z y, —z; -igZ, , Gz, , x'i6 6J
&

W, 71
m=a+i&J. . (y, z =x=p

where P, is the summation over all possible partitions of (1, 2, . . . , l) into two subsets, (j,), i = 1, . . . , k

and (j ), m =k+1, . . . , l, and Qp, &p~
is the summation over all permutations of k elements of (j,.). We

have suppressed all references to the isospin which is not crucial in our discussion. We used the symbol

gp„ fol

g„",(x-y) =g„.6'(x- y) + S„B.Dr(x- y) .

For 4 = 1+ 1, we have

left-hand side of (7.1)

E E E
j

E
E

8

Perm(E )
X

Ei k
Xk J J lf P

(7.2)

There are (k —1) more equations of this kind in which the privileged role of (x~, p~) on the right-hand side

is taken up by (x„p,), . . . , (xp „p~,). For k &1+1, we have simply

left-hand side of (7.1) =0. (7.3)

The three equations above are the bases of our discussion on the gauge independence and the unitarity of
the S matrix. By the gauge independence of the S matrix, we mean that the on-shell S matrix is indepen-
dent of a in the gauge defining term in the action (2.1). The proof given in Ref. 13 can be carried over to
our case. First note that

, , o Sx& 6J„(x,) ~ ~ ~ 6J„(x.), (7.4)

which is a special ease of (7.3). Equation (7.4) corresponds exactly to Eq. (6.11) of Ref. 13, and by the
argument given there we conclude that the T matrix is independent of the parameter u.

We wish, next, to show that the massless scalar particles we encounter in the construction of Green's
functions are unphysical, i.e., do not contribute to the sum over intermediate states when we compute the
absorptive part of a physical (i.e., on-shell) amplitude by the Landau-Cutkosky rule. 'P Recall that there
are in general three different massless scalars: the negative metric scalar excitation (the first kind) as-
sociated with the transverse vector propagator

k„k, 1

A
the Goldstone boson (the second kind), with the propagator

1/k'D

and the fermion scalars associated with the gauge field quantization (the third kind).
Let us begin with the simplest example. Let T„(k ~ ~ ~ ) be the amputated Green's function with one vector

boson off the mass shell and all other lines on the mass shell. We have shown explicitly the momentum k
and the tensor index p, for the vector boson, but suppressed all other variables. Let T(k ~ ~ ) be the am-
putated Green's function with one Goldstone boson off shell (with momentum k) and all other external lines
on shell. Consider now the combination

T(» T(~) + T &»(2 0k' 1 1
k'+ie A ' (k'+i&)D (7.5)

and compute the absorptive part of this amplitude arising form the two kinds of scalars being on the mass
shell. By the Cutkosky rule it is given by
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T &»* T &» + T ~» ~ T (:1)
1 1 2 2

where

T = »m T(k')/[D(k')]' '
Q2 ~0

is the amplitude for the Goldstone boson (massless particle of the second kind), and

T, =g lim k„T~(k)/[A(k') j'~'
k'2 ~0

(7.8)

is the normalized amplitude for the massless scalar particle of the first kind. (The infrared divergences
in D and A always cancel the similar ones in the vertices to which the propagators are attached, so that
T, and T, are free of divergences as k'-0). Since

i 5Z
o. "5J„(x),=r=,

we have the relation

—0

—
kq g"' —

2 A '+ uk"k" (k ) T, +ia (,)2
—T =-i ~ ~ Tq —~ T =0,

which gives, in the limit 4'=0,

T1 T2 (7 7)

Therefore the expression (7.6) is identically zero, and neither of the scalars contributes to the sum over
states.

To proceed further, it is necessary to extract more information from Eqs. (7.1)-(7.3). Let

T, ;, (1, 2, . . . , s)
1 2

be the amplitude for s massless scalar excitations of the first and second kinds, the subscripts i„.. . , i, ,
which take the value 1 or 2 indicating which kinds are involved. We suppress, as before, all references
to other particles which are on their mass shells. Let

G, . . . (1, 2, . . . , s ((j„k,), (q„k,), . . . , (j„k,))

2 2

g T; . . ., „.. . ,(1, . . . , k, &+1, . . . , k+ l}= Q Q G(;,. }((jm] ~(j„ 1), . . . , (jz, k)),
i1=' 4=1 part perm(k)

™
where 11 ~ ~ ~ 1 consists of l factors and, as before, Q, means the summation over all possible partitions
of (0+1,0+2, . . . , k+ I} into two subsets, (j,}i =1, 2, . . . , k and (j }m=k+1, . . . , A+I, and Q „&,~ means
the summation over all permutations of (j,), i=1, 2, . . . , k. For k=I+1, Eq. (7.2) tells us that

(7.8)

be the amplitude for s+2t massless scalar excitations, s being either of the first or second kind, and 2I
being of the third kind. The ghost "particles" of the third kind appear in pairs, and their pairings are un-
ambiguous, because the ghost lines are continuous. In the pair (j„,k„), the ordering is important, because
the ghost line is orientable (say, from the dotted end j„to the undotted end k„). Equation (7.1) tells us that
for jp &I.

left-hand side of Eq. (7.8) = Q Q G,. (k ~(j„1), (j„2),. . . , (j„I))
i~=1 perm(l)

For k &I+ 1, we have from Eq. (7.3)

left-hand side of Eq. (7.8) =0.

(7.9)

(7.10)

We claim that Eqs. (7.8)-(7.10}are sufficient to prove that the contributions from three kinds of zero-
mass excitations always cancel in the sum over intermediate states, no matter how many massless excita-
tions there are in a given intermediate state. To see how it works, let us consider two cases in detail.

Suppose there are two massless scalars in the intermediate states. The unitarity sum is

U= Q e" '&"2 T (1, 2)T (1, 2) —G ( ((I, 2)) G ' ( )(2, 1))—G ( )(2, 1))G ' ( )(I, 2)) . (7.11)
i1.i2

The last two terms have negative signs because the scalars of the third kind are fermions. Equation (7.8)
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gives

Q T, ,(1, 2) = G( I (21)) =—G(21),

Q T„(1,2) = G( l(12)) =—G(12),

a,nd Eq. (7.10) gives

T, ( (1, 2) =0.
2

Equations (7.12) and (7.13) allow us to express T», T», and T» in terms of others:

T„=T„+G(12)+ G(21),

T2, = —T» —G(21),

T, = —T —G(12) .
When the above expressions are substituted in Eq. (7.11), we find

U=O.

(7.12)

(7.13)

Now consider the case of three massless scalars. We will use the abbreviations T«, = T. . . (1, 2, 3),123 1 23
G, (1 l23) = G, (1 l(2, 3)) . The unitarity sum is

f(- Q ei r( g+(ip+ (3) T (2) T(1)
fli2f3 f1f2i3

i] i2f

—Qe' [G (1l23)G ' (1 l32)+G *(1l32)G ' (1 l23)+G»' (2 l31)GI,' (2 l13)

+G (2 l13)G ' (2 l31)+G ' *(3 l12)G ' (3 l21)+G ' (3 l21)G,' (3 l12)] .
The relations among various amplitudes we can get from Eqs. (7.8)-(7.10) are

Q T;„=G,(3 l12)+G, (2 l13),

(7.14)

Q T„,= G, (3 l21) + G, (1123),

Q T„,=Gi(2 l31)+Gz(1 l32) ~

(7.15)

Note the relative signs.

Q T„,= Q G, (2 l13) = Q G, (1 l23),
f

QT(„=QG, (3 l12) = QG, (1 l32),
i

Q T„,=Q G)(3 l21) = Q. G,.(2 l 31),
f,j
Z T;~&=0.

f,J,k

The relations (7.15) are enough to show that U of (7.14) is identically zero.
This process can be pushed ad infinitum. We have not found a sufficiently convenient and compact nota-

tion to carry out the calculation efficiently for N massless particles. In verifying the cancellation for N
=4, for example, it is important to bear in mind the fermion nature of the particles of the third kind, so
that in the unitarity sum we have

+ G ( l(12), (34)) G ' ( l(21), (43))—G ( l(12), (34)) G ' ( l(41), (23)) .

APPENDIX A: THE 0-MODEL-LIKE IDENTITY

The simplest way of deriving Eq. (5.25) is to consider a constant gauge transformation on the variables
of integration in the functional integral (4.3). We give here an alternative derivation of Eq. (5.25) from Eq.
(4.5).

From Eq. (5.25) we obtain
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8' —it 8„8—~, +8"Z„'W+ig J„t ~ +KF —W~
~

~

p & ggJb p &p 5K

—i d y6(y —x)t' D„[i6/6J]" „G (y, x; i6/6J)W =0.~ ~

~

(A1)

Since

and

P Jb X. gJC gJb P kgJC

D„[i 6/Q]' gG (y x' i6/6J) =e' q[D [i6/6J]'G (y, x; i6/6J)), „,x x=y

we can write all but the third term on the left-hand side of Eq. (Al) as divergences of vectors. Equation
(5.25) follows upon integration over x.

APPENDIX B: CONSTRUCTION OF RENORMALIZABLE MASSIVE VECTOR-MESON THEORIES

In this appendix, we pose and discuss the following problem: How does one construct a theory in which
all of the gauge bosons associated with the gauge group t" become massive while the vacuum is invariant
under the little group S, which is not a local gauge group? The construction here may be of interest in
providing models of strong interactions.

We shall now consider the following set of groups:

G& &xS&~~gS& ~xS&"~gS' &

S,S~",S are isomorphic to S, and S is the diagonal subgroup of S xS" .
We construct a theory with the following properties:
(1) The Lagrangian is invariant under local gauge transformations of the group G~~~ and constant gauge

transformations of the group S~" . A„' are the gauge fields associated with the group C
(2} P~ ~ is a set of scalar fields, with nonzero vacuum expectation value v~ ~. The little group of the

vacuum is S~

(3) All other fields present in the Lagrangian are invariant under transformations of the group S~"&.
In the notation of Sec. III, [L}are the generators of G ~&xS&s', {I]are the generators of S '. The gen-

erators of G&~~ complete the set of generators [L). [t].will be this set:

[I]+[I]=(I] .
Now one can choose fields p& ' and ( such that

y( ) —D[&&.' ] (&(&)+p( ))

Using the local gauge invariance, one can eliminate the fields g and all the gauge fields A„become mas-
sive. In this way one has constructed a theory in which there appears a set of massive Yang-Mills fields
associated with a given spontaneously broken symmetry t", the theory remaining symmetric under a sub-
group S of G. (S is not a local gauge group).

In order to illustrate this mechanism, we will give some examples:
(1) Let G and S be isomorphic to SU(2}. p belongs to the (

—„-,) representation of SU(2)xSU(2). In this
model massive Yang-Mills are associated with an exact SU(2) symmetry. This is one of the models pro-
posed by 't Hooft. "

(2} G is SU(2}xSU(2), S is isomorphic to SU(2). We let p~~~ belong to a ( —,, 0, —,) representation; p
"~ to a

(0, —,, —,); (o, v} to a (2, —„0). In this way one can construct a model in which a set of massive Yang-Mills
fields is a,ssociated with the broken chiral symmetry SU(2) x SU(2).

(3) G is isomorphic to SU(3), S is isomorphic to SU(3) or SU(2). p belongs to the (3, 3)+(3, 3) representa-
tion of SU(3)xSU(3) or the (3, &)+(3, —,} representation of SU(3}xSU(2).

(4) SU(3) x SU(3) can be treated by a combination of the two preceding methods.
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APPENDIX C: MASSIVE YANG-MILLS THEORY AS A LIMIT OF SPONTANEOUSLY

BROKEN GAUGE THEORIES

In all the models discussed previously, it is easy to see that the masses corresponding to the fields hav-

ing nonzero vacuum expectation values are free parameters. When these masses become infinite, one
finds as a limit ordinary massive Yang-Mills field models. This can be most easily seen in the U gauge,
in which the would-be Goldstone bosons have been eliminated.

In this sense these theories, when the masses are finite, can be considered as regularization of the or-
dinary massive Yang-Mills theories, in the same way as the linear o model can be understood as a regu-
larization of the nonlinear v model. " It is possible that this limit, as in the case of the v model, is less
singular than the direct power counting of the limiting theory suggests.

We shall study a particular model here, but all the arguments will be completely general.
1. The Jagvangian. We set

g = --,' Tr [S„V„—6 „V„+ig [ V„, V ] }'+-, Tr [S„M+ig [ V„, M ]}[8~Mt —ig [Mt, V"]}
+ V(M)+other matter fields .

The gauge group is SU(n}, V„ is a Hermitian traceless nxn matrix and M is an nxn complex matrix.
V(M) is a polynomial in M and Mt which can be chosen such that the vacuum expectation value of M is of
the form

where F is a real diagonal matrix. Furthermore, when the masses of the M fields become infinite V(M)
gives in the limit in the Feynman path integral a 6 function of the form 6(MMt —F ). In order to quantize
the theory we add to the Lagrangian:

6S = —
2

Tr [6„V"—i X(FM~ —MF)]'+ Tr [ce'c+igee„[V",c]}+Xg(cFMtc+ cMF c},

where c and c are nxn matrices representing the usual scalar fermions ghosts, and X can be chosen such
that the term -i(X/n)Trs V„(FM —MF) cancels the corresponding term in the Lagrangian which is ob-
tained when one replaces M by M'+E. This is the gauge introduced by 't Hooft. "

Now in the limit of the infinite mass of scalar fields M the generating functional becomes

expiZ = dV„dM - ~ ~ 5 MM~ - J expi d'x Q+5Q+source terms .
x

We can make the following change of variable:

M=(e'")0,

where H =H t and Q =Qf. The generating functional can now be written

expiZ = dV~ dH J H d ~ ~ expi d'x g+5g+source term,

where we have used the 6 function, and J(H) is the Jacobian.
2. Pouer counting. It is well known that in the unitary gauge, the most divergent graphs have a super-

ficial degree of divergence 5 of the form:

where L is the number of loops. But it has been shown" that on the mass shell, cancellations occur which
reduce the degree of divergence.

We will give here a new derivation of this result, using another gauge. We shall use the following identi-
ties in order to calculate the superficial degree of divergence 5 of a graph:

6=4 -Es —~E~+Qn, (6, —4},
v- =%)+v)+ —5-3 F

Es+E~+2I =+n, (c, + u~),

L = I +1 gn, , -
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where Es and E» are the number of external bosons (or ghosjts) and fermions, respectively, n, is the num-

ber of vertices of type i, m, is the number of derivatives at the vertex, v, is the number of bosons, and
v~ is the number of fermions at the vertex i. I is the number of internal lines. A straightforward calcu-
lation gives

8 = 2L+2 —2H»+Pn;(m, + 2v",. —2) .
Not returning to the Lagrangian one sees that either

v; =2 and m, =0

or

v; =0 and m, ~2.
The most divergent contributions are given by TrB„MB„M with m, =2. So,

5 & 2L+2.

A closer examination, using the fact that we are not interested in Green functions with external particles
associated to the fields H, c and c, shows actually

5& 2L.

3. One-loop approximation. When the current is conserved, we have

F=f1.
In the one-loop approximation the Lagrangian can be replaced by the following effective Lagrangian:

2 = --, Tr [8„V„-8„V„+ig [V„, V„])'—(I/2n)Tr(8" V„)'+ -,(fg)' Tr V„'+ ~f'Tr{(8„H)' -2g 'f'H'+ ig V"[H, 8„H] f

+ Tr [c82c+ igc8„[V", c] ] .
With this effective Lagrangian it is clear that the massless Yang-Mills theory is not the limit of the mas-
sive Yang-Mills theory. The massless Yang-Mills theory is obtained for f =0. If f is different from zero,
one can integrate over H, c, and c, and obtains

expiZ= dV" expi S+source terms 4, V" V~,

4,(V")= exp [Tr ln(8'+ ig8" [ V", ] )],
4 (V") =exp[- —Tr ln(8'+ &ig(8„-8„)[V~, ] )).

In the Landau gauge (n =0) we have the relation

~,g = (~,)'~2

because the two expressions inside Tr ln differ only by a term proportional to B„V .
We, therefore, see in this way the origin of the difference of a factor 2 in front of the ghost loops, be-

tween the massless and the massive Yang-Mills cases.

APPENDIX D: INFRARED PROBLEM

Let us consider the contributions of intermediate states of two or more massless particles to the inverse
of the propagator &z, (k'). Since the phase space for N mass particles, p„, goes as (k')" ', the integral

is not infrared divergent for N~ 3.
It suffices, therefore, to consider only the intermediate states of two massless particles. There are

two such states: P,(p)- p, (p —q)+A„'(q) and A„'(q)+the massless scalar associated with the longitudinal
part of the A„' propagator. Since in the Landau gauge the A„' propagator is purely transverse,

(g"" —q" q"&q')[q'~(q')] ',
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and since any vector to be contracted with p, or v of the above propagator may be expressed as a linear
combination of p„(p, ) and q„(q„) we see that the contributions of two massless particles to the self-energy
are necessarily of order p„p„disregarding logarithmic factors.
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We discuss the equivalence of the S matrix in the R- and U-gauge formulations of spon-
taneously broken gauge theories. We give definitions of the U-gauge Green's functions in
terms of the R-gauge ones, for both Abelian and non-Abelian cases. Based on the equiva-
lence theorem, we give a renormalization prescription of the U-gauge formulation.

I. INTRODUCTION

In this paper, we wish to demonstrate the equiv-
alence of the S matrix in the R- and U-gauge
formulations of spontaneously broken gauge theo-
ries. We have discussed the advantages and dis-
advantages of the two formulations in a previous
paper (paper II).

We shall carry out this demonstration by express-
ing Green's functions in the U gauge in terms of
those in the R gauge. What we shall show in this
paper is a concrete realization of the remarks
made previously by Weinberg' and by Salam and

Strathdee' about the equivalence of the two formu-
lations. But more importantly, the present work
gives definitions of the U-gauge Green's functions
in terms of the well-defined R-gauge ones.

This paper is organized as follows. In Sec. II
we consider the equivalence of the two formula-
tions for the Abelian model considered previously.
In Sec. III, we give some illustrations of the equi-
valence and formulate the renormalization pre-
scription in the U gauge. In Sec. IV, we deal with
the generalization to non-Abelian cases.

It is empirically known that the T matrix for the
Abelian case computed in the U gauge is finite. "


