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This is the first of a series of papers addressed to the renormalizability question of spon-
taneously broken gauge theories. We give a brief outline of the motivation for such an inves-
tigation and describe the manner in which the renormalizability of such theories will be proved
in the sequel. Put briefly, we will show that in an appropriate gauge, ultraviolet divergences
of a spontaneously broken gauge theory are removed completely by the gauge-invariant coun-
terterms in the Lagrangian which would make the Green’s functions of the corresponding un-
broken gauge theory finite, that the S matrix computed in this gauge is unitary, and that the
S matrix is independent of the gauge chosen. In this paper, the renormalizability question of
the unbroken gauge theory is considered. We derive the Ward-Takahashi identities of the
theory. We discuss several ways of regulating divergent Feynman integrals of the theory
without destroying gauge invariance. Infrared divergences are avoided by the device of inter-
mediate renormalization, wherein we choose as subtraction points some points where exter-
nal momenta are Euclidean. This suffices to establish that the Bogoliubov-Parasiuk-Hepp re-
normalization will give renormalized Green’s functions which satisfy the Ward-Takahashi
identities. The existence of finite, renormalized Green’s functions satisfying the Ward-Taka-
hashi identities provides us with the means of proving the renormalizability of the spontane-
ously broken symmetry case. The Ward-Takahashi identities were previously derived for the
gauge bosons by Slavnov. We present here a new derivation. The discussions on regulariza-
tion methods and intermediate renormalization procedure and the renormalization conditions
for matter fields, we believe, are new contributions of the present paper.

I. INTRODUCTION whose masses are generated by spontaneous break-

down of gauge invariance of the second kind,*° and
of constructing a finite theory of weak interac-
tions*”~° prompt a closer examination of the quan-
tization and renormalization questions of theories
of this genre.

In the sequel of this series, we wish to examine

This is the first of a series of papers which will
deal with the renormalizability of spontaneously
broken gauge symmetries. The intriguing possi-
bilities of unifying electromagnetic and weak inter-
actions in terms of Yang-Mills gauge bosons,’~®



3122

the following questions: (1) We will discuss both
the group-theoretic and field-theoretic problems
associated with the Higgs phenomenon.’*"*? This
entails a careful study of the stability of the phys-
ical system which possesses the freedomassociated
with the gauge invariance. (2) We will also study
the perturbative treatment of such theories. Here
our aim is to show that, in an appropriate gauge,
ultraviolet divergences of a spontaneously broken
gauge theory are removed completely by the counter-
terms in the Lagrangian which would make Green’s
functions of the corresponding unbroken gauge the-
ory finite. Thus the renormalizability of the un-
broken Yang-Mills theory (to be defined below) im-
plies the same for the spontaneously broken gauge
theory. The philosophy and methodology we shall
follow are the same as those we employed in the
study of the 0 model.** (3) In the gauge in which
the renormalizability can be proven, the unitarity
of the S matrix is not manifest, since the quantiza-
tion in that gauge implies the use of an indefinite-
metric Hilbert space for the construction of Green’s
functions. We will show that the physical S matrix
is nonetheless unitarity. (4) We shall also discuss
the equivalence of the S matrix constructed in this
gauge and in the gauge in which the unitarity of the
S matrix is manifest (but not the renormalization).

In this paper, we shall give a discussion of the
renormalization problem of the (unbroken) Yang-
Mills field theory. It is not attempted in the pres-
ent paper to establish that a renormalized Yang-
Mills theory exists as a physically satisfactory the-
ory of massless particles. Due to the infrared
problem associated with massless quanta, such a
theory may very well not exist at all. What we
wish to demonstrate is that renormalized Green’s
functions of the theory exist (without implying the
same for the S matrix), which satisfy the Ward-
Takahashi identities which will be derived. The
existence of renormalized Green’s functions will
prove to be a sufficient foundation for the discus-
sion of the renormalizability of the spontaneously
broken symmetry theory, which we shall discuss
in the sequel.

We will proceed in the following manner. After
a brief review of the quantization of the non-Abelian
gauge theories, we shall derive the Ward-Taka-
hashi identities. We will then discuss ways of reg-
ularizing divergent Feynman integrals in a gauge-
invariant manner. The regularized Feynman am-
plitude then satisfies the identities automatically.
The Bogoliubov-Parasiuk-Hepp-Zimmermann
(BPHZ) renormalization procedure!*~' requires
specifying the values of primitively divergent ver-
tices (A primitively divergent vertex is a proper
vertex whose superficial degree of divergence is
non-negative. Our definition here differs from the

B. W. LEE AND J. ZINN-JUSTIN 5

conventional usage of this term.) at some subtrac-
tion points. When these values are chosen in ac-
cordance with the Ward-Takahashi identities, and
the cutoff parameters associated with the regulari-
zation are let go to infinity, the renormalized am-
plitudes are obtained which satisfy the Ward-Taka-
hashi identities. Because of the infrared diver-
gence, it is prudent to choose as subtraction points
some points other than where all external momenta
vanish. We shall describe in some detail this “in-
termediate” renormalization procedure.

The Ward-Takahashi identities were previously
derived by Slavnov'® for the gauge bosons. The
derivation we shall present is somewhat different
from his. The discussions on regularization meth-
ods and intermediate renormalization procedure,
and renormalization conditions for matter fields,
we believe, are new contributions of the present
paper.

The organization of the paper is as follows:

Sec. II: Quantization; Sec. III: Ward-Takahashi
Identities I; Sec. IV: Ward-Takahashi Identities II;
Sec. IV A: Two-Point Functions; Sec. IV B: Three-
Point Vertices; Sec. IVC: Four-Point Vertices;
Sec. V: Regularization; Sec. VI: Renormalization
Conditions and Infrared Divergences; Sec. VII: Re-
normalization of Matter Fields; Appendix A: Der-
ivation of Some Equations; Appendix B: Generating
Functional of Proper Vertices; Appendix C: Ward-
Takahashi Identity for the Generating Functional of
Proper Vertices; Appendix D: Power Counting.

II. QUANTIZATION

Following the works of Feynman,!® DeWitt,2°
Popov and Faddeev,?' and ’t Hooft?? we define the
generating functional Z[ju] of connected Green’s
functions by

ez[fu] =f[dx] AL[K] expi\{,ﬁ(x) - % (BMA.“)z

_:fp(x)'x”(x)} ’

(2.1)

where [dA | is the canonical functional metric for
the vector fields

[dE]= TI dAS(»), (2.2)
a,i.x
where a is the internal-symmetry label. We shall
assume the internal symmetry to be SU(2), so
that a=1, 2, 3, but the generalizations to other
groups are trivial and immediate. £(x) is the La-
grangian for the Yang-Mills fields

L(x)=-5F,, -Fr, (2.3)

= - -

Fpu=auAu_8uKu‘gAuxAu) (2‘4)
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which is invariant under local gauge transforma-

tions, the infinitesimal version of which is
Ay —Aj +g(@xXA,) +0, 0

=AZ+(DH)“’w°, (2.5)

D, being the covariant derivative:

A 1 - -
A,-[Au]=exp[Tr In <1 _ga_2 3“Au-t>]

GAUGE SYMMETRIES. I... 3123
DA =06%0,-g(t-K,)®, (2.6)
(1) =€ | 2.7)

The Jacobian A, [A | is essentially the determinant
of the operator BMD“, and may be expressed as

=exp{- Z; (;l_g) fdxl s~ dx, trDp(x, - xl)afxlxul(xl) B Dpxye, - x,)o%n Ku"(x") f}

- - 1
=exp[Trln (1 -gt-Ata, 55>:| )

where we have used the Feynman propagator
Dp(x - y) defined as

Dp(x - y)=(x|(-82+ie) ! |y).

The symbol Tr denotes the trace operation over
x and the isospin a@; the trace operation over the
isospin index is denoted by tr.

The Feynman rules for this theory are obtained
in the usual manner if we regard

[ ass [g(x) . [auK“(x)]z]

(2.9)

—-iTrln (1 —gF-K”au %)
(2.10)

as the effective Lagrangian. The bare vector-bo-
son propagator is

. . kR 1
-iA,, (K% a)=-i [gw— (1 - 0,):]m .

k2 +ie
(2.11)

In Egs. (2.8) and (2.11) the ie prescription is
dictated by the unitarity considerations which we
shall discuss in the sequel. The term (1/2a)(3,A")?
specifies the gauge one is employing and depends
on a parameter which can vary from -« to «». For
a=0, we obtain the transverse or Landau gauge,
and for ¢=1, the Feynman gauge. The last, non-
local term in Eq. (2.10) is the new feature of non-
Abelian gauge theories. It may be viewed!® dia-
grammatically as the sum of closed-loop contribu-
tions from fictitious complex massless scalar
fields (ghosts) obeying Fermi statistics which are
coupled to the gauge fields through the interaction

g'c'(x)&“[f- K“ (x)c(x)]. (2.12)

The connected Green’s functions of A ’s are ob-
tained as the functional derivatives of Z[J,]:

i6"Z[F,] N C
Temea Gy - CTHAL A (3) - - )G

(2.13)

(2.8)

The Feynman rules are summarized in Fig. 1.
In addition, the following rules should be kept in
mind: The ghost-ghost-vector vertex is “dotted,”
the dot indicating which ghost line is differentiated;
a ghost line cannot be dotted at both ends; a ghost
loop carries an extra minus sign.

III. WARD-TAKAHASHI IDENTITIES -1

The invariance of the Lagrangian under the local
gauge transformation (2.5) gives rise to a hierarchy
of identities among the Green’s functions (2.13).
Alternatively, these relations may be expressed
globally as an equation satisfied by the generating
functional z[J ).

We will first rewrite Eq. (2.1) as

VE RTICES BARE VERTICES
X b, .ab
e 8 Ay, () -‘gbﬁgpv-mpy/p')w‘*ap#w @]
ax (7
abe
abc
pY # T | le-a,6,,
q
by p+Q+A=o "(‘T"‘))‘gy.v +(""P);Lgv)‘]
bf cdf
A b, Lie” -
°>< H  gbed e g )
P N (p.929)! . acf bdf
BV, AAS) _
N\ ¢ i€ € ‘gx;ﬂv; q)‘;o,u,)
cv dL prqeAes adf cbf
=0 - -
LW AV
ab
o—---p»---b 8 ib(p) isqbypz
Rl N ,a"’b
abc
§ abc
IA' '{)‘ (p.q;1) € px
cA

FIG. 1. Feynman rules of the Yang-Mills theory.
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WiJT,)=expiz[J ) =a,[i6/63,|W,[T,], (3.1)

where
w3 ,]= f [d] expi{ £(x) - ﬁ (04K (0]

~JH(x) - K“(x) = .
We perform the gauge transformation (2.5) on the
variables of integration A «x). Due to the invari-
ance of the Lagrangian and the metric [dA ], this
transformation will affect only the source term

and the gauge defining term:
of avel 0,077

fd“xéw [ D*a,0"K, D“J:I. (3.3)

(3.2)

Since a transformation of integration variables
does not change the value of an integral, we may
put the variation of W, with respect to dw(x) equal

e § 5
D:\[zﬁ/é;f] b {a" axa“ag(—x)

|on

to zero. We obtain thereby

l_é.b_(_)_D“[ié/élf]"”JZ(X)WfO-

(3.4)

DMi6/8F]™

We note that (see Appendix A)
AL[i6/6F) IS (x)A, " [i6/6F)
=J % (x) —ig trt[aH (x, y;i6/63) )y,
(3.5)
where H is the solution of the equation
D\[A )% H" (x, y; K )=6%6%x - y), (3.8)

satisfying the outgoing boundary condition; it has

the representation

H?(x,y;A) = —(x,a|[ —02 +ic +g f K“a“]‘lly, b).
(3.7)

Combining Eqgs. (3.4) and (3.5), and recalling
Eq. (3.1), we obtain

-J'i\(x)+igtrt"[3)\H(x,y;ié/éj)]y=,} w=0. (3.8)

The last term on the left-hand side is equal to (see Appendix A)

igDMi6/6F]%t Y 9\ H* (x, y;i6/83)] =, = —igf d*ytrt *[8,H(x, y;i6/63)] DL[i6/5F] 6%(x - y). (3.9)

In showing this, one makes use of Eq. (3.6) and the Jacobi identity of the matrices {°. Equation(3.8) may

now be written as

[zé/éJ]“"ax{ —,,—) f diy 1 (x, v316/63)DE[16/6T T (3): Lw =0, (3.10)

'

where the symbol : : denotes the normal product prescription that the 6/6J must stand to the right of the J.

We now define G by

"DA[A)PG(x, y; K) = 664 (x - y), (3.11)
with the outgoing boundary condition, so that it may be represented as
G®(x,y;K)==(x, al|[-92+ie +gt*~}:“8“]“|y, by=H"%(y, x; A ). (3.12)
In terms of G, Eq. (3.10) may be considerably simplified. We finally obtain the desired identity:
; f 5J f d*y J5(y)Dy[i6/6F 1% G*(y, x;16/8F)W=0. (3.13)

The above Ward-Takahashi identity was previously derived by Slavnov.!® He considers a restricted
class of gauge transformations which satisfy 8, D" & =% where ¥ is an arbitrary function. He shows that the
product [dA AL[AM] remains invariant under the nonlinear gauge transformation generated by &= Au’ X
The point of the above derivation is to show that Slavnov’s form of the Ward-Takahashi identities is the
most general form of the constraint on W[;fu] that follows from the gauge invariance of the Lagrangian.

For the purpose of renormalization, it is usually much more convenient to study the Ward-Takahashi
identities connecting single particle irreducible (proper) vertices, as was done for the ¢ model!*2?3 and the
spontaneously broken Abelian gauge theories.® However, in the present instance, the Ward-Takahashi
identities for the proper vertices are extremely complicated, being nonlinear relations among them. The
Ward-Takahashi identity satisfied by the generating functional of the proper vertices is nevertheless de-
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rived and analyzed in Appendix C. The renormalization conditions will be analyzed on the basis of Eq.
(3.13) in the following sections.

IV. WARD-TAKAHASHI IDENTITIES -11
We shall study the implications of Eq. (3.13) on the primitively divergent vertices.
A. Two-Point Functions

Differentiating Eq. (3.13) with respect to J(y) and then letting J,=0, we obtain

i 9 o*w - .
o A, - D"[i6/831°°G* (y, x;i6/6T)W =0. 4.1)
a 9x, 8J j(x)6J ,(y) fimo J[is/8d] (v, %;20/8) Tro (

Taking the divergence of the above equation with respect to y, and remembering the equation satisfied by
G, we see that

i 9 @ oW

_—— :6”64 - 4.2
’
Py 8yu GJﬁ(x)éJf,(y) Tu=0 (X y) ( )

which shows that the longitudinal part of the propagator A, ,,

8%Z[J,]

=0%A ,,(x - y), 4.3
CHELHON EI )
is not renormalized: The vector propagator has the form
&pu(x - y) = (gul/ - auav/az)D-(x - y) + a(agau/az)D-F(x - y) (4-4)
In the momentum space, the inverse of the vector propagator, therefore, takes the form
1
[AHR)]yy = (RPgy, — Ry R, )J (R2) + Ekukv' (4.5)

Were it not for the n-particle thresholds at k2=0, J(k?) would be regular at #2=0 (at least in perturbation
theory), and the transverse part of the vector-meson propagator would have a simple pole at 2=0.
Equation (4.1), when combined with Eq. (4.4) gives

=0 (4.6)

-

w .
{é“bauﬁp(x -9)+8,G%(x, y;i6/8F) -ig [t . -——:l G(x, y;i6/63) %W I
u=0

3}
8J*(x)

or

§®(x - y)=6""D°F(x—y)+igf d*z f),,(x—z)%
u

g b “ -1 cb .7 - -
[t 65#(2)] W TG (2, y;i6/65)W(F )5, -0=0, (4.7)
where § is the ghost propagator:
§%(x = y)=~{WF, 16" (x, y; i6/65)W [T I} |Tu=°'
We may define the self-energy part T, of the ghost by
6ab9(k2)= f d4xeikcx gab(x)’

(4.8)
§(k?) = (k*+i€) ™1 - Z,(k*)$(k?)].

The structure of Eq. (4.7) implies that Z,(k®) is of the form —k,Z} (k). Again, were it not for the fact that
k?=0 is the onsets of n-particle intermediate states, Z,(k?) would behave like %2 near #>=0, so that §(k?)
would have just a simple pole there.

B. Three-Point Vertices

From Eq. (3.13) we obtain

A 2} 53 -
(i) 54 By &]ﬁ(x)&fvg(y)wi(z) + DMi6/63]° G*(z, x;i6/63)

We note that

5
a—agﬁz—)’l,‘ _=o. (4.9)

L
a ay
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o

gW - 8/63\(2)]G (2, x;i6/63)6W /87 () |5

u=o
=gfd4xld4y/,;/c)\ag(z,xr;y:)g(x/ - x)APV(v/ — y)+gf dqz'dqz" d"x'd“y'i;‘(z _z/)g(z/ —z”) _;z;)ab(zu,xf; yl)

x §(x'=x)APY (y'=y), (4.10)
where

~abc

.0 _
750 (3, y52) = =1 5 755 (%, 93 2),
A

abe

and y5’° (p,q;7), defined by

y‘:,”‘(p,q;r)(Zn)“é“(p+q +7)= fd“xd“yd"z ei(rnq-yw-z)?z;)bC(x’ y;2),
is the proper vertex for the coupling of a vector meson of momentum 7, polarization p and isospin index c,

with two ghosts, of momenta p and ¢ and isospin indices a and b, respectively (we define the momenta out-
wardly from the vertex) (see Fig. 1). We have

Yo (p,q;7) = PV (D, q;7). (4.11)
The quantity Z';‘ is defined by the equation
- 3 -
Telx—y)=-i 5 Sl =), (4.12)
X
where
%, (k%) = f d*xe™ %3 (x) (4.13)

and satisfies the unrenormalized equation
i6%E Mx - y) =ge“d°f(—i)z\."“(x - 2)i8(x - YT (w, y; 2)d ‘wdz. (4.14)
We consider the part which is transverse with respect to the index A of Eq. (4.9). Noting that

o°wld, ]

w3, 6J 4(x)6.J 2(y)6J § (2)

o= _z‘gfd“x’d"y'd‘z’ﬁ““'(x - XA (y - y VA (2 = 2 )T ZSn (a3, 27),
]“=0
abc

where fu,,x(x, ¥, 2) is the proper three-point vertex of vector mesons, and taking the Fourier transform we
obtain

(D)@ /a7 2T D)) g = rPr ¥ /r YT, 0, 7) = @H/a2)S( 1) = ¥ /r Dy S (v, p;q), p+a+7=0.

(4.15)

Equation (4.15) is a constraint among the propagators and three-point proper vertices. Equation (4.15) was
first derived by Slavnov.!®

C. Four-Point Vertices

It follows from Eq. (3.13) that

%i 9 8 6'z[J ] -0 (4.16)
ox" 8y" 82" ow® 6J%(x)6J5(v)5J5(2)5d Sw) =0 )

from which one obtains a constraint on the four-point vertex r‘“{,f,,p:

p)‘q“rusp{mb;;‘/‘p(p) q,7, s)+[I"'§\bﬁo(p,q, —P—Q)Aog(P‘F‘I)P%g(”, S, P““q)'*‘two more terms]}=0,

p+q+7r+s=0, (4.17)
where I'{¥¢7, is defined as
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: 54Z[ju] 4, f d* 4 4,134, 1 AAN VAR naw' 1YAPP '
=(=- rdtytdiz'd w AN (x = x" )M (y = y)A" (2 - 2")AP w —w’)
OO ig) dx'd’y ( y-y
x T34, (x',y',2",w") + reducible parts (4.18)
and
fd4xd4yd4zd4w ei(p-x+q-y+r-z+s-w)l"-\¢;\b;¢!1lp(x, y,z,w)=(2n)“6“(p+q+7’+ S)F“Xbﬁ{‘,p(p,q,r, S). (419)

The ghost-ghost-vector-vector vertex is superficially convergent and requires no discussion.

V. REGULARIZATION

The Feynman amplitudes constructed from the expression (2.1) would automatically satisfy the Ward-
Takahashi identities discussed in the last two sections, if it were not for the ultraviolet divergences in
their construction. A standard procedure of constructing the renormalized amplitudes satisfying the Ward-
Takahashi identities is to regularize the Feynman integrals in a gauge-invariant manner; and then perform
the R operation'*~'? of Bogoliubov, Parasiuk, and Hepp (BPH). The resulting amplitudes are cutoff inde-
pendent, and if the values of primitively divergent vertices at subtraction points are chosen in accordance
with the Ward-Takahashi identities, then the full amplitudes satisfy them too. Furthermore, under such
circumstances, the R operation may be formally implemented by a gauge-invariant set of counter terms
in the Lagrangian.

In this section we will discuss a few gauge-invariant regularization methods which can be implemented
by adding gauge-invariant terms in the Lagrangian (e.g., Pauli-Villars regularization). ’t Hooft?? dis-
cussed a method which works for one-loop diagrams, but which does not appear to be implementable by
modifying the Lagrangian.

We choose as regulator fields both scalar and spinor fields. They have all positive masses. They may
belong to arbitrary representations (in general, reducible) of the symmetry group. They are coupled to
the gauge fields by the minimal gauge-invariant coupling. They may, however, be quantized by the wrong
spin-statistics connection (i.e., some scalar field multiplets may be quantized by the anticommutation re-
lation). Let us show that the addition of these regulator fields to the Lagrangian renders the divergent
Feynman integrals with one loop finite.

Let us first consider the self-energy of the gauge boson in the one-loop approximation. We will carry
out the computations in the Feynman gauge. There are three diagrams (one is a ghost loop), and the sum
of the contributions from these is

2 oo
Sl P =gy, 1oy [ Zany (_m 282 pz> exp <i _2.1_22_1,2)
2

o (2,+2,)° z,+2 z,+2,
i g J.w dzydz, 2,"+62,2,+2,° i 2%z 2
* Tor? gy b’ = bub) o (2,+2,) (2, +2,)? exp<121+zz p)‘ (5.1)

The first term on the right-hand side is gauge-noninvariant and quadratically divergent; the second term,
which is gauge-invariant, is logarithmically divergent. We shall regulate Z,, by the replacement

=2l =2, + 21 + 22 (5.2)
where Z)f,‘u) is the sum of the scalar regulator contributions:

2g% “ dz,dz (2,2 [z
Ef}v) ='ZC,- {— E_;r_zg‘”’ J; rizj)iexp [z (1_2_ PP - (z1+zz)mf>:||:-1 H(z_%— P2 - (zl+z2)miz>:|

2,+2, 112,

_ &% . - J‘m dz,dz, ;2122 2 AVEIEEAY
To7? L P8uy = buby) L Gzl i —1(21+Zg)mi> zZ,%2,

and Efﬁ,’ is the sum of the spinor regulator contributions:
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dz.,dz . 2,2 .
E(uzv)z ..Z:D‘ 12 exp(z L2 pz—t(zl+zz)u,-2>
1

(z,+2,) Z2,+2,

| 2g? -1 [ zz,
X% 1672 g‘“’[z +2, +l((z +zz)2p

The coefficients C; and D; depend on the repre-
sentations to which the regulators belong, and also
on whether they obey the normal or abnormal sta-
tistics. In any case, if we choose

2+Z;C{—EDJ~=O (5.3)

and
2CmE-2,D;u?=0 (5.4)

then the gauge-noninvariant term vanishes identi-
cally. Furthermore if we choose

10-33C,+25D,=0 (5.5)
i j

the logarithmic divergence in the gauge-invariant
part may be eliminated. The introduction of two
kinds of regulators is necessitated by the require-
ment that both quadratic and logarithmic diver-
gences be eliminated.

Next, we consider the three-point vertex T,
(p,q,7) of three gauge bosons in the one-loop ap-
proximation. The integral is linearly divergent
and has the asymptotic structure, in the Feynman
gauge,

d*l L1,1,

-J o G .0
when all diagrams, including the one with a ghost
loop, are added. Again, by taking a suitable com-
bination of scalar and spinor regulators, it is pos-
sible to eliminate all divergences from the Feyn-
man integral for the three-point vertex.

The four-point vertex is logarithmically diver-
gent and offers no special difficulty. We have not
verified that this method works for higher-order
diagrams. In any case, when there are matter
fields present in the Lagrangian, the method pre-
sented above is insufficient and it becomes neces-
sary to dampen the high-energy behavior of the
gauge boson propagator itself. The method de-
scribed below will do just this, and when combined
with the spinor-scalar regulators, will render all
Feynman integrals finite.

We will add gauge-invariant higher-derivative
terms to the Lagrangian. Consider, for example,
the Lagrangian

Fu - 332 (0°F*) - (0,F,,)

;,% (D°DF,.) - 0P D, F ). (5.7)

|on

)] 4 Z(gpupz pupu z +Z2} .

The vector boson propagator is now

Ay (ks A%) = (gyy — Ry R,/ R?) (k% +i€)™!

2\ 27-1
x[1+a Z+B<k) ]

+gauge-dependent term

and behaves like (p?)~® asymptotically. The maxi-
mum dimension of various new couplings (in pow-
ers of mass) is eight. A power-counting argument
(see Appendix D) shows that in this case only the
two-, three-, and four-point vertices with one
loop are primitively divergent (quadratically, lin-
early, and logarithmically, respectively). Other
proper vertices, including two-, three-, and four-
point vertices with more than one loop are atleast su-
perficially convergent. As one adds still higher
gauge-covariant derivatives, the propagator be-
comes more convergent at large momentum, but
the maximum dimensions of the interaction terms
increase also, in such a way that the two-, three-,
and four-point vertices with one loop remain al-
ways divergent (see Appendix D). Note also that
ghosts loops for these vertices remain divergent.

Therefore, by the addition of the last two terms
to the Lagrangian (5.7), the divergences of the the-
ory have now been isolated to those diagrams for
which the spinor-scalar regularization was shown
to work.

The BPH R operation is to be applied to the en-
tire two-, three-, and four-point proper vertices.
The resulting vertices are cutoff-independent, in
the sense that the limits A%?— « of these amplitudes
are finite and independent of & and 8 of Eq. (5.7).
This can be seen as follows. A proper amplitude
with two, three, or four external lines which is
proportional to some powers of ¢ and 8 has in gen-
eral an ambiguous limit as A*~~. However, the
finite part of such an integral vanishes like
A™%(InA%)"as A?~w. A proper Feynman diagram
with n external lines, n>4, with one or more ver-
tices proportional to a or 8 which are not contained
in any subdiagrams with two, three, or four ex-
ternal lines vanishes at least as fast as A~("~9
X (InA%)™ as A%, after the R operations are ap-
plied to the subdiagrams. (The above is a sum-
mary of a rather lengthy analysis.)

The results of regulating the Feynman integral
by the method described above, applying the R
operation and then letting the cutoff A% go to in-
finity is identical to applying the R operation di-
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rectly to the Feynman integral. This shows that
the BPH R operation is in fact a gauge-invariant
procedure.

A similar regularization procedure has been ap-
plied to nonlinear chiral Lagrangians by Slavnov.??
We understand from Jackiw and Faddeev®® that
Slavnov has considered the regularization method
of Eq. (5.7) for the gauge fields also. (After the
completion of this work we received a report by
Slavnov.2*) This possibility has also been known
to Johnson.?®

VI. RENORMALIZATION CONDITIONS
AND INFRARED DIVERGENCES

Let us first discuss briefly how the values of
primitively divergent vertices are determined from
the considerations of Sec. IV, ignoring the problems
associated with infrared divergences. Under such
circumstances, we may choose as subtraction
points the points at which all external momenta
vanish. Later we will discuss the nature of in-
frared divergences in gauge theories and give a set
of renormalization conditions which avoid the in-
frared difficulties.

We may by convention choose, in Eq. (4.5),

J0)=1,

which amounts to

k,k,\ 1 k kR
i ~ -y M,
gTOAuu(k) (gull 2 >k2 +a(k2)2 (6.1)

The normalization of the ghost propagator is arbi-
trary. The ghost propagator has a simple pole at
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k?=0 [see the discussion following Eq. (4.8)], and
we write
lim §(k?)~Z,/k?, (6.2)
k2-0
where Z, is an arbitrary (finite) constant.
In the limit p, ¢, and r = -p —¢q all go to zero,

the three-point vertex I'{%, (p,q,7) has the form

lim T}5(p,4,7)
p,ar—>0

~ "iGeabc[(p - Q)vg)\u*' (- r))\guu"' (r - P)ugu)\]!

(6.3)
as follows from Lorentz covariance, isospin con-
servation, and Bose symmetry. Likewise, the
low-energy form of the vertex y‘{’:(r, b;q) is given
by
cab

lim ¥§3(r, p;q) = -iG'e**°gy,,
p.ar—0

so that

lim yzab(r’ p; q) ~ _icleabcyu .
p.ar—0

Equation (4.15) then tells us that

G=G'Z,. (6.4)

In the Green’s functions, only the combination
G'Z, enters, because the ghost never appears as
an external line, so that it is convenient to set
Z,=1land G=G'.

The low-energy form of the four-point vertex
is given by

lim ira)\b:;‘;p(p, q,7, S) = _iF[S“beecde(g)\ug“ P —gngu u) + eaceebde(g)\“gvp _g)\pgpu) + eadeécbe(gxygup _g)\ugpu)]

p,qr,5—0
+F[6°6°g) 8,0+ 66 '8 r 18 o+ 6°26"8\ p80u ] - (6.5)
Equation (4.7) tells us that
F=G? and F’=0. (6.6)

The conditions (6.1), (6.4), and (6.6) allow us to express all primitively divergent vertices in terms of only
one constant G.

As we have stated before, the foregoing discussion is of heuristic value only because of the infrared
divergences that the Feynman integrals experience when all external momenta are set equal to zero. More
precisely, a Feynman integral of the theory becomes divergent if two or more external lines are set on the
mass shell. We assert that a Feynman integral suffers no infrared catastrophe if all of the external lines
are kept off the mass shell. One can easily see this for diagrams with one loop. As long as all of the ex-
ternal lines are off the mass shell, infrared divergences in any subintegrations can occur only in the mea-
sure zero of the space of all integration variables where the rest of the integrand is nonsingular. There-
fore, by choosing subtraction points to be somewhere other than where all external lines are on the mass
shell, we can circumvent the infrared difficulties in the construction of Green’s functions (but not the S
matrix) altogether.

A convenient convention for the subtraction points is given by Symanzik.2® We choose as such the points
where the squares of external momenta are all equal to a negative number, say, -a®. Defining all external
momenta outwardly from the vertex, we have at the subtraction point p;2=—a?, p, «p;=(m-1)"1a%® As an ex-
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ample, we will work out the renormalization conditions for two- and three-point vertices.
We shall normalize the fields A, and & so that

J(-a*)=1,
and

Z,(-a?)=0.
Then we have

lim A, (k) ~(g,, - k,k,/k?*)(-a)~? + gauge-dependent terms,

k2> —q2

$(a?) = —a™?.
At the symmetric point p? =¢g>=7%=—a?, the three-point vertices I'{¢,(p,q,7) and ¥ s (7, p;q) have the
structures

im TP, 4, 7) ={ Gl(p =), &r,+ @ = 7)rguu+ (¥ = D)y g | +H[ (" = @)7 @y + (D = 7) 0y 7\ + (d = D)y 42Dy ]

p2=q2=72= g2

+J[7)\puqv‘q>\’rupu]}€abc; (67)

lim 2 iyc)\a:(y’ p;q)zeabc{G’g)\u+K1p)\ru+K2p)\pu+K3p)\qu+L1q)\’ru+L2q)\pu+Laqxqu+y)\(" ')}, (68)

p2=q2=92= =g

where the omitted terms (- - +) are of no interest to the present problem. The quantities G and G’ require

subtractions whereas the other form factors J,J,K;, . .. are superficially convergent. Substituting Eqgs.
(6.7) and (6.8) into Eq. (4.15) and taking the limit p?=¢%>=7»2= —a?, we obtain
G-3PH+J)=G'+3a*(L,+L,- 2L, - K, -K, +2K,), (6.9)

which gives G’ in terms of G.

VII. RENORMALIZATION OF MATTER FIELDS

So far our discussion was based on the Lagrangian (2.3) which contains only the Yang-Mills quanta. As
an illustration of the renormalization procedure in the presence of matter fields, we consider the case in
which a triplet of real scalar fields ¢° is added to the Lagrangian by the minimal gauge-invariant coupling.

Let K°(x) be the sources of the scalar fields ¢°. It is not difficult to derive the generalization of Eq.
(3.13). Itis

i oW 4 c N[ cb~ba : : c cdb 5 : T

=8, = - f d*yJ S (y)D}[i6/63)°G (y,x;zé/éj)Wﬁgf d*y K (9)t°® —5— G*(y, x;i6/6d )W =0.
In this theory the A, ¢?, A,%*¢? ¢°, and ¢* vertices are primitively divergent. The renormalization of the
¢* vertex has nothing to do with the local gauge invariance and presents no problem. In order to regularize
Feynman integrals for these vertices, it becomes necessary to regularize the gauge boson propagators in
a gauge-invariant manner, for example, by the use of the Lagrangian (5.7). The renormalization conditions
for the ¢?, A,¢? and A 2¢® vertices are obtained from Eq. (7.1). First, though, let us ignore the infrared
complications. Later, we will detail the renormalization conditions which take due account of the infrared
difficulties.

From Eq. (7.1) we obtain
<i )2 a o 5%z[J,,K]

a/ ax¥ ay” 875 (x)8J 3(y)0K °(2)0K ") | 7,-%-0
. - o . o i 0 144
=3 6cfeu/ 1 Gfa :i8/6. L 9 — — .
STV ) O ) gy G ay BTO) |, et O BT

(7.2)

If we amputate the scalar propagators and go to the mass shells of two scalar particles g,>=¢,%= u? in Eq.
(7.2), the right-hand side of the equation vanishes. Let us define the primitively divergent vertices:
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= —A®(x - y) = =6%A(x - y),
6%Z
6J %(x)oK *(y)8K °(2) 7,=R-
6%2Z
6J %(x)6J 5(g)0K* (2)0K “(w)

and

< g [ty ata B, - B0 - ¥R - 2)CHE (5 9, 2),
o
7 <%0

=ig2f d“x’d“y'd“z'd“w’lup(x—x’)&,,o(y—y’)l(z _ ZI)A(w_wl)
X é(;}bocd(xl’yl;zlywl),

and similarly for C

abed
py
. U pv abcd
z]_'lmz_ 2p‘p2{ ¢
1°5e2%5 1

jd‘xd"yd“z ei(px+a1y+q23)é:bc(x; y,z) - Cﬁ”"(p;q,,qz)(Zﬂ)“é“(p+ql+q2),
CY(5;4,1,9,) =€”°Co( 19,1, 95),

"

Then we have from Eq. (7.2) and the subsequent discussion that
(Pp Pz;qpqz) + rfjbzfx(pp pzy
tices above are

lim Cu(p;qpqz)=—iCQu,
ay2=ag?=p2

— D)AM(G, +q,)C (b + D341, 9))
We shall now consider the limit p,, p,—~ 0 while @ =9, —¢, is kept finite. The low-energy forms of the ver-

pyp2—0

~[C (D131 P2 +9)A( P, +,)C2 (Dy3d5, D, +4,) + (= d, g, —q,) ]} =0.

(7.3)
ay2=ap2=2

$1.03—>0

hm Ff‘bxf)\(ﬁp pz; 7’) ~ _lG[(pl - pz))\guu+ (pz - 'V)“g,,)\'i' (T - pl)ugu )\]’
where G is defined previously and 7 +p, +p,=0

(7.4)
(7.5)
H
Um (b, £239,,95) = 667 (Ag, + BRLQ, ) + (6°°6°7 +6°6°) (A8, + B'Q,Q,). (7.6)
The factors C, A, and A’ require subtractions. We may renormalize the ¢ fields so that
lim A(PP)~ (P - u®)7t. (7.7)
p2->p2
Substituting Eqs. (7.4)~(7.7) in Eq. (7.3) and isolating the part antisymmetric in a and b, we get
GC=C?
or
G=C. (7.8)
Next looking at the part symmetric in @ and b,
we obtain
B=B'=0
and
A=-2G?, '=G3, (7.9)
’&?\ ze %0 2c
5b

FIG. 2. Diagrammatic representation of Eq. (7.11).

FIG. 3. Diagrammatic representation of Eq. (7.18).
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The above treatment is careless, since the vertices C,,C,, exhibit infrared divergence in the limit q.?
or ¢,2=p?. We must, therefore, determine the renormalization conditions A, C,, and C,, without going to
the mass shells of the scalar fields. For this purpose, we will return to Eq. (7.1). From Eq. (7.1) follows
the relation

i 9 6%2Z Lose O 5 fa . ]
— — = —iglw~ —_— x;16/05)W + (c+d, y-=2)|T =&=0-
a 8x* 8J (x)0K "(y)OK °(2) |7,-%=0 ’g[w ) wew) ¢ 0 /W +(e—dyy Tu 1 10)
In order to discuss this equation, it is necessary to define a new proper vertex R, We write
o _ -
bfe -1 fa . =3 4,174, 1pbac ' 2N8(x' - XAz —
eew K ()oK (@) G™(y, x;16/6F)W koo zf d*x'd*y'R*(y, ', 2")8(x' = x)Alz" —2)
+i8(y - 2)A(y — z)eb?°, (7.11)

Rabc q,p 7’)(271’)45([)‘*'4 +,',) = d4x d4y d“z Rabc‘(x,y’ Z)ei(pnqwrz), RaDC(p,q,r) =€""°R(p,q, T)
’

(see Fig. 2). The new vertex does not arise in the perturbative construction of the Green’s functions. It is,
however, relevant to our discussion of the renormalization of Eq. (7.2). The vertex R°*° has the superficial
degree of divergence equal to zero, and therefore, requires one subtraction. The value of this vertex at
the subtraction point is related to that of C‘Z,”C through Eq. (7.10). Let us again choose as subtraction point
the point where p?=¢?=7v2=—a?, p-q=q-r=7-p=3a%. The quantity R**°(¢,, p,q,) may be written in the
neighborhood of the subtraction point as

R™(q,, p,q,) = e"“c[R +(@2+a®r +@ 2 +a®)r+ (PP +at)r g+, (7.12)

where R requires a subtraction and 7,,7,,7, are finite.
We now transform Eq. (7.10) into the momentum space. It reads then

[PPS(PD)] (=ip")C,(1;9,,9,) =07 g, %) - A™Hg,?) +[R@,, p,9,)A71@,?) - R(@,, p,9,)A71(@,D)] . (7.13)
Adopting the field normalization conventions

(2280 | p2saz=0 =1, (1.14)

alli:?,,zA-l(q‘Z)~q‘z+a2_M2’ (7.15)

and defining C by
lim 2 cu(p;qpqz)’“-iQp c’ Qy =(q1"q2)u (7.16)

p2=q,2= g,%=-a

we have from Eq. (7.13)
C=1+R-M*(r,-7,), (7.17)
which is the required relation.
Now we turn to Eq. (7.2). We need again to define a new proper vertex. We write (see Fig. 3)

3 9 ow

€CfeW-1——-6Ke(z) Gfa(Z; x;lé/éj) 6Kﬂ(w) Mvs(y)

fu=keo

= —ige°fA(z —w)f diz'd*x'd*y'§(z - 2758 (2, x'; ¥ )A My = 1) (x' - x)
- igJ‘ dx'd*x"d*y'd*w'd*uR(z, x' ,w ") - w)3(x’ - x" )72 (x", u; y)AMy’ - y)8(u — x)
+ig€°°G(x — 2) f d*y'd*z'd*w' Mz - z")Aw-w')AL (y - y')C(y"; 2", w")
+igf R*(z, x', u)§(x' = 0)A(u - 2")Aw—-w" )AL (y - y’)é"’f"(y’; z',w')d*x'd*ud*y'd*z'd*w’

+gf d*w'd *x'd*y'SP° (z,w’, &', y")A(w'-w)§(x' - )AL (Y’ - y), (1.18)
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which defines the vertex $2**:
SPUG . by, D) RTICNG, +a, 4 by + D) = f dixdx'd yd 'SPy, ', x, ) ei(arsrayy spyxepyx’) (7.19)
The fact that S‘L"“‘ is superficially convergent is of importance in the ensuing discussion.
Now going to the momentum space, we rewrite Eq. (7.2) as
il p,28(p, ] P PEAC S (bys D23 91, 5) ++ 2 }
= Py AT @ )€€ 'S((p+ PN+ RW@,, Py + D2 42)]70 @145, P15 P,)

+ SN, + )1 +R@,, bry Dy +32)|C o Dys D1+ 1, 2) +1S5°%°(@ 1,55 Py, D)}

+py AN g He—d,q,—a,}, (7.20)

where the expression in the curly bracket on the left-hand side is identical to that on the left-hand side of

Eq. (7.3). Equation (7.20) is the generalization of Eq. (7.3) and it allows us to determine the values of the

vertices C%% and C%° at some subtraction points, in terms of that of the vertex I'®%. It is so, because
o u [TR2N ’

the subtraction constant for y, is known from Eq. (6.9); the subtraction constant for R is known in terms of
the value of C, at the subtraction point through Eq. (7.17); and S, is superficially convergent, so that the
right-hand side of the Eq. (7.20) contains the value we seek and no other unknowns.

APPENDIX A: DERIVATIONS OF EQS. (3.5) AND (3.9)

We recall the definition
i6/6F 1= T |
AL [i6/8d,]=exp| Trin(1-igt-. T o' )| - (A1)

In evaluating
Ag[i6/63, WS (x)a,Y(i6/6],]
it is convenient to make the following mapping:
6/63,~~£,, J,~8/6k,, (A2)

which is canonical. We see that
exp| Trin(1+i F-E“a 1 6 ex Trin(1+; {-E“a 1
EL 5% ) |5 P T gL g

- ag(;(x) —igfd*yd‘z§< b

)

2, c>(t“)"’6“(x — 2} <z

1
1+z}gt-§“i')“1/a2

8%
-0 ig tr t* [0 H (x, y; - i£)]
55;(3‘) -8 x Y = y=x 9 (A3)
which is Eq. (3.5).
As for Eq. (3.9), we begin by noting that
igD[A )t [0, H" (x, y; K)] -
. 32 . 32
= gt cad e K ; 4 cad de e _ig2paebscbd O rd g
B iy WG i E) || it o Wy K| g e i )| .
(A4)
Since
2 d . 2]
axuaxﬂH c(x: H A)= Gdc64(x‘ J’) +gtdeIAfl(x)5‘x_“;ch(x’ y;A )a (A5)

we can write the right-hand side of Eq. (A4) as
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ig2(testt®ef et eyl (x, y;A’)/ax“ ly= yA%(x) +ig t °**0°H" (x, y;K)/Bx“ay“ ly=x
32

=ig Trt“[au—aH(x y; A)+ uH(x v; K)gt- A“(x):l .

(A6)

We have used the Jacobi identity

tcadl def+taedtdc)‘ . tadft ecd .
Equation (A6) is precisely the right-hand side of Eq. (3.9).
APPENDIX B: GENERATING FUNCTIONAL OF PROPER VERTICES

In the usual manner, the generating functional I‘[ﬁp] may be obtained by a Legendre transformation from

z[3,).
We define
-B,(x)=062[F,]/53,(x) (B1)
and
r[ﬁu]=Z[ju]+fd"x T4x) - B, (). 52)

It follows that
J,(x)=061(B,]/0B,. (B3)

The expansion coefficients of I *u] in terms of B are the proper vertices. The proof may be found in
Jona-Lasinio.?” It is possible to construct l'{B ] perturbatwely by the functional integration technique.
First consider

expiZ[3“]=f[dA]exp{zS —zf dix A ,(x)- 3"(x)+Trln<1 —gK*-to L)}

a2
where S,[A,] is the gauge-dependent action
Sul&,1- [ d*x[::(x) - ;—a(auxuu»ﬂ .
We can perform the functional integration by the steepest-descent method. Let A’ﬁ be defined by
8S4[K8)/6K5 (x) =T, (x),
e., Kf‘ is the solution of the classical equation of motion in the presence of the external source, so that
K9=K%(x,J).

Now we may write, after DeWitt,2°

expiZ[J,]=expi {sa[A’g] - fd*x K9 (x) - 85,[A%]/6K7, (x)}

A A if A 1- A07_ 463[A] x) — A0 (x
xf[dA]AL[A“]explSa[Au] SalAf] fd Ty(x‘;—[A“() AS( )]}.

The tree approximation consists in approximating Z[J,] b
AMIBE j d%x 88 ,[K9)/6A % (x) - KO (x),

[B, (0] =-bz"[F,]/6F,(x) =K% (x).
Therefore, in the tree approximation we have

rue [B,]=S,[B,].
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The one-loop approximation consists in evaluating the functional integral by the steepest descent approxi-
mation. We then have

528 [ %] - . 1
Z[F 1=zt [F ]+5iTrin —elzud < —gt-A%aH —
[3,] [J,]+3 6K, oA, iTrin (1-gt-Af P

and
r{B,]~ I dx [ﬁu(x) °(x)]+3i Trin{6%S,[B,]/6B,6B,} —i Trin(1 - gt-B*% /9%

=S4[B,]+35iTrin{6°s,[B,]/6B,68,} -i Trin(1 - gt - B 04/5%).

APPENDIX C: WARD-TAKAHASHI IDENTITY FOR THE GENERATING FUNCTIONAL OF PROPER VERTICES

We begin by rewriting Eq. (3.8) as
D)i6/63)% [f; 9,8, 572(7) -Ji(x)}w—igfd4y trt®[o,H(x, y;16/063)|D4[i6/6F] 8%(x — y)W =0. (Cc1)
u

The last term on the left-hand side may be written as

W b .
w—z—(Bﬂgt" °[8%H®"(x, y;i6/63)/0x,09" |- ,W. (c2)

~igt "¢ [0 H(x, y;i6/0)],- (~ig)t *®
Noting that

(8% - ga”Ku E)PH® (x, y; K ) = 6°6%(x - y)
or

H(x,y;K)==06"Dp(x - y) - gt ™ f d*z09y D (y - 2)A5(2)H(x, y; &), (C3)
we can cast the second term of Eq. (C2) into

igt " (0% (x, y;0/05)/0 2,0 |, W = ~ (1)t 0" f d*20303 Dp(y - 2)8,H(x, y; &) Mi‘%) :
x=y v

Thus the last term on the left-hand side of Eq. (C1) can be written as

gztb“ct“"J‘ d*zalH*(x, y,zé/éj)gw(x Z2) —— e( )
xX=y

where
gb‘v(x" y) =guu64(x"y)+agaulslf(x“y) .
So finally, we obtain

9%y - — jabc OW _grga _ jpabec yb ¢
a 9, 87 %(%) + at —T_dJ)‘(x)a)‘a“ ) N S(XIW — it *°° J §(x) W/ 6J §(x)
+ 2tabc bde d4 U yycd s o SW
g™t z 9 H (x, y,zé/éj)guu(x_z)m -0.
v x=y
(c4)

Equation (C4) may be translated into an expression involving the generating functional of the proper ver-
tices. We recall that

W[ju]=exPiZ[ju] (B1)
and

_5,- 23], 5 _ oT[B,]

o3, () 8, (B3)
Thus
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%SZB“BT‘(X)—%{t“chﬁ(x)Bxa“Bf,( ) -2 Er[_Bld.,,tach( )GI"[B ]

8B4(x) 8BS5(x)
1
=at“"° Mab( )8 2P BS(x) +ig? l"bct"""’f d*zo!H(x, y; —16/6J)g Ax —z)B°Yz) =-G°.
WX -
(C5)
This equation is somewhat simplified if we define I'° by
- — 1 >
r°(B,]=T[B,]+ 3a f d*x[9"B (x)]?, (Cce)
which satisfies
oS
(o, 0% - e 53 | 2L Bul _ agy 1))

8BS(x)

If G*(x) were identically zero, then Eq. (C7) would imply that I"° ['B.u] is invariant under the local gauge
transformation

B,~B,+D,[B,]%

By an explicit computation of 82G®(x)/6B (y)6BS(z), we have verified that G*(x) cannot be identically zero,
however.

APPENDIX D: POWER COUNTING

Let N, ,, be the number of vertices of the form 8"®™, i.e., m-point vertices with n derivatives, and let
I and E be, respectively, the number of internal and external lines in a proper diagram. By L we denote
the number of loops in the diagram.

We have two topological relations:

E+2I=),mN,, , (D1)

nm

L=I+1-% N, . (D2)
nm

The superficial degree of divergence D of the diagram is given by

D=2nN, ,+4L-27I, (D3)

nm

where the propagator is assumed to have the asymptotic behavior (p?)~". Eliminating L and I in favor of E
by the use of Eqs. (D1) and (D2), we write Eq. (D3) as

D=E(m—-2)+4+), N, ,[n+(2 -7)m-4]. (D4)
For the gauge-invariant terms discussed in Sec. V, we have generally
n+m=2+2r, (D5)
We, therefore, have
D=E( -2)+4+(1-7) 23 N, ,im-2). (D6)
nm

The two statements in Sec. V, for which we referred the reader to this Appendix, can be justified on the
basis of Eq. (D6).
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The second paper in this series is devoted to the formulation of a renormalizable pertur-
bation theory of Higgs phenomena (spontaneously broken gauge theories). In Sec. II, we re-
formulate the renormalization prescription for massless Yang-Mills theories in terms of
gauge-invariant renormalization counterterms in the action. Section III gives a group-theo-
retic discussion of Higgs phenomena. We discuss the possibility that an asymmetric vacuum
is stable, and show how the symmetry of the physical vacuum determines the mass spectrum
of the gauge bosons. We show further that in a special gauge (U gauge), all unphysical fields
can be eliminated. Section IV discusses the quantization of a spontaneously broken gauge the-
ory in the R gauge, where, as we show in Sec. V, Green’s functions are made finite by the
renormalization counterterms of the symmetric theory (in which the gauge invariance is not
spontaneously broken). The R-gauge formulation makes use of redundant fields for the sake
of renormalizability. Section VI is a discussion of the low-energy limits of propagators in
the R-gauge formulation. In Sec. VII we show that the particles associated with redundant
fields peculiar to the R-gauge formulation are unphysical, i.e., they do not contribute to the
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sum over intermediate states.

I. INTRODUCTION

In this paper we give a renormalization method
and a proof of finiteness of renormalized Green’s
functions of spontaneously broken gauge theories.
For definiteness we consider a very simple model
in which SU(2) gauge bosons are coupled to a trip-
let of scalar mesons. There is an extra complica-

tion when chiral fermions are included in the mod-
el, as pointed out by Veltman,' and more recently
by Gross and Jackiw.? This difficulty can be cir-
cumvented in a realistic model of electromagnetic
and weak interactions. We shall not discuss this
problem further in this paper, but postpone the
discussion until we deal with the renormalizabil-
ity of a realistic theory in a sequel to this paper.



