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Hence, g 2 BQ q2

by virtue of

(B10)

From (2.50), we obtain
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W'e study the elastic scattering of a high-energy photon from a heavy nucleus, considered
to be a static Coulomb field due to the charge Ze. Exchange of an arbitrarily large number
of photons with the nucleus is taken into account, and the effect of this multiphoton exchange
is found to be very large, particularly for momentum transfers which are large compared
with the rest mass of the electron. In addition, an interesting theoretical problem in this con-
nection is formulated but unfortunately not solved.

I. INTRODUCTION

Three years ago, we studied in detail all two-
body elastic-scattering amplitudes in quantum
electrodynamics at high energies. ' ' Among these
processes, the one with the most direct experi-
mental interest is Delbruck scattering, ' or the
elastic scattering of a photon by a nucleus, con-
sidered to be a static Coulomb field. At the time
when we carried out our theoretical analysis, the
only relevant experimental data on Delbruck scat-
tering were those of Moffatt and Stringfellow' at an

energy of about 90 MeV, and a comparison of these
data with our theoretical results is given in III.
Recently, the experimental group F39 of DES' ob-
tained data on Delbruck scattering and photon split-
ting at energies of several BeV and momentum
transfer of a few MeV/c, although the data analysis
is as yet incomplete. Motivated by this new infor-
mation on copper, silver, gold, and uranium, we
give in this paper the basic theoretical formulas
for Delbruck scattering and some of the simple
consequences.

The lowest-order diagrams for Delbruck scat-
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tering' are of the sixth order, and hence the ma-
trix elements are of the order of Z'e', where as
usual Z is the atomic number of the target nucleus,
and e'/4ff = n= 1/137.04 is the fine-structure con-
stant. For these diagrams, two photons are ex-
changed with the nucleus. If, more generally, 2n
photons are exchanged with the nucleus, then the
matrix element is of the order of (Ze')'"e' for n

=1, 2, 3, . . . . Since for heavy nuclei Ze' is not
small, the effects of multiphoton exchange must
be taken into account. At high energies, the in-
clusion of multiphoton exchange does not compli-
cate much the basic formula, which was first given
in Ref. 1. Since the matrix elements from the
lowest-order diagrams have been analyzed in
great detail in III, we are here concerned with the

effects of multiphoton exchange, or in other words,
the effects of Coulomb correction.

In this paper we shall follow closely the develop-
ment in the later part of III. We emphasize that,
here as well as in III, no artificial nonzero photon
mass is ever introduced. The generalization to
include multiphoton exchange is, however, far from
being trivial. In fact, as discussed in Sec. 7,
there is an important problem that we do not know
how to solve.

The effect of multiphoton exchange is quite large
for heavy elements. For example, as seen in
Sec. 6, for a momentum transfer of several MeV/
c, the resulting reduction in differential cross
section can be more than a factor of 10 in the case
of uranium.

2. HIGH-ENERGY AMPLITUDES

Let ~ be the energy of the incident photon in the laboratory system; then, when v is much larger than
the electron mass m, the Delbruck amplitude is given asymptotically for fixed nonzero momentum transfer
a =2r, by'

m'"-' z' '(2 ) *fdi(, ((q,~,)*] '"'*((t),—,)'] ' "*s((„i),), (2.1)

where i and j are respectively the directions of polarization for the incident and scattered photons, and
8& is the photon impact factor given by""ij

ji", (r„q,) =6n dpdp' 5(1 —p —p') dx
6P P x(1 —x)r„r„-P r, 5,f[1 —SPP'(x ——'} ]

4r, 'P'x(1 —x) +m'

8()f' (1 — )Q, Qg —Q'5, g(1 —8ff'( ——,')'])
4@x(1—x) + m'

with

Q=-,'(q, +r, ) —pr, .
We are interested in the properties of K'a] as given by (2.1}.

(2.2)

(2.3)

3. FEYNMAN PARAMETERS

In order to make use of the methods and results of III, it is necessary to introduce Feynman parame-
ters. ' Since

[(q +r,}'] "' e[(q -r, )~] ' ' =(fjzn) 'sinh(]fzn)

1

dnsdne5(1 —n, —n, )[(q~ + r, ) n, + (qj —r, ) ns] '(n, /n, )'
0

(3.1)

the effects of multiphoton exchange are contained entirely in the factor

(n, /n, )
jx (sinh]fZn)/(ffZn), (3.2}

which approaches 1 as Z-0. Accordingly, by (3.1)-(3.5) of III, we can write down immediately that

,'t(2fj) 'e'Z-'(d(t( '(", (3.3)

5]j + 2 G$ r$ffr/ I rf (3.4)
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C, =G,(r)
1 1 1 1

=[(sinhwzn)/(wzo)] dp dp' dx dn, da, cos[Zo. In(a, /n, )]5(1—p —p' —o., —&w, )(p+ p') '
0 0 0 0 0

P (tw5+ &6)
{~[(p+P')o,~. +P'x(I —x)(~, + et, )]+(P+P')'(~, + n.))'

(P'n, P—~.)'[(~&+ o.)+(P+P')«(I —«)] '
~ ~ *&' —*»'&'

~
&" .» (& & &'», .»& & &*& —*»&')

and

4pp'

T[(P+P') o,g. + P'x(1 —x)(~, + ~.)]+(P+P')'( o, + g.)
[4PP'(c, + ~.)+(P+P')'l[(g, + ~.) +(P+P')«(1 —«)] '

&&I& l»' . . *(& — &(&&' . &»" . &+(&& &»''&(, .& (&&+&»'*(& —*»}- (3 5)

G, =G,(T)

1 1 1 1
= [(sinhwZo )/(wZa)] dP dP' dx dn, da, cos[Za In(g, /o. ,)]5(1 —P —P' —n, —n, )(P + P') '8PP'

0 0 0 0 0

P'(~, + g.)
{7[(P+P')ct,n. +P'«(1 —«)(o', + n. )]+(P+P')'( o+ g.))'

(P' g, Pc.)'—
&(, ~ .& ~ (&& &»' (& —*&&& &(&& &»', . *(& —*&(&&* . &&'*

&& (&& 0'&'&& . «.& (8 ~ &»'*(& —x»&'}

(3.6)

In (3.5) and (3.6), v =
~
t

~

/m' and t = -4r, '.
Equations (3.5) and (3.6) can be slightly simplified by the change of variables

g=P+P', z =P/(P+P'), and z' =a, /(o. , +o&,).
In terms of the matrix elements for perpendicular and parallel polarizations, the results are

(3.7)

~ ~
(D) 1 1 1 1/2 1

tn&
- ,'i(2w) —'—e'Z're[(sinhwZa)/(wZg)] dx dg dz dz' cos Zn ln]I 0 0 0 0 z'

4g 'z(l —z)
r[(1 —g)z'(1 —z') +gz ~x(1 —x)]+g

(1 —g)[4g '(1 —g)z(1 —z) +1]
[1 —g + gx(1 —x) ]{v[(1—g}'z' (1 —z ') + x(1 —x)g(1 —g)(z —2z z' + z') ] + g[1 —g + o'x(1 —x)])

1 z'
1 —8z(1 —z)x(1 —x) {r[(1—g)z'(1 —z') +gz'x(1 —x)] +g)'

(I —o )'(z —z ')'
vx(& —x&&&~&(& — &'*'(& —*'& *(& —*& (& -v&& '-2 ' ~ z'&& &&- (& &j&']

(3.8)

Numerical calculation on the basis of (3.8) is being carried out by members of F39 at DESY, especially
Willutzki.

Using a method similar to that in III, me apply Mellin transformation to study the behavior of G1 and 62
as given by (3.5) and (3.6), respectively:

P.„(g}= G„(~)T-'-'dr
0

(3.9)

for n=1, 2. This task is greatly facilitated by merely including in addition the factor (3.2), or rather its
real part, in numerous formulas given in IIL For example, from (3.18) and (3.19) of III, we get
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G, (g) = w cscwg[I'(g)]'[I'(2g)] '[(sinhwgn)/(wgn)]
1 1 1 1/2

dp dp' dn, da, ~(I —p —p')~(I —a, —a, )n, 'a, 'cos[gnin(n, /n, )]
0 0 0 0

x([1—2pp'(1 —2&) '][p"—w&(cscw&)(I —C)(n, n, )-"'(p'n, +p"n, )F(2 —g, 1 —g 2;z)]
-wK'(cscwI)(a, n, ) [1—4PP'(1+ 2') ']F(1—g, 1 —g; 2; z)j (3.10}

and

G, (g) = w cscwg[I'(I + g)] '[I'(2+ 2g)] '[(sinhwga)/(wgn}]

1 1 1 1/2

dP dP' dne da, 6(1 —P - P')5(1 —a, —n, )8PP'a, 'a, 'cos[Zaln(a, /n, )]
0 0 0 0

where

z = —(p'n, —pn, )'/(n, a, ) .

x [p' ——,
' (1 —g')w(( cscwg)(a, n, )

"".(p'a, —pa, )'F(2 —g, 1 —g; 3;z)], (3.11)

(3.12)

4. BEHAVIOR FOR cu »5» m

As in III, we want to study the behavior of the scattering amplitudes in the two extreme cases cu»m»b
and co»A»m. . Since the former case is completely understood, ' we concentrate on the latter one.

We need to find, for this purpose, the properties of G,(P) and G, (&) in the neighborhood of & =0. By
(3.26), (3.27), and (3.31) of III, we know that, for &=0,

G, (g) = g '(G, + G, + G,) +0(1)

and

Gg(K) =2& 'G3+0(I)

where G„G4, and G, are given by the integrals

(4.1)

(4.2)

1 1 1 1/2

G, =4[(sich wgn)/(wgn)] dp dp' dn, da, 6(1 —p —p')6(1 —a, a, )
0 0 0 0

x cos[ZnIn(n, /a, )]pp'(p'a, —pa, ) 'Iu[n, 'a, -'(p'a, + p"n, )],
(4.3)

1 1 1 1/2

G, = 4[(sinhwZa)/(wga)] dp dp' da, d a,5(1 —p —p') 6(1 —n, —a, )
0 0 0 0

xcos[ga1n(n, /a, )]pp'a, 'a, 'In[p w(p ae+ p'zn, )],

and

1 1 1 1/2

G, =-2[(sinhwga)/(wZa)] dP dP' da, dn, 5(1 —P —P')5(1 —a, —a, )
0 0 0 0

x cos[galn(n, /n, )] a, 'a, 'In[P '(P'n, +P"a,)].

(4 4)

(4.5)

We shall show that these integrals can all be carried out explicitly and the results are

G~ = 2[1 —Zn Img'(I —iga)],
G, =(3ga)-'[(Za)-' —2w(1+4Z'a'} each(2wga)],

and

G, =-(Za) '[(Za) ' —2w csch(2wZa)].

(4 6)

(4 7)

(4 8)
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(4.9)

In (4.6), P' is the second derivative of the logarithm of the I' function, and is sometimes called the tri-
gamma function. By (4.6)-(4.8), we get

3)I~~ ~- -i(2w) 'e Zan. [-—', (1 —3Z a )(Za) '+ —', (4w)(1 —2Z a') csch(2wZa) —2Z a Imp'(I —iZa)]

and

3|1~~~~~-i(2w) e Z&un [-—', (1+3Z a )/(Za)+ —', (4w)(1 —2Z a ) csch(2wZa)+2Z a Imp'(I —iZa)] (4.10)

for (d»h»m.
We give below a derivation of (4.6)-(4.8) from (4.3)-(4.5), but this derivation may not be the best. Let

us consider G, and G, first; as a first step, we rewrite (4.4) and (4.5) in the form

and

1

G4=-2(wZa) 'Re dP da, ([a,/(a, —1)]' "—1)P(1—P)a, 'ln(P '[P'+(1 —2P)a, ])
0 C

1

G, =(wZa) 'Re dP da{[ a, /( a, —I)]'w" —1)a, 'ln(P '[P +(1 —2P)a, ]).
0 C

(4.11)

(4.12)

(4.13)

and

In (4.11) and (4.12), the contour C is around the branch cut from 0 to 1, as shown in Fig. 1. In both cases,
this contour C of integration can be shifted so that it wraps around the branch cut due to the logarithmic
factor ln[p'+(1 —2p)a, ]. This logarithmic branch cut is from -~ to -p'/(1 —2p) if p& —,

' and is from p'/
(2P —1) to +~ if P& —,'. Therefore,

1 -8 /(1-28)
G, =-2(wZa) 'Re(2wi) dp da, ([a,/(a, —1)]' —I}p(1 —p)a, '

0 f oo

-8 /(1-28)
G, = -2(wZa) 'Re(2wi) dp da, ([a,/(a, —1)]i™-i]a, ',

0 f oo

(4.14)

where the —sign in the range of integration for n, applies for P& —,
' and the + sign for P & —,'. These formulas

can be slightly simplified with the change of variable

a' = a,/(a, —1),
and the results are

1 1

G, =2(wZa) 'Re(2wi) dP da' a' '(1 —a') 'P(1 —P)(a"w" —1)
0 8 /(1- 8)

and

1 1

G, =-(wZa) 'Re(2') dp da'a' '(1 —a') '(a"w" —1).
0 82/(1- 8) 2

(4.15)

(4.16)

(4.17)

The remainder of the calculation for these two cases is completely straightforward: We merely integrate
by parts with respect to p and carry out the necessary elementary integrals. Equations (4.7) and (4.8) re-
sult.

(X, plane C'
X plane

p 0

FIG. 1. The contour C of integration around the branch
cut from 0 to 1.

FIG. 2. The contour C' of integration for the inverse
Mellin transform of the step function.
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We choose not to apply this procedure directly to G„because the structure of branch cuts in the a5 plane

is somewhat more complicated. Instead we find it expedient to write, with a change of variable,

G3 =G31+Gs2 ~

where

(4.18)

and

1 i n5/(1-a5) j
G»=-4[(sinhwZa}/(wZa}]Re da, [a,/(1 —a, )]'z [a,(1 —a,)]"' dx(l —x ')ln(1+x') (4.19)

0 0

1 t n5/(1 —n5) j
G» =-4[(sinhwZa)/(wZa}]Re da, [a,/(1 —a,)]'z"(1—2a, ) dxx 'ln(1+x').

0 0

The x integration in (4.19) is eIementary, and thus

G» ——-4[((1)—Re g(1 —iZ a) ] .

(4.20)

(4.21)

The evaluation of G» is more complicated. One way is to use the integral representation of the step
function

0 if x&1
(-2wi) -' x" d~/~ =

c' 1 if x&1

where the contour C' of integration is shown in Fig. 2. Thus

(4.22)

1 dO

G» =-4[(sinhwZa}/(wZa)]Re

dt's

' da, [a,/(1 —a, )]'z~(1 —2a, ) dxx 'ln(1+x')[x(1 —a,)"'a, " ]~.
c' 0 0

In this form, all the integrations can be evaluated, and we get

G» = 2+4[/(1) —Re p(1 —iZa)] —2Za Im g'(I iZa) —.

Equation (4.6) follows from (4.20), (4.21), and (4.24}.

(4.23)

(4.24)

5. SERIES EXPANSION IN Zn

(5.1)
n=l

we get

As an indication of the importance of multiphoton exchange, we expand the right-hand sides of (4.9) and

(4.10) into power series in Za. Since"

0(I+z) = r2+(--1)"((n)z" ',

Im|!I'(1 —iZa) =2+ (-1)" 'n&(2n+1)(Za)'" '.
n=l

Here g is the Hiemann g function and y is Euler's constant. Furthermore

(5 2)

cschz = —Q 2(2 " ' —I)Bw„z " '/(2n)!,
n=O

(5.3)

where B,„are the Bernoulli numbers. Because of the appearance of g in (5.2}, it is desirable to use the
relation"

B~„=(-1)"+(2w) "2(2n)!f(2n)

to get the expansion

(5 4)

csch(2wZa) = (wZa) Q (-1)"2(2 " ' —1)f(2n)(Za)'".
n=O

Write

5!I', '= g 3!I,„

(5.5)

(5.6)
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and

%I"=&%„,
n=o

where %~„and%,~„are both proportional to Z'a'(Zo}'". Then it follows from (4.9) and (4.10}that, for

v»h»m,

(5.'7)

and

5R„',-i(-2w} 'e'Z'(un. '(-,' w' —1},

%,~, --,' i(2w) 'e'Z'(oiL '(-', w'+5),

%~„-~ i(2w) e Z &uA (-I)"(Za)'"f4(2'"'~ —1)&(2n+2) —6ng(2n+I) +8(2 " ' —1)g(2n)],

(5 8)

(5.9)

(5.10)

%It„- ~ i(2m) e Z &uh (-I)"(Zo)'"[4(2'"' —1)g(2n+2)+6n&(2n+ I) +8(2 " ' —1)g(2n)],

for n~ 1. Equations (5.8) and (5.9) agree with (4.4) and (4.5) of III.

(5.11}

6. SOME NUMERICAL RESULTS

To show the importance of multiphoton exchange,
we plot in Fig. 3 the ratio %, '/% „and %I~ '/% ~+

as given by (4.9), (4.10), (5.8}, and (5.9) for u»A
»m. It is seen that the matrix elements are de-
creased in each case. In particular, for uranium

perpendicular polarization. Therefore, the polar-
ization P of the scattered beam, as given by

P = (i %"'(' —
[
%'"i')/(i %'"i' + [

%'"i') (6 2)

is increased. In Fig. 4, we show this polarization
for cu»A»m as a function of Z. In particular,
for uranium

%',"/% „=O. 1693 p= 86.96%, (6.3)

and

/% po 0,2969

(6.1)

Furthermore, the ratio is always smaller for

compared with P=62.32% for hydrogen [see Eq.
(4.6) of III].

The effect is more drastic for differential cross
sections. In Fig. 5 we show the reduction of dif-

100-

90-

~ 0a

0.V

~ 0.6

0.5

~ 0.I

~
0.3

80

l~ 70-

CR

~~ 60-

CL

50-

I

= C0-

30-

20-

0.1- 10-

10 [ 20
/

/30 LO
/

60 60 70
/ /Oq OO~

C Al Fe Cu Ag W AuPb U

10/ 20
/

f30 LO f60 60 70 [ /Oq 00/

C Al Fe Cu Ag W AuPb U

FIG. 3. Reduction of the matrix elements for Delbruck
scattering due to multiphoton exchange. Note that neither
matrix element changes sign.

FIG. 4. Polarization of scattered photon at high energies
when the incident photon is unpolarized and the momentum
transfer is much larger than mc.
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~ Q6

~ 0.5

m~ 0.4
I

~ 0.3

Q2

0.1

~SOI fO /lao tO 150 6O 7OI leal 9OI

C Al Fe Cu Ag W Au Pb U

FIG. 5. Reduction of the differential cross section for
Delbriick scattering due to multiphoton exchange.

correction due to nucleus size, different lead iso-
topes, for example, give the same Delbruck cross
section, although the levels of the nucleus can be
quite different.

A possible practical application of Delbruck
scattering is to produce a beam of linearly polar-
ized photons. The value given by (6.3) seems
quite encouraging for this purpose.

We conclude with a few more theoretical re-
marks.

(i) The series expansion given in Sec. 5 con-
verges if and only if

Zo &-, . (7.2)

In particular, this means that for heavy elements
the convergence of the perturbation expansion in

Zo. for Delbruck scattering is non-uniform. Thus
Delbruck scattering at a momentum transfer of a
few MeV/c provides an excellent way of testing
perturbation calculations of very high orders. Just
how high the order is must be determined by nu-
merical calculation from (3.8).

(ii) Strictly speaking, the condition &u» a»m
for (4.9), (4.10}, and many other equations is not
precise enough. These results are valid when &u/a

is very large and ~/m is also large. That is,
(4.9) for example should be written as

ferential cross sections given by

((Slt' 'f'+(3R' '/')/((% J'+[% /') (6.4)
Iim lim ~',"/[-i(2w) 'e'Z(o~-']
Q~oo Q)~oo

7. DISCUSSION

We have shown that the effect of multiphoton ex-
change is quite large for Delbruck scattering. In
order to use either the simple results (4.9) and
(4.10}for &o»b, »m or the more complete (3.8)
for the purpose of comparison with experiments,
the following points must be kept in mind.

(i) The size of the nucleus has not been taken
into account. Theoretically, it is not difficult to
include this effect" but the resulting formula, s are
more complicated to evaluate numerically.

(ii) The matrix elements discussed here refer
only to elastic scattering. For example, if the
target is lead, we have studied the process

y+ Pb- y+ Pb. (7.1)

In particular, in (7.1) the lead nucleus remains in
its ground state. Experimentally, it is rather dif-
ficult to ascertain that the nucleus is neither ex-
cited nor broken up when the momentum transfer
is more than a few MeV/c. One possibility, as
suggested by Ting, '4 is to use different isotopes
of the nucleus as the target. With possibly a small

for (d»b, »m. For uranium, this ratio is 0.07696,
i.e. , a reduction by a factor of 13.

=-—,'(1 —3Z'a2)(Zn) '

3 (4w)(1 —2Z'a') csch(2vZa}

2z*n'-Imp'(I iza).-(7.3}

(iii) There is a most interesting unsolved theo-
retical problem. Since the asymptotic expressions
(4.9) and (4.10) are analytic at Za =0, we ask
whether this is also the case for the next order
terms, i.e., terms down by a factor 6 ' withpossi-
bly additional logarithmic factors. In the Appendix
we study these terms assuming that ge is fixed
and positive. A comparison with the results of III
then shows that these terms are different depend-
ing on whether Zo. is zero or positive. This means
that we do not know what the correction terms to
(4.9) and (4.10) are. What is needed is the next
term in the asymptotic expansion of (3.8) for large
b, but uniform in Za. Even though we are most
anxious to get this term, we are so far unable to
make any progress because Mellin transformation
cannot be used for this purpose.
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APPEND 1X

In this Appendix, we study briefly one of the leading correction terms to (4.9) and (4.10), assuming that
Za is of the order of unity. For this purpose, we need to find the behavior of G, (&) and G,(I') for & in the
neighborhood of -1.

Let

g =/+1,

then by (Dl), (D2), (Cl), and (C2) of III, we have

G,(r) = vcs-cz([r(-I+ g)]'[r(-2+2$)] '[(sinhwZa)/(vZn)]H, (])
and

G.(I) =-zcscv&[r(&)1'[r (2&)]-'[(sinhvzn)/(wZn)]H ((),
where

(Al)

(A2)

(A3)

1 1 1 1/2

H, (t) = dp dp' da, da, 5(1 —p —8')6(1 —a, —n, ) Re(n, /n, )' a, "'n, "'
0 0 0 0

&& ([1+288'(I —2$) '][p ""(n,n, )' '»»csc»»](1 —$)(2 —g)(p'n, +8"n,)F(3 —(, 2 —t;2;z)]

and

+&"'v&(' &)'asa-41+488'(I 2h) ']-&(2 —
& 2- &. 2;z)}

1 1 1 1/2
dP' «. dn, (5I- 8- 8) (5l- n-a)Re(n/n)'"8pp a -»a -»

0 0 0 0

(A4)

~[p-""--,'r(1+$)r(3 $)(p', p, ) (p a +p n)»(F~ 2 —hi3iz)] ~ (A5)

In (A4), z is given by (3.12); in (A5),

(A7)

where

1 1 1/2

H»($) = dP dP' da'8 da, 5(1 —P —P')6(1 —a, —a, ) Re(a, /n )'
0 0 0 0

z = (P'as —8ne)'/(8'n. + 8"n, ) . (A6)

In the previous case of III where the factor Re(a, /n, )'z is absent, H, ((), for example, is of the order of
( ' for small $: one power comes from p=0 and the other power from n, = p'=0. With this addition& fac-
«»e(ns/a~), the H, (() of (A5) is instead of the order of $

' at most. This is the basic reason for the
complication discussed at the end of Sec. V.

We shall study only the H, (g) of (A5). By (C.8)-(C.11) of III, we have

H. (&)-H.,(&) ~..(&),

and

&888', . [P —(P' .—8 .) (8 .+P ) ) (A8)

1 1 1 1/2

Hz~(t) = dP dP' da8 dn5 5(1 —P —P')5(1 —ns —a6) Re(a6/n )» "8PP'(P ac+8'zn )
+»

0 0 0 0

xf-1+[1+(p'a, —pae) (p as+ p"a,)]in[a, ae (p n, + p' n,)]j. (A9)

We need to obtain terms of the order of g ', 1, and g for H»($), and the term of the order of 1 for H»(().
In particular, we can just set t' =0 on the right-hand side of (A9).
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%e shall not calculate all these terms; instead, we shall get only the leading term. Hence it is sufficient
to consider H»($). Unlike the case previously treated in III, the two terms on the right-hand side of (AB)

are separately meaningful. In fact, the term P
"' gives no contribution because, for Ze c0,

1

dn, n, 'n, '(n, /a, )" =0.
0

Therefore, Hm, (F) does not contain any term of order $ ', and we concentrate on the term of order 1:
1 1 1 1/2

H«~($) H«)(0) = — dP dP' da, da, 5(1 —P —P')5(1 —a, —n, ) Re(n, /n, )'w"
0 0 0 0

XBPP™«a()(P n«Pn()) (P ns+P n«)

If the contour C of Fig. 1 is again used, we get

1

«„(O)=4csch( Z ) «))))(( — ) )e)f««, ((,/(, —()]' —(], '((ll —,)'[))' ~ (( —2()),]-' —))-*]
0 C

1
=4csch(wza)2w dPP(1 —P}lm[P/(1 —P)]" "[(1—2P) ' —P '+iZaP '(1 —2P) ']

0

1
=Bw csch(wZa) dP{-[P/(1 —P)1""-'+-,'(s/sP)(I —P)'(1 2P) —'[P/(I —P')1"")

0

(A10)

(All)

= Bw' csch(wZa} csch(2wZa) .
In particular, it is interesting to note that

H„(0) =4(za) '+O(1) as Za-0.
Accordingly, by (A2), for ( near —1

G, (g) =-16w(Za) 'csch(2wza)()+I) '+O(()+I) ') .
When (A14) is combined with (4.2) and (4.6), we get

G, (v) =4[1-Za Imp'(I —iZa)] —16w(Za) 'csch(2wza)z '1m+0(T ')

for large 7 with fixed Za 40. Numerically, for uranium, (A15) is approximately

G,(r) —2.493 —41.97m 'Inr +O(v. ') .

(A12)

(A13)

(A14)

(A15)

(A16)

Thus, in this case, the second term gives a contribution of 26.1/p 13,2/p 8,1% and 4.0/p, respectively,
for 6 = 10, 15, 20, and 30 MeV/c

We are now in a position to state more explicitly the unsolved problem of (iii) near the end of Sec. 7.
Define, by (4.1), (4.2), and (4.6)-(4.6),

G,(lnT, Za) =7{G,(r) —(Za) '[--', (1 —3Z'n')(Za) '

and

+ —', (4w)(1 —2Z'a') csch(2wZa) —2Z'a' Imp'(I —iza)])

G, (inr, Zn) =r{G,(~) —4[1 —Za Imp'(I —izn)]j .

(A17)

(A16)

What are the behaviors of G,(x, y) and G,(x, y) as x- ~? In particular, by (A13), what are the behaviors of
G,(x, y) and G,(x, y) for fixed xy as x-~?
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A completely covariant field theory is developed which includes both stable and unstable
particle fields. Exact single-particle propagators for both the unstable and stable cases
are derived for arbitrary spin in terms of matrix elements of the basic interaction. The
free-particle approximation to these propagators does not contain the unphysical terms
which are usually present in the propagators derived in the interaction picture. The rela-
tionship to the Lehmann spectral representation is established and general equations for the
various renormalization constants are given. Based upon general considerations it is shown
that in the limit of high momentum transfer an extra factor t 2 occurs in the cross section
for 2-particle-to-2-particle scattering, more in line with experimental observations.

I. INTRODUCTION

In a previous paper, ' in an investigation of the
Lee model, the authors showed that a V-particle
state is well defined even though no stable V-par-
ticle state exists as an in- or out-state. This
state, which can be simply described as

Iv(p, t)& =e-' 'Ip&,

where H is the exact Hamiltonian and ~p) is the re-
normalized "mathematical" V-particle state, is
shown to be the scattered-wave part of the exact
N, 8 scattering solution thereby relating the un-
stable state to the production process and, there-
fore, to the stable in-states of the model. In the
large-time limit, corresponding to an out-state
for the stable ease,

~ V(p, t)), „approaches the
exact V-particle eigenstate of H. In the unstable
case, for large mean life I' and 1"t«j.,
lim~(p(V(p, t))( -e '+O(t ),
g~ oo

lim ~(k, p -k~V(p, t})~'- (1 -e ')+O(t "'),dk
2(d

(2)

where ~k, p —k) is the N, 8 in-state, precisely what
one expects for the time dependence for an un-
stable state and its decay products. Thus, for the
Lee model there appears to be no difficulty in ex-
tending the usual field-theoretical approach to in-

elude a discussion of "'asymptotic" states, rather
than just in- or out-states, thereby including the
possibility for a description of an unstable particle
within the framework of the theory.

In this paper the authors extend the analysis used
on the Lee model to a general relativistically in-
variant fie1d theory that includes stable as well as
unstable particles. Covariant Heisenberg field op-
erators are defined which create single-particle
states with the properties of the V-particle state
given in Eqs. (l) and (2). Expressions are derived,
in terms of the basic matrix elements of the inter-
action, for exact propagators for particles of ar-
bitrary spin for both the stable and unstable cases.
Since the calculations are carried out in the
Heisenberg representation rather than the inter-
action representation, no unphysical contact terms
arise in these expressions. Along the way expres-
sions are also obtained for the various renormal-
ization constants.

A sample calculation of the S matrix for the pro-
cess 2 particles in and 2 particles out is done as
an illustration. In the limit of high momentum
transfer, for both stable- and unstable-particle
exchange, extra factors of the momentum transfer
appear which depress the cross section over the
usual Born-approximation results.

The approach presented differs from that of
other authors" who describe a field theory of un-


