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Adopting the point of view that the mass of observed particles is dynamical in origin, the
effect of spontaneous breakdown of dilatation invariance is investigated. Neither extra fields
nor anomalous dimensions are introduced from the outset so that the Lagrangians in our
formalism are strictly invariant against dilatation transformation. The Bethe-Salpeter equa-
tion is employed throughout in order to demonstrate that, in the pair approximation, the ap-
pearance of massive fields does not contradict the formal invariance of the theory. The re-
sult is interpreted in terms of the dimensional transformation previously introduced by the
authors. It is shown that the dilatation transformation for the Heisenberg operators turns
into the dimensional transformation for the massive asymptotic fields and the inhomogeneous
dilatation transformation for the Goldstone boson, and that the very appearance of the in-
homogeneous term cancels the extra dimension brought in by the mass. A Goldberger-Trei-
man-like re1,ation is derived. Finally, it is pointed out that the composite nature of the Gold-
stone boson in one model (Sec. IQ seems to be the distinctive feature leading to a nontrivial
scattering matrix.

I. INTRODUCTION (olylo}~o

It is an attractive speculation that the apparent
finite mass of observed particles may be due to
the spontaneous breakdown of the dilatation invari-
ance, and the dilaton which emerges as the Gold-
stone boson may be identified with the graviton.
The objectionable aspects of this conjecture may
be (1) the lack of satisfactory theory of the gravi-
ton from the quantum-field-theoretical viewpoint,
(2) the apparent discrepancy of spin between gravi-
ton and the Goldstone particle, ' and (3) the difficul-
ty in accounting for the nonzero mass within the
scheme of dilatation invariance. It is not our pur-
pose to propose a solution of these basic problems,
but rather to make a modest attempt at clarifying
the third problem, the least fundamental one of all.

It has been suggested' from a purely kinematical
viewpoint that the tracelessness of the energy-mo-
mentum tensor does not necessarily contradict the
nonvanishing mass of material particles if the
massless Goldstone particle is introduced. We
shall take particular models and confirm the above
point by an explicit dynamical calculation. ' Sec-
tion II, which will be devoted to the A. Q4 theory, is
divided into six subsections. In the first two sub-
sections, we define the model and consider the
spontaneous breakdown of the dilatation invariance.
In discussing the breakdown of dilatation symme-
try, it is not appropriate to consider

since this condition implies the breakdown of the
dilatation symmetry as well as that of the symme-
try under

which unnecessarily complicates the issue. In or-
der to focus our attention to the violation of the
dilatation symmetry, we seek a solution under the
condition that the vacuum expectation value of Q',
with some numerical factor, yields the nonvanish-
ing mass of the asymptotic field. The following
two subsections are devoted to the explicit dynami-
cal calculation to exhibit the massive asymptotic
field and the Goldstone boson. For this purpose,
the Bethe-Salpeter technique with the pair approxi-
mation is employed. 4 The energy-momentum ten-
sor is rewritten in terms of the asymptotic field
and the Goldstone boson; thereby it is seen explic-
itly that the tracelessness of the energy-momen-
tum tensor, namely, the dilatation invariance, is
maintained in spite of the appearance of the non-
vanishing mass. It is pointed out that the dilata-
tion transformation of the Heisenberg fields now
turns into the dimensional transformation which
was introduced by us in a separate paper. ' In ac-
tual calculations, the diverging quantities will in-
evitably appear. The usual cutoff procedure is
evidently irrelevant to the consideration of the
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dilatation invariance. Our remedy for this diffi-
culty is that taking advantage of the fact that the
coupling constant X appears with the logarithmic
divergence, we put X to zero, as the cutoff mo-
mentum approaches infinity in such a manner that
the net effect stays finite. It should be pointed out
in this connection that the coupling constant of the
asymptotic field and the Goldstone particle is in-
dependent of the value of the constant A. due to the
compositeness of the Goldstone particle. Hence,
even at the limit A. -O, the interaction does not
disappear.

It will be shown in Sec. IIE that our solution is
self-consistent so that the Goldstone commutator
of the Heisenberg operators can be reproduced at
the level of the asymptotic fields. The final sub-
section consists of a few remarks on our model
considered in this section.

Another model~' will be discussed briefly in
Sec. IG. This model is of an essentially different
type from the previous one in that the Goldstone
particle is not the composite but the asymptotic
field associated with the Heisenberg scalar field
ass@.med at the outset. The pattern of the argu-
ment is similar to that given in the preceding sec-
tion. Again the appearance of the nonvanishing
mass of the asymptotic field induces the spontane-
ous violation of the dilatation invariance. Never-
theless, the trace of the energy-momentum tensor
stays zero throughout, and the dilatation transfor-
mation becomes the dimensional transformation.
However, it is pointed out that in this model, the
renormalized coupling constant between asymptot-
ic fields vanishes when the bare coupling constant
tends to zero.

II. MODEL I: SELF-INTERACTING MASSLESS
SCALAR FIELD

A. Energy-Momentum Tensor and Dilatation

Transformation

We consider a self-interacting scalar field char-
acterized by the dilatation-invariant Lagrangian

prescription given in I, ' we define

e„„=T„',=T„„—,'—( 5„„-s„s,)y'.
This tensor satisfies the conditions

(2.6)

(2.7)

(2.8)

The generator of the dilatation transformation

D d (T
p ep v +v (2.9)

is conserved on account of (2.8), i.e. ,

5D

(x) x x.

It is easy to prove that

[y(x), D] = f(x„e„+1)y(x).

(2.10)

(2.11)

B. Spontaneous Breakdown of Dilatation Invariance
and the Goldstone Commutator

We shall look for the solution of Eq. (2.2) under
the condition that the asymptotic field has a non-
vanishing mass m, i.e.,

(O —m'}y'"(x}=O,

where the mass m is determined by

m'= sr&0 ly'(x)lo&.

(2.12}

(2.18)

It is this mass that causes the spontaneous break-
down of the dilatation invariance, as is seen be-
l.ow. We first calculate

&ol[~y(x)y(y), D]lo&

2+x~ +y„Ok@x Qy 0 .8 8

(2.14)

The quantity appearing on the right-hand side is
highly ambiguous at y„-x„. However, the dimen-
sional relation

Z = .' s „y(x) s„-y-(x) ——,
' ~y'(x),

from which the field equation follows:

Oy(x) = ~y'(x) .

(2.1)

(2.2)

2+ x„+y„&0l~~(x)4 (y) lo&"ax„"ey„

=m (0 leap(x)P(y) lo&

(2.15)
The canonical energy-momentum tensor

T„,= -s„4a„4 '
5+„,(s „4e,4+ ,' 4&4)—

obeys

B„T„v=O,
1

(2.3)

(2.4)

(2.5)

enables us to cast (2.14) into the form

&01[ ~y'(x), D]lo& = f m
s

(olney'(x}lo&

from which it follows that

Dlo&~o

(2.16)

(2.17)
Following Callan, Coleman, and Jackiw' or the if m wO.
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Further information is provided by the spectral
representation. Following Goldstone et a/. ,' we

put

( *-n)')x,(» y)(, -~')
= »»"'(» —y}& 014'(x)

I q&+ & o
I
T (&(»)&(y)) I q&,

&o I[x@'(»),e„.(y}]Io&

dK' Pi K ~~p~+P2 K ~pB& 6 X Py K

(2.18)

with

z(») = x y'(«) —m'4 («) .

(2.25)

(2.26)

p3(((') =0, z'p, (((') =0. (2.19)

The divergenceless and traceless conditions (2.7)
and (2.8) restrict the spectral functions to

We shall be content with the pair approximation
which regards the contribution of the last term
negligible. On introducing the ir. ternal wave func-
tion by

Hence, we may put

P0(K )=3 C5(K ).
Consequently,

(2.20)

i q(x+y) /2Xa(»3 y (az} )' (2q )3g0 e Xa(z) 3

with

2=X —gy

(2.27)

(2.28}

&0l[)3$'(»), D]lo) = c, (2.22)

&ol[xp'(«), e„„(y)]lo&=-,' c()„e„D(«-y), (2.21)

which implies the existence of a massless boson,
as long as c 0. Multiplying by y„and integrating
over dc„(y), we obtain from (2.21)

Eq. (2.25) becomes

x,(z) =x',"(z)+xQ(z;q)X,(o),
where

(a.as)

Q(e;q)=3(f d'30. (-.'* —3)d. (-,'* ~ 3)e'" (3.30)

and comparison of Eqs. (2.22) and (2.16} leads to
the immediate identification

and

X',"(z)= (az)'"(aq, )'"&Ol T(y'"(-.'z)(t '"(--.'z))l q).

c =I m, &0lxy'(«) Io&. (2.23)
The causal function L,,(») satisfies

(2.31)

This quantity does not vanish when m w0. We shall
refer to (2.22) as the Goldstone commutator.

The quantity c is divergent if the right-hand side
of (2.23) is calculated explicitly. In the discussion
of the dilatation invariance, the cutoff procedure
cannot be employed for the obvious reason. This
difficulty can be avoided however by adopting the
prescription that the coupling constant A, is to be
put equal to zero as the cutoff momentum goes to
infinity in such a manner that the total effect stays
finite. This is the reason why the combination
Xp'(») was considered in (2.14). We shall come
back to this point later.

C. The Bethe-Salpeter Equation and the
Goldstone Boson

To see explicitly the intimate connection be-
tween the nonvanishing mass m and the appear-
ance of the Goldstone boson designated by B'"(«),
we shall set up the Bethe-Salpeter (B-S) equation
for the two-body state denoted by Iq).' The B-S
wave function

0 (0) x~(z 3 q) (0)X,(z)=X0 (z}+1 Xq(~) X, (0),

where

(2.33)

()(4'}=0(0;4)=3(f4'34),(-3)0,(3}e"'. (3.34)

On the other hand, if I q) is the bound state de-
noted by I B,&, the inhomogeneous term vanishes
and the B-S equation reads

x'. (z) = xQ(z'q)x'. (o) .
By putting z equal to zero, we obtain

[1—X(I)(q0)]xz(0) =0.

Since we have (Appendix A)

(2.35}

(2.36)

(O-m }A,(» «)=5("(» «). (2.32)

The inhomogeneous term x(,')(z) is present if
I q&

is the two-single-particle state ls, q), say. Hence,
the B-S wave function becomes

x,(», y) -=&ol r(y(»)4(y))l q&

satisfies

(2.24)
I -xQ(0) =0, (2.37)

the bound state has no mass. Thus, we see ex-
plicitly that the Goldstone particle emerges.
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D. The Generator of the Dilatation Transformation

OB'"(x) =0.
For this purpose, we employ the formulas

1 1
(0I &„%(x)&.0(x)lq)=(2 )3/2 (2q ) /2

(2.38)

Our next task is to investigate how the generator
(2.9) is expressed in terms of the asymptotic field
Q'"(x) and the Goldstone particle Bf"(x) obeying

1 1
(0l4 (x}ay(x) l q) =

8 8x lim ——,'q'+ x,(~),
g ~0 BZ)), BZ)

(2.40)

and rewrite the energy-momentum tensor (2.6).
If we introduce

8x lim --,q„q„— X,(x)
z~ 8

(2.39)

Q„.(q) =- hm Q(x;q),Bz„Bzp

the tensor (2.6) becomes

(2.41)

(Ol8„„(x)ls,q)=(0l8„'",(x)ls, q)+( „, , „/, e'"(-—,'m')5„„X,' (0)

where

(0)
(2ff)3/2 (2q )f/2 )(n( ) 1 ffQ( 2}Xa ( ) a (2.42)

and

8in (x) ff yfne &t)fn+ f 5 (ff 4)inc 4 fn+~2yfnyfn) f (P5 S e )(~in)2 (2.43}

f„.(q)=XQ„.(q)+, Xq„q, Q(q2) —5„.[ f, Xq'Q(q2)+-,' XQ„(q)].
The form of t„„(q}can be simplified if we observe the identity following from (2.44):

t»(q) =0.
Since we want to preserve Lorentz invariance, e„„must be divergenceless, i.e.,

q„t„„(q)= -'m'q„[1 —f&Q(q')] .

(2.44)

(2.45)

(2.46)

This condition, which has nothing to do with scale invariance, removes the ambiguity coming from the sin-
gular nature of Q. The only tensor satisfying (2.45) and (2.46) is given by

,Q(,)
=,' 5„„--'m (5„„q„q„q-). (2.47)

Substituting (2.47) into (2.42) and using (2.31), we arrive at

&ole„„(*)ls,s)=&ole'„"„(x)ls,s)--,' '(a„. a, a„—&olio"(x)]*la, s).1
(2.46)

The energy-momentum tensor expressed in terms of (3))f"(x) is nothhfg but Of",(x) introduced in I in connec-
tion with the dimensional transformation, namely,

e';„(*)=-a,e'"s„e'"~ so„„(a,e'"s,e'"a 'Ose' ) ——,'(()a„„—s,a„)(es)'- —,
' as'(s„.—s„a„—)(Os)';

(2.49}as was shown in I, the generator

8'" =Jt 4&2 0'" (x) x (2.50)

induces

fo'"(*),3'")= (*.'.'(-,—)o'"(*). (2.51}

Note that the mass derivative acts only on the suave function but not on the crearion and annihilation oPera-
tors.
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Let us next consider the bound state
l B,). From (2.6) and (2.35), we have

&ole„,(x)l B.&=(2 „„,2 .3/3 e"*f„.(q)x'. (o}

by virtue of (2.39) and (2.40). Substituting (2.47) into (2.52), we obtain

(2.52)

&Ole„,(x)l B &= „, „,e"*(-,' m'6 „[I—XQ(q3)]Xs(0) — 'a-n'( 5„„—q„q„q ')ll —Xto)(q')]X, (0)j
0

(23/)3/3 (2 q )1/2 ( 3 ) qeqe sqa Xa (

where the relations (2.36) and (2.37) have been taken into account. We now put

(2.53)

(2v)'/' (2q )1/2 Xa( ) =3y &01 B"(x)l Ba&

and determine ge by the normalization condition of the 8-S wave function (Appendix 8) as

gB
2 2 BQ

(2.54)

(2.55)

whence

2) 2 2

(ole„„(*)l3 &=-,' *(', , —,
' g, o„o„(o(l d" (*)(1 3 &

=- —o, o„(o I
3"(*)I3&.

q 2 p B
(2.56)

The two-Goldstone-particle contribution to the energy-momentum tensor cannot be calculated unfortu-
nately within the pair approximation. However, we may reasonably assume

&ole„.(x)l B„B,&= &oIe'„.(x)l B„B,&,

with

(2.57)

(2.58)

Since such a term must appear in the expression of the Hamiltonian, it is reasonable to assume that it is
present in the full e„,. Collecting all the results obtained above, we have

2 2

e„„(x)=e„'",(x}+e'„„(x)+- S„a,B'"(x),
3 gB

(2.59)

where e'„",(x) and e„,(x) are given by (2.49) and (2.58), respectively. The generator D thus consists of two
parts,

with

DIn +DB (2.60)

D'"= do„e'„"„xx, , (2.6l)

2

d0'~e~ x x —2 dQ~~ B x
ga

The generator DB induces the change on B'" as

. m2
[ B'"(x),D'] = I (x„a„+l)B"(x) +2i

(2.62)

(2.63)

E. Commutators

It is now a simple matter to reproduce the Goldstone commutator (2.22) and thereby to justify the consis-
tency of our solution. The foregoing calculation indicates that

( )=I
X@( +) l(j) ( )] +-g B (x (2.64)
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Hence,

&o&&~O*& &, n&lo&= (*„o„~o- &olio" & &&*lo& ~ -', o.&*, , »&olo'
& &lo&„'8

The first and the second terms vanish on dimensional ground, whence

(Ol [~4'(x), D]lo)=i —;~'.
This agrees with (2.22), since

8 2 8c=im (Olkp'(x)l0)=-m Ako(0)=-2m'XJ~ d &ID,(- &7)6,(i))=i -,
' m X Q(0)=i -'mn.

(2.65)

(2.66)

(2.67)

Our final task is to construct the energy-momentum vector and the angular momentum tensor as a func-
tional of the asymptotic fields p'"(x) and B'"(x). As was proved in Ref. 9, the terms proportional to 05„„
—S„S,and 5„,—e„e„(1/0) will not contribute to the integral and

da„T,'"„x +T',„x (2.68)

dv„x„(T'„"„+Tq, ) —x, T'"„+T „), (2.69)

where

Tin (x) s pin e pin+ 1 5 (s 4
in s ~in+ ~2@in~to)

T' (x)=-5 B'"5 B'"+-'5 5 B'"5 B" .pV p V 2 pV k

Notice that the linear term in B'" also has no contribution. The commutators with D become'

(2.70)

(2.71)

[P„,D]=i P„-im 8

8m (2.72)

[M„, , D] = im M~„. -8

8m (2.73)

The apparent difference from those of the Heisenberg operators is due to the asymptotic limit taken before
the calculation of the commutators. '

F. Remarks

As a final comment of this section, we discuss
the physical meaning of the constant g~, and de-
rive the Goldberger-Treiman relation. To see the
meaning of the constant gs, we refer to Eq. (2.25),
which reads in the pair approximation

(+-m')(OlT(&}&(x)&}&(y))lB,) ( -m )

=3iz5'"(x —y)(0lg'(x)l B,)
=i gs 5 ' (x —y)(0l B'"(x)

l B,)
(

5Q(q')
2 327r'q2a 0

whence

(2.76)

which has a remarkable feature that it is indepen-
dent of the original coupling constant A. . As we
remarked earlier, the constant A. is taken to be
zero to make the quantity XQ(q ) meaningful. Nev-
ertheless, the coupling constant g~ stays finite.
In fact if we express Q(q'), given in (2.31), in
spectral form and calculate eQ(q')/Bq' at q'=0,
we obtain

(2.74) g 2 = ]92 g2m2 (2.77}
with the aid of the relation (2.54). By using the re-
duction formula, we find that the constant g~ is
the coupling constant of the process

B."4'~+ &~ ~

The relation (2.55) implies

The Goldberger-Treiman relation can easily be
derived: Define the coupling constant f~ between
the vacuum and the one B'" state by

(Ole&„(0) l B,) =—-(,„, , f q„q„. (2.78)

8@q
(2.75) The comparison of this equation and (2.56} leads

at once to
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2m'
fB (2.79)

spectral representation of (ol [g4 (x), e„,(y)]lo).
We have

III. MODEL II: SCALAR FIELD WITH THE
YUKAWA COUPLING

&Ql [g4 (x), e„„(y)]lo&=--,' aa„a, D(x —y), (3.11}

and consequently, the Goldstone commutator
A. Lagrangian and the Field Equations

As an alternative example, we consider a model
in which a massless fermion field interacts with a.

massless boson characterized by the Lagrangian

g =-q(x)y„a, y(x) -gq(x)(I(x)4 (x)

& 0
I [g 43 (x), D] I 0) = a = i m 33 0

is obtained.

C. Bethe-Salpeter Equation and -Physical States

(3.12}

——,
' a„42(x) a„4(x}. (3.1)

In order to take into account the condition (3.8),
it is convenient to introduce a new field (I)(x) by

The equations of motion and the Callan-Coleman-
Jackiw tensor can readily be derived:

g4(x) =g(})(x)+m

so that

(3.13)

and

y ay(x)=-gg(x)4(x),

«'(x) =g: %(x)4(x):

(3.2)

(3.3)
&ol g y(x}lo&=o. (3.14)

The equations of motion and the e„, then read

—a„4 (x)a„4(x)+-,' s„„a~4 (x)a~43(x)

—,'(as„„-a „a„)42(x) . (3.4)

e„„(x)= --,' II(x}y„(a,—a„)(I (x) —-', g(x) y, (a „-a„)(I(x)
(y a +m)(}(x)= -g (})(x)Q(x),

II)(x)(-y a+m) =-g(I(x)p(x),

Ij y(x) =g:g(x)(})(x}:,

(3.16)

(3.16)

(3.17)

D= do„x 6„,x x„ (3.5)

is time independent. The use of canonical equal-
time commutator gives

[42(x), D] = i(x„a„+1)4 (x),

[g(x),D] = i( „x+a- )y3( ).x
(3 6)

(3.7)

B. Spontaneous Breakdown of Dilatation Invariance

We now seek a solution under the condition that

As the Lagrangian (3.1) is dilatation invariant, the
generator

(3.18)

As before, the B-S wave function is defined by

x,(x, y) = &o IT (4(x)%(y)}I q&

cia(x+y) /2
(2v)3/2 (2 q )2/2 Xs( (3.19)

e„„(x)= --,' T((x) y„(a„-a„)q(x) ——,
'

tI (x) y, (a, —a, )(}(x)

a, y(x) a„y(x)+ —,
' a„.a,y(x}a „y(x)

—,'(as„. a„a„)y'(x) ——(Ds„„-a„a,)y(x).

&0lg4 (x)lo)=m. (3.8) with

Observe that the right-hand side of this equation
has been purposely designated to generate a finite
physical fermion mass. In this sense, the relation
(3.8) merely defines the quantity m. The nonvan-
ishing vacuum expectation value of 4 implies a
spontaneous breakdown of dilatation invariance.
Indeed, from (3.6), it follows at once that

z =x —Y.

In the pair approximation, X,(z) satisfies

X,(z) =X(')(z)+gR(z; q}u, .

Equation (3.17) reads

(3.20)

&0I [g4 (x), D] I0) = im

so that

(3.9) q'u, =g TrX (0),

where

(3.21)

Dlo&xo (3.10)

if ngc0.
We can again ascertain the existence af a mass-

less particle in this model by considering the

1 1
&ol&(x)I q&=(2„).„(2q )„.z '* „ (3.22)

R(zi l fZz SS,( ,'z —3=)S,( ,'zzz)z" -(3.23)-
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(see Ref. 10},

x,'"(z) =(»)'" (2q.)'"&olz'(q'"( z)q'"(--")}lq&.

On the other hand, to obtain the one-particle state,
we first drop X~0~ and then eliminate X, from (3.20)
and (3.21). Thus

(3.24) [ q' -g'R(q')]u, =o. (3.28)

We further introduce

8
R„„(q)=-lim Tr [R(z; q) r„],

z~0 ~V
(3.25)

Following the same pattern as in the model in the
preceding section, we can see that Eq. (3.28) ad-
mits a zero-mass solution, i.e.,

R(q') —= lim Tr[R(z; q)] . (3.26)

T I:x'"(0)lTr[x (0)) =
1 @j z)R( 2) (3.27)

If we take the two-fermion scattering state denoted

by IF, q&, we obtain from (3.20) and (3.21)

lim [q' —g'R(q')] =0, (3.29)
Q2 ~0

so that u, represents the Goldstone boson and, in

fact, is the wave function of the incoming field
operator associated with the Heisenberg field P(x).
This is in contrast to the fact that in the previous
example the Goldstone boson was a composite par-
ticle.

D. Generator of Dilatation Transformation

The contribution of the physical states to the energy-momentum tensor 6„,is obtained by using the same
technique as in the previous model. We find

&ole „(x)IF, q&= --,'&0 ly'" r„(a„a,)y'"I F, q& —,'&oly '—"r.(a „a,)q'"-I F, q&

——,'m(q'5»-q„q. ) . ,R( 2)
&oil'"O'"IF, q&

2
——,

' [R„,(q)+R.„(q)], ,R .} &oil'"O'"IF, q&.

The conservation of 6„„then implies that

q„[R„,(q) +R,„(q)]= 0.
In order to determine R„„(q)+R„„(q},we make use of the field equation (3.15):

&0 l@x}r, (a, - a, )y(x) I q&+m &0 I q(x)q(x) I q& = -2 g&0 I q(x}y(x)q (x}l q&.

(3.30)

(3.31)

(3.32)

However, in the pair approximation, the right-hand side can be neglected. Substituting (3.20), we obtain

R ~~(q) = -mR(q') .

The only symmetric tensor satisfying (3.31) and (3.33) is

—,
' [R„,(q)+R„„(q)]=--,' m(6„„—q 'q~q, )R(q'),

which leads to

&ole„.(x)I» q&= --,'&ol0'"(x) r„(a.—a.)0'"(x)IF, q) ——,'&ol0'"(x) r.(a„-a„)t}""(x}IF,q&

—-'m 6 „— 8„— 0$'" xg'" x E, q .

(3.33)

(3.34)

(3.35)

Here, again we meet the traceless tensor 6„,introduced in I. Analogously, the contribution of the single-
particle state is found to be

1 1 m 1 1
&ole„.(x}l q&=+2 (2w)' ' (2q )' ' e""[R„,(q)+R,„(q} u'+3g (2x)sn (2q )' '

0

,-,„m 2 2 2}„,e —5» ——,q„q„[q -g R(q )]u,

1 1 „, m 2 aR(q')
(2m)'" (2q, )'" " "3g aq'

=+—z, 'a a„&oly(x)lq). (3.36}
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Noting that

&Ol y&x)l q&=Z '"&Olp'"(x)I q),
1/2

3 gren x

we arrive at

&OIe„.(x)
I

q&= e„e.&oI@'"(x)I q&.
Sg ren

The total energy-momentum tensor now becomes

e„„(x)= e„„(x)+e'„„(x),

with
1

e~„(x)= --'q [( x) y ( „sa,-)q [( )x——,
'

[I) ~(x)y„(S„—8„)[&)'"(x)——,
' m 6,„—a„a„g—'"(x)[1)'"(x),

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

e'„.= S„~. &'["( x) S„e—'"( x)S. q'"( x) +,' 6„.—e.q'"(x) e.4'"( x)——.'&»&. —e, e.)[p'(x)l'
gren

The dilatation generator is

(3.42)

D=- do„6„,x x, = F+D~, (3.43)

DF= da„OF, x x, , (3.44)

D = do'„, 6„,x x~. (3.45)

They satisfy

(3.46)

i [ '["))( )x, D] = -(x„e„+1)@'"(x)——
gren

(3.47)

The vacuum expectation value of (3.47) multiplied by g„„reproduces the Goldstone commutator (3.12).

IV. DISCUSSION
[@(x),D] =i(x ~ 8+ 1)4)(x) . (4.1)

Our investigation on the two models in Secs. II
and III shows how it is possible that the appearance
of nonvanishing physical masses due to the spon-
taneous breakdown of the dilatation invariance does
not contradict the original invariance. Namely,
the invariance of the theory is preserved by the re-
arrangement of the dilatation to the dimensional
transformation, which was introduced in I. It is
seen that the generator of the dilatation transfor-
mation of the Heisenberg operators turns into that
of the dimensional transformation of asymptotic
fields. However, the rearrangement of the invari-
ance is accompanied by the Goldstone boson.
Since the Goldstone boson undergoes the inhomo-
geneous dilatation transformation [(2.63) and
(3.47)], it plays a particular role in our theory
and restricts physical results. For example, in
the former model, the dilatation transformation
generates

. 2m'[B'"(x, m), Ds]=i(x ~ a+1)B +i
ga

(4 3)

Now, we can construct two [luantities out of B'"(x)
which have normal homogeneous dimension. They
are

e B'"(x) and m+ s B'"(x),
2m

l.e

[ „e'(B), Dx]=i(x a+2)s„B'"(x), (4 4}

On the other hand, the dimensional transformation
generates

[)"[*, ), D [=i(* & ~ 1 —'")P'"(*,I),
(4.2)
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m+ B'"(x),D =i(x ~ 6+1) m+ z B'"(»)
2m 2m

(4.5)

We further note that

exp z B (x) (f)'"(x, m), D +D
2m am

= i(x ~ s + 1) exp B'"(x) (f)'"(x, m)
2m Bm

(4.6)

In other words, the exponential factor just cancels
the mass derivative term appea. ring in (4.2). We

infer therefore that the Heisenberg operator (f)(x)

is of the form

APPENDIX A: A DERIVATION OF 1-XQ(0)=0
AND THE MASS EQUATION (2.13)

Let us put

Q„.(q) = F(q') q„q.+ G(q')6„, .

It follows from (2.44) and (2.46) that

, 1+ 12AF(q')
1 —~Q q' =q'

q +4m

(Al)

(A2)

1 —l).Q(0) = 0 . (AS)

To ensure that XF(q') has no singularity, we em-
ploy the spectrum representation

If XF(q') has no singularity of the form 1/q', then
we have

their derivatives

where I' is functional with the dimension i. '. In-
deed, it is not difficult to show that

(4.7)

(f)(x) =F m+ s B'"(x),exp z B'"(x) (f)'"(x,m),
p(K )~F(q') = dK'

4~2 'g + K

where

and calculate

(A4)

(A6)

[F,D'"+D']=i(» 6+1)F, (4.8) 1
&F(0) = dK' —,p(K') .

4m2
(A6)

which is nothing but the relation (4.1). The func-
tion of the exponential factor can best be under-
stood if we note the relation

& gin x fII)in & (., - ='"(.))2m

(4.9)

This implies that in the right-hand side of (4.7),
the mass and the Goldstone boson can appear only
as a combination m+(gz/2m)B'"(x). Hence, the
appearance of the mass does not bring in abnormal
dimension and the original transformation proper-
ty of the Heisenberg operator is maintained at ev-
ery step.

Finally, we emphasize that the coupling constant

g~ does not vanish even at the limit A. -O, as is
seen in (2.75). This is due to the composite nature
of B'"(x). It is interesting to speculate that all the
divergences may be eliminated, in a nontrivial
manner, by the procedure A. -0 as the cutoff goes
to infinity when particles are composite.
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If we put A. -O as the cutoff momentum goes to in-
finity, we obtain a finite result ~ Thus, we arrive
at (AS).

We now prove that the mass equation (2.13) can
be written as

m'= 3i ma, (0) (A7)

and discuss the consistency with (A3). From the
field equation, it follows that

fa, —m')(0 ~T(4 (x)y(y)) ~0) (o, —m')

= i(D —m') 6'" (x —y) —im'6") (x —y)

+ Si ~6("(x- y)(0l 4'(») lo)

(A8)

m'= Si Xa, ( )0. (Alo)

The quantity (o~l(.(f)'(») ~0) appearing in the mass
equation (2.13) is highly ambiguous and was the
subject of intensive study around 1949 in connec-
tion with the photon self-energy and the equiva-
lence theorem of the pseudoscalar and pseudovec-
tor theories, etc. This quantity is in general

where the pair approximation is employed. Equa-
tion (A8) implies that

i),'(z ) = L),,(z) + l(.Q (z; 0) i),,'(0) + i —,
' m'Q(z; 0) .

(A9)

If we put z =0 and use (A3), we have
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stated as

(0)&0'(x) I0& = »m (0 I~4 (n) A(0) I0&
7}~0

i~m c +~ ~~ ln~~ +
'g ~0

where the constants c„c„and c, depend on how

the integration is carried out. In particular, the

value of c, depends crucially on the method of in-
tegration. We shall take in this paper the view

point that the constant cy must be determined con-

lim [q'-g'R(q')]=0
a2 n

(Al 1)

can also be shown in exactly the same way so that
it is not necessary to repeat it here.

sistently. If we require that the two relations (A4)
and (AV} are consistent, the constant c, must be
zero. The logarithmic divergent term causes no
trouble if we take A. -0 limit in such a way that the
expression Q(0} if finite as the cutoff goes to infin-
ity. The relation

APPENDIX B NORMALIZATION OF x q (0)

In the pair approximation in which the B-S equation is written in the form

X'. (z) = l 0(z; q)X', (o),

it proves convenient to write the normalization condition in z space.
I.et us first express the normalization condition in z space":

l d'z'd z y, (z'} [1(z', z;q)+G(z', z;q)] X, (z}= 2i q,
0

' 2z)' (B2)

where

, Jt d'p[S,'„(-,' q+p)]-'[S,', (-,' q- p)) 'e"'-
G(z' z q) = d4pd4p'G(p' p q) e'~ ' e(2z)8 (B4)

To apply the above formula to our model I, we note the following:
(i) In the pair approximation, G(z', z; q) is independent of q, so that the second term in (B2) does not con-

tribute.
(ii) The one-particle propagator in our case is

SFA(g 'q+p) SFB(2 q+ p) f Ag( q+p) ~ (B5)

(iii) Particles appearing in our model are indistinguishable. Hence the right-hand side of (B2) must be
multiplied by two.

Considering the above all, we arrive at

r
d'z d'z )(, (z') f(z', z;q)X, (z) =4i q, (B6)

Recall, however,

f(z', z;q}= 2„. d'p&. '(-,' q+p)&. '(-,' q p)e'"*-
4

3i=-( )4Q '(z'-z;q).

Substituting (BV) and (Bl) into (B6) we have

d4z d'z'Q z';q '
Q z;q y, (0 '=A.' Q 0 q 0 '=--q .

8qo 8qo
(B8)
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Hence, g 2 BQ q2

by virtue of

(B10)

From (2.50), we obtain
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W'e study the elastic scattering of a high-energy photon from a heavy nucleus, considered
to be a static Coulomb field due to the charge Ze. Exchange of an arbitrarily large number
of photons with the nucleus is taken into account, and the effect of this multiphoton exchange
is found to be very large, particularly for momentum transfers which are large compared
with the rest mass of the electron. In addition, an interesting theoretical problem in this con-
nection is formulated but unfortunately not solved.

I. INTRODUCTION

Three years ago, we studied in detail all two-
body elastic-scattering amplitudes in quantum
electrodynamics at high energies. ' ' Among these
processes, the one with the most direct experi-
mental interest is Delbruck scattering, ' or the
elastic scattering of a photon by a nucleus, con-
sidered to be a static Coulomb field. At the time
when we carried out our theoretical analysis, the
only relevant experimental data on Delbruck scat-
tering were those of Moffatt and Stringfellow' at an

energy of about 90 MeV, and a comparison of these
data with our theoretical results is given in III.
Recently, the experimental group F39 of DES' ob-
tained data on Delbruck scattering and photon split-
ting at energies of several BeV and momentum
transfer of a few MeV/c, although the data analysis
is as yet incomplete. Motivated by this new infor-
mation on copper, silver, gold, and uranium, we
give in this paper the basic theoretical formulas
for Delbruck scattering and some of the simple
consequences.

The lowest-order diagrams for Delbruck scat-


