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Assuming that the intermediate vector boson for weak interactions has no strong inter-
actions, we reinvestigate the Corben-Schwinger problem of the scattering of a charged
vector meson with anomalous magnetic moment by an external static Yukawa potential, or
in particular a static Coulomb field. Meixner's corner condition of finite integrated energy
in every bounded region is applied in the neighborhood of the singularity of the Yukawa
potential, and it is found that the Corben-Schwinger problem, although nonrenormalizable,
possesses a finite, unique solution if and only if the anomalous magnetic moment is larger
than unity. It is therefore a characteristic of nonrenormalizable theories that there may be
lower bounds to coupling constants. Experimental determination of the anomalous magnetic
moment of the intermediate vector boson is thus of great importance. Furthermore, be-
cause certain differential equations happen to be solvable in terms of Bessel functions, an
explicit perturbation expansion for weak coupling can be given for this scattering process.

1. INTRODUCTION

In the near future before the publication of this
paper, the 500-BeV accelerator at the National
Accelerator Laboratory is expected to operate,
and an experiment to search for the intermediate
vector boson' for weak interactions has already
been approved. Let us assume that the intermedi-
ate vector boson is found, then a theory is needed
for such a particle. As suggested by a number of
authors, the intermediate vector boson may have
strong interactions. ' However, since the mass of
the muon remains a total mystery, we believe that
there is no compelling reason why the intermediate
vector meson shou1. d have strong interactions.
Let us, therefore, assume that the intermediate
vector boson has no strong interactions.

Since the weak currents carry a charge, the in-
termediate vector boson must have electromagnet-
ic interactions. The theory of a charged vector
particle has been known for a long time. ' By
simple power counting, such a theory is nonre-
normalizable. This is the reason for Lee and
Yang' to propose, nearly a decade ago, their (-
limiting formalism. This formalism was used by
Lee, ' and Bernstein and Lee, ' to study various
properties of the intermediate vector boson and the
neutrino, and also muon decay. As particularly
emphasized by Lee, ' the existence of the limit g-0 is a pure assumption.

Qn the other hand, we have been pursuing a pro-
gram of learning about the high-energy scattering
of hadrons from quantum field theory. ' In addition
to the predictions of increasing total cross sec-
tions' and distribution of pionization product,
close similarity betsoeen the field-theoretic results
and potential scattering, suitably interpreted, is
found. " In particular, we have recently studied
the scattering of a charged vector particle by a
static external potential. " The purpose of this
study is in no way related to the possible existence
of the intermediate vector boson, and is in fact to
gain a better understanding of exponentiation" in
high-energy scattering. In the course of this work,
however, it is realized that our understanding of
the charged vector particle is remarkably incom-
plete: In addition to our ignorance about the non-
renormalizable nature of the quantum theory, we
do not even know much about the classical field of
a charged vector particle.

It is the purpose of this paper to study the clas-
sical problem of the scattering of a charged vec-
tor particle by a Yukawa potential. In the absence
of anomalous magnetic moment, the divergence in
this case is the same as that encountered in the
quantum field theory of a charged vector particle.
There are several motivations for studying this
classical problem. First, a better understanding
of the classical field is perhaps useful for quanti-
zation, since historically a thorough knowledge of
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the classical electromagnetic field precedes by

many years the quantum theory of the photon.
Secondly, a solution of this classical problem is
in any case needed because of the similarity, at
high energies, between field theory and potential
scattering. " Thirdly, from a more general point
of view, this classical problem gives a natural ex-
ample of a nonrenormalizable theory. If we insist
on using the Born approximation, worse and worse
divergences are found in higher and higher orders.
However, since we are dealing with a set of par-
tial differential equations, we are in no way re-
stricted to the Born approximation.

This scattering problem was first treated, over
thirty years ago, by Corben and Schwinger" in
connection with the problem of the "mesotron. "
(Our generalization of the Coulomb field to the
Yukawa potential is of no importance. ) This re-
markable work was carried out long before the un-
derstanding of renormalization, but they were un-
fortunately concerned mainly with two cases where
the anomalous magnetic moment g is either zero
or unity. Here we shall study directly the differ-
ential equation for scattering, and n0 divergence
is found provided that ~ satisfies the relation

which excludes both cases of Corben and Schwin-
ger. Thus the nonrenormalizability must be
blamed on the inadequacy of the Born approxima-
tion. In this way, we hope to have a beginning
in understanding the intermediate vector meson.

2. FIELD EQUATIONS

Let (YI)„denote the field of a charged vector me-
son. Since we are interested in the classical the-
ory, p„ is a set of four c-number functions of
space and time. Let A„denote a known external
electromagnetic field, then the field equations for
Qp are

the time component of A„, denoted as V, is inde-
pendent of time. Thus there is invariance under
time translation, and the time dependence of fII)„

can be taken as e ' '. Thus, from here on, we
consider p„ to be functions of the space coordi-
nates and E. Taking separately the time and space
components of (2.1}, we get

(V —1)$0 —i V ~ (E —e V)&+ ice(V V) P =0 (2.4)

and

[(E —e V)2 + V2 —I]P —V(V ~ P ) + i (E —e V)V$0

+ ieagaV V=0. (2.5)

These are the partial differential equations we
shall deal with in this paper, where

eV=ge ""/r (2 8)

is the Yukawa potential.
Equations (2.4) and (2.5) are four coupled second-

order partial differential equations. From these
four equations, we can get one first-order partial
differential. equation by the standard procedure of
obtaining the Lorentz condition for time-indepen-
dent problems. Take the divergence of (2.5) and
use (2.4} to eliminate the O'P, term:

and

y
1nc —u e~~~

(2.8)

V ~ P —i (E —e V) P, + e(1 —u) (V V) ~ [(E —e V) P + i V /0]

—iezgaV' V= 0 . (2.7)

This equation (2.7) turns out to be extremely use-
ful.

The incident field pp satisfies (2.4) and (2.5)
with e V=0. If the z axis is chosen to be the direc-
tion of propagation of the incident plane wave, then

etkc

~ ~
8 —zeAp Gp —

Qv + z8KQp+pv = P yXp

(2.1) where k = (E' —1)"'

u0E —u, k = 0 . (2.9)
where

G„= —ieA& (t)v MA v Pp 2.2

and

E„„=(s/sx„}A„—(s/s~„)A„. (2.3)
In (2.1), a is a constant, and the mass of the
charged vector meson has been taken to be unity.

For the case of a static external field, A=p, and

yInc Qefkg
0

y inc ylnc P

(2.10a)

(2.10b)

Since (2.4) and (2.5) are linear, it is convenient to
separate the present scattering problem into two
parts: one corresponding to longitudinal polariza-
tion of the incident wave and the other correspond-
ing to transverse polarization. The incident fields
are then, respectively, the following.

Longitudinal polarization:
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~N1~ —Ee&4~
'YS (2.10c)

and

pine —pine —0 (2.11c)
Transverse polarization:

wine

wine

(2.11a)

(2.11b)

Note that in writing down (2.11) we have chosen a
circularly polarized incident wave.

3. PARTIAL-WAVE EXPANSION FOR LONGITUDINAL POLARIZATION

We first treat the case of (2.10), where the incident plane wave is longitudinally polarized. In this case,
there is no preferred direction in the transverse xy plane. Let (r, 8, P) be the spherical coordinates, then
the field quantities are all independent of p. Moreover, (t) has no p component.

In spherical coordinates, (2.4}, (2.5}, and (2.7) are explicitly

1 9,9@, 1 9 . 9$, g a 8 . . dv—
2

r' —+, . —sin8 ' —P, ——,—r'(E -eV)P„- . (E —eV) sin—gp e+iei—i $„=0,r' 9r 9r r'sin8 88 88 ' r' 9r r sin8 88

(3.1)

[(E —eV)~ —1]4i„+, . —sing "—
2 . —singpe —— . —sing Pe+i(E —eV)r'sin8 88 98 r'sin8 88 ar r sin8 88 e

[(E —eV}' —1]ge+ —
2
—r' —— " + (E —eV—) =0,1 S, spe 1 8 Q„ i 94p

r2 er er r ara8 r 8 7

dV+ieii —
gati

=0
dr (3.2)

(3.3}

and

8 | 8 dv asap . 1 d 2 dv
—,—r'P, + . —sing 4ie —i(E —eV)i)i, +e(1 —ii)—(E - eV)P„—i —ieger, —,—r' —=0.r' ar ' r sing 98 dr

Remembering that the spherical Bessel functions are defined by

(e) ( av/e ) eT iyg2(e)

we take the partial-wave expansion of the field components to be

(3 4)

(3.5}

iti, =Q (2n+ 1)i "4~(r}P„(cos8),
n=p

and

Q, = P(2n+I)i" '4, „(r)P„(cosg),
n=p

itis = Q(2n+1)i" 'e„(r)P„'(cos8),
n=1

(3.6)

where the associated Legendre polynomial p„'(cosg) is simply (d/dg)p„(cosg). g comparison of (3.6) with
(2.10) shows that

4,'„(r)= kj„(kr)

for n) 0,

ik, „'(r) =Ej „'(kr)

for n) 0, and

4~'(r) =E(kr) 'j„(kr)
for n&0.

It is slightly more convenient to use

(3.7)
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instead of a. When (3.6) is substituted into (3.1)-(3.4), the ordinary differential equations for the partial
waves are found to be

—
p
—r' ——,—1 4p„——,—r'(E —eV) —e(1+@) —4,„+n(n+1}r '(E —eV)C„=O

1 d, d n(n+1) 1 d dV
r dr'dr r r' dr dr (3.9}

for n& 0,

E -e —+e 1+g —40„+ E -e -1 —
2 4„„+nn+1 —

2
—r@„=0d dV n(n+1) 1 d

dr dr r' r2 dr

for n~ 0,

1 1 d 1 d 2 d
(E —e—v)ifi~ -——4„„+—,—r' —+(E —e V}P —1 ifi„=0r r dr "" r'dr dr

for n& 1, and

(3.10}

(3.11)

(8.12)

-(E —eV)x(3.9)-r *(djdr)r'x(8. 10}+n(n+l)r 'x(3.11).
We shall study in some detail this set of coupled ordinary differential equations in this paper.

dV d 1 d 2dV 1 d 2 dV n(n+ 1)E —e V+ eq ——+ e(1+@)—p
—rP —Op„+ —

p
—r —e[} (E——e V) 4i„„- 4„=0dr dr r dr dy r dr dr r

for n~ 0. These four equations (3.9)-(8.12) are of course not independent. More precisely, (3.12) can be
obtained from

4. PARTIAL-WAVE EXPANSION FOR TRANSVERSE POLARIZATION

The case of transverse polarization is only slightly more complicated. By (2.11), the spherical compo-
nents of the incident plane wave are

and

pine 0

= sing e' 'e' p,

P 8flc COS g e jk+e j @e

~inc . ikey jg—$8

(4.1)

Therefore a/ay=i, and (2.4), (2.5), and (2.7) are

1 a palp 1 a . ait[p 1 i a 2 Z a
r Br ar r2sin8 B8 B8 r sin 8 r Br
—

p
—r + p . —sing —

p . p —Q
———r (E —ev}p, — . (E —eV} —»ugly +i&

y sing g e

+ ieg —Q„=0, (4.2)
dV

1 B . Bg, 1 1 B . . B 1 B[(S—sV)' — ]y,+, ,
—sni ' —, , in —,. —sinnys+its —— . —sinn', ~ iis)y sin8 Bg B8 r'sin 8 " r sin8 Bg Br r sin8 B8

+ i (E —e Vj + iez —[[[ip = 0, (4.8)
dv

ar dr

HE eV} -1]4e+ p r —
p . p Qp- — —,. —+cotg p +-(E-eV} =0,

1 B 2ape 1 1 B 4r i ap,
r Br Br r2sin28 y Brag r2sjng ag Bg

(4.4)

[(E-evj*-1)P
ep
+—r* + p . —sing —

p . p
— . "-

p . ——cotg
1- a, a4& 1 a . a&& 1 i aQ,
r' Br Br r'sing ag Bg r'sin28 ~~ r sing Br r'sin8 a8

1
(E —eV)y =0, (4.5)
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9 2 1 8 dV . ~4o . 1 d 2dV——r'C„i+ . —sin8 pe+ i' —i(E —e V)Cio+ e(1 —ii) —(E —e V)gati„+ i —ieiipo —,—r' —=0.r' Br r sing gg dr 'r' dr dr

(4.6)

It is important to note that the only combination of Cie and Ci~ that appears in (4.2), (4.3), and (4.6) is

(r sin8) '[(8/88) sin8 pe+ iiti~] . (4 7)

This expression (4.7} is the transverse divergence (i.e., the divergence in the 8 and P directions} of P.
Since Ci„gati„and (4.7) all transform as scalars under rotation, we have the partial-wave expansions

Ci, = g(2n+1)i" 4,„,(r)P„'(cos8)e'~,
n=l

and

P„=P(2n+1)i" '4„„,(r)P„'(cos8)e'~,
n=1 (4.8)

8 OO

csc8 —sin8$e+ip~ = —p n(n+1)(2n+1)i" '4„,(r)P„'(cos8)e'~.
n =].

A comparison with (4.1) shows that

C, inc (r) —0

4 0"„',(r) = -(k r )
' j„(kr ),

and

(4.9)

4'„",'(r) =-[n(n+1)] '[j„'(kr) +(kr) 'j„(kr)] .

The substitution of (4.8} into (4.2), (4.3), and (4.6) shows that 4,„,(r), 4„„,(r), and @„,(r) satisfy exactly
the same ordinary differential equations as 4c„(r), C,„(r), and C„(r), namely, (3.9)-(3.12) for n) 1. This
result is of course to be expected as a consequence of rotational invariance. The boundary conditions
(4.9} for the transverse case are quite different from (3.7) of the longitudinal case.

The present case of transverse polarization is, however, more complicated in that we still have to de-
termine p, and p~ themselves. By (4.8), it is sufficient to find itic. For this purpose, we write (4.4) in
the form

1 8, 8C, 1 8 . 8$, 2 8$& 2[(E —eV)' —1]Cie+—,—r' +, . —sin8 + —,cot8r gr r'sing gg gg r' gg r'

When (4.8) is substituted into (4.10), we get

1 ~24r j ego 1 8 8
(E —eV) —+ 2 . —+cot8 —sin8$e+iQ&r Brag r eg r sing eg Bg

(4.10)

Oo

Right-hand side of (4.10}=P(2n+1)i" ' r ' —4„„,(r)+r '(E —eV)4,„,(r) —n(n+1)r 4„,(r) e'~ —P„'(cos8)
n=l

—2r 2 P n(n+1)(2n+1)i" ' „4(ri)e'+cot8P„'(cos8)
n=1

OO

= —Qi" (n —1)' r '—4,&„,&,(r}+r '(E —eV)4«„», (r) —n(n+1)r ~ck&„,&, (r)n=1

a+(n+2) r '
4„&„+»,(r)+ r '(E——eV)4, &„,»,(r) -n(n+1)r '4&„,»,(r)

x c ac 8 P '„(cos8}e'~ .

(4.11)
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In writing down (4.11), we have used the identities

(2n+1)cotg P„'(cos8) =n csc8 P„'„(cos8)+ (n+1) cscg P'„,(cos8)

and

(2n+1)—P„'(cos8) =n2csc8P„', (cos8) -(n+1)2cscgP„', (cosg) .

(4.12)

In view of (4.11), the partial-wave expansion of pe must be taken to be

ye = Pi "C e„(r)cscg P„'(cosg)e'~. (4.13)

On the one hand, a comparison of (4.13) with (4.1) shows that

C „'(r)=(2n+1)
k }

(kr) 'j„(kr);

on the other hand, the substitution of (4.13}into (4.10) yields that

(4.14)

Left-hand side of (4.10) = Pi"cscg Pt(cosg)e'~ r ' —r' +—(E —eV)' —1 n(n-+1)r '
C e„(r), (4.15)dr dr

because of the identity

csc8—sing —+2 cot8—cscg P„(cos8) = -(n —1)(n+2) csc8 P„(cosg) .d . d d l 1
de d8 d8 (4.16}

Therefore, once C,„,(r), C „„,(r), and C „,(r) are known for n ~ 1 by solving (3.9)-(3.12) together with the
boundary conditions (4.9), C e„(r) can be found from the following second-order ordinary differential equa-
tion with the boundary condition (4.14):

r ~—r~—+(E —eVp —1-n(n+1)r 4e„(r)dr dr
P'

=-(n —1) r '—4,&„»,(r)+ r '(E —eV)CO&„»,(r) -n(n+1)r 4&„»,(r)r

—(n+2) r '—C„&„,»,(r) +r '(E —eV)CO&„+», (r) —n(n+1)r C&„+»,(r)dr

for n~ j..
Finally, we list more explicitly the various boundary conditions as r —~:

C,„,(r) = outgoing waves,

C,„,(r}= outgoing waves,

C „,(r) = -[n(n+ 1)] ' j„'(kr) +outgoing waves,

and

4e„(r}=outgoing waves .

(4.17)

(4.18)

5. CASEOF s WAVE

We first consider the case of s-wave scattering, i.e., the case n =0 with reference to (3.9)-(3.12). This
case is different from all other cases n ~ 1. More precisely, we are basically dealing with a differential
equation of the second order for n =0, but of the fourth order for n ~ i.

Let us set n = 0 in (3.9), (3.10), and (3.12):

and

(r Dr*D —1)C~ -[r Dr (E —eV) —e(1+q)(dV/dr)]C „0=0,
-[(E—eV}D+e(1+q}(dV/dr)]CM+[(E —eV)'-1]C „,=0,

[E —e V+ eq(dV/dr)D+ e(1+q )(r 'Dr'DV)]C ~+[r *Dr' —eq(dV/dr)(E —eV)]C „=0,

(5.1)

(5.2)

(5.3)
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where D=d/dr .If (5.2) is solved for 4„,and the result substituted into (5.1), we get a second-order dif-
ferential equation for 4~:

{r 'Dr'D+2e(dV/dr)[(E —eV)' —1] '[(E —eV)D+e(1+q)(dV/dr)]

+ e(1+q)(E —eV)(r 'Dr'DV) —e q (1+q)(dV/dr) +(E —eV)' —1)40O =0. (5.4)

When V is given by (2.6), (5.4) is interesting in several ways.
(A) The factor r 'Dr'Dr contains a term proportional to 6(r). This 5 function is absent in (5.4) if and

only if g=-l. .
(B) In case q =0, the presence of this 6 function implies that

(5.5}

as x-0.
(C) Roughly speaking, (5.4) describes the scattering from a singular potential" of the form r '. This

singular potential is repulsive when

q(1+q) &0,

i.e., either q&0 or q& -1. This is the origin of the condition on the anomalous magnetic moment.
It is thus clear that we must study (5.1)-(5.3) in the region of small r By .(2.6), if r»g, then eV is

small. %e therefore concentrate on the case

Let us define, for g &0,

and keep only the leading order in y or equivalently in g. Thus

eV-R '-pg.
Since the energy E appears only in the combination E —eV, define

(5.6)

(5.V)

(5.8)

(5.9)

E' =E+gg

so that

E -eV=E'-R '.

(5.10)

(5.11)

An inspection of (5.1}, for example, shows that in this region under consideration 4~ is smaller than 4„
by a factor of g. If we define

41 0 400/g

then the leading terms of (5.1)-(5.3) are, respectively,

R (d/dR}R (d/dR)4~O -[R (d/dR}R (E'-R )+(1+q)R ]4,0=0,
-[(E' -R ')d/dR —(1+q)R ]4~0+[(E' -R ) —1]4„O=0,

and

[-qR d/dR -4v(1+q)5(R)]4, 0+[R *(d/dR)R +qR (E' -R )]4„0=0.

(5.12)

(5.13)

(5.15)

Although these equations (5.13)-(5.15) look complicated, they are in fact extremely simple, as we shall
show now. If the 5 function in (5.15) is neglected [a justified step if 40(0}=0], then

d4io/dR =[q '(d/dR)R +E'-R ']4,0.
If (5.16) is substituted into (5.13), we get

(d/dR)R (d/dR)R 4, —q(1+q)4„=0.

(5.16)

(5.1V)

It is remarkable that E does not appear in (5.1V}. As we shall see in Sec. V, this miracle occurs for all
n.

The explicit solution of (5.13), (5.14), and (5.1V) depends on the sign of q(1+q). We list the various
cases:
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If @=0, then

4» () Co~ R

and

@,0- -[(E"—1)CO, +E'C02]+C02R ' +C«R

If q=-j. , then

4, o -C»(E' -R )R

and

4~O-C04 —COBR '[(E' —1) —E'R +~R ].
If q(1+@)&0, then

4„,-C»R 'exp( [q(-1+@)]"'R ')+C«R 'exp([q(1+@)]'"R ')

and

e„C»([q-(l+q)] "'(E'-R ')+(I+q) ') exp(-[q(I+@)]'"R ')

+C«( [q(1-+q)] '"(E'-R ')+(1+0) '} exp([q(1+@)]"*R '} .

If q(1+q)&0, then

4„COVR-'exp(i[ q(1+-q)]'12R ') +C„R 'exp(-i[-q(1+q)]"'R ')-
and

4„-C„(i[-q(1+@)]'"(E' R')-+(I+q) '} exp(i[-q(1 q+)]
' R ')

+C«( i[ q-(1+-q)]-'"(E'-R ') (1+@+) ') exp( i[ q-(1+-q)]'"R '}.

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23}

(5.24)

(5.25)

In (5.18)-(5.25) C«, C„,. . . , C„are constants to be determined from the boundary conditions. Half of
these constants are given by the normalization of the incident wave, while the rest are fixed by the bound-

ary condition at r =0. In Sec. 6 we study this condition at the origin.

6. ENERGY DENSITY

In order to determine the constants in (5.18}-(5.25}, a precise formulation of the boundary condition at
the origin is needed. For this purpose, let us recall the analogous but more familiar situation in classical
electromagnetic theory. In particular, consider the scattering of a classical electromagnetic wave by a
perfectly conducting half-plane of zero thickness. If no condition is imposed on the behavior of the scat-
tered electromagnetic field near the edge of the half-plane, Maxwell's equations can be satisfied with an
infinite number of undetermined constants in the solution. In order to get a unique solution, it is simplest
to use the Meixner condition" that the energy density is integrable over any bounded region.

This condition that the energy density is integrable needs some clarification. It is well known that the
Hamiltonian density, commonly designated as H or T«, is not unmlue. In particular, it can be changed by
the addition of a divergence in the three space variables. Qn the other hand, the condition of being inte-
grable can be changed by the addition of such a divergence. For example, consider the two expressions

Vf* ~ Vf (6.1)

and

Vf*~ Vf -2V ~ (f Vf) . (6.2)

(6 8)

When f =r '", (6.2) is integrable over a neighborhood of the origin while (6.1) is not. Therefore, with
reference to the condition that the energy density is integrable, the term "energy density" must refer to
a specific form ofH or T~.

In classical electromagnetic theory, "energy density" refers unambiguously to

g = —.'(E*+H'),

where E and B are the electric and magnetic field vectors. In particular, this form (6.8) is manifestly
gauge-invariant and positive definite. The boundary condition for the above scattering problem by a per-
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fectly conducting half-plane is that

g dr&oo (6.4)

over any bounded region.
In this section we find an expression for the energy density of a charged vector-meson field similar to

(6.3). Although the procedure is well known, we present it in some detail here because the result is of
crucial importance. We begin with the Lagrangian density for the interacting charged vector-meson field
and electromagnetic field':

g = —(BA„/Bx, )(BA„/Bx„) — G „'„G„„—P"„Q„—iexE„„Q„'P„, (6 5)

where G„, and E„„are given by (2.2) and (2.3}, respectively, and the superscript denotes Hermitian con-
jugate times (-1)"with n =number of "4" subscripts. ~ The field equations are (2.1) and

UA„= ietc(8/Bxz)(p"„p& —p„p„)+ ie(Q„'G„, +G „'„Q„),

where =8'/Bx„ax„. In particular, from (6.6),

A, =iexv ~ (P~og —P*P,) —te[P ~ [(V —ieA)go+(a/at+ ieA, )y] -[(V+ieA)go+(a/Bt —ieA, )y+]

The Lagrangian density (6.5} is more explicitly

Z=Z, +Z, ,

where

z, = .(BA,/Bt)'-+--, (a X /at)'+ ,( vA, }—-—,'(vA)'

is the electromagnetic part of the Lagrangian density, while

(6.6)

(6.7)

(6.6)

(6.9)

2, =-2[(8/Bx;+ieA, )Pg —.(8/ax, +ieA, )P,*j[(8/Bx; .—ieA;)P, —(a/B. x, —ieA,)y;].
+[(V+ieA)y*, +(8/at —teA, )y*] [(V —ieA)p, +(8/Bt+ ieA, )p]
+ P*,Po —P* ~ Q+ iex(VA, +BA/Bt) ~ (Q*Q, —P~ogg —iex(V xA). (P*xP . (6.10)

Therefore, the usual Hamiltonian density is'

X= -(BA,/Bt)'+[a A/Bt+ MK(y*y, y*,~}] BA/B—t+[(V + ~X)y*, +(8/Bt ieA, )y*] By—/Bt

+(ay*/at) [(V —ieA)y, +(8/at+ teA, )y] -g

=&em +&X y (6.11)

where

x, = --,'(BA,/at)'+ —,'(a X/at}' ——.'(VA, )'+ —,'(vA)'

is the electromagnetic part of the Hamiltonian density, while

X, =[(V+ ieA)g*, +(8/Bt —ieA, ) p*] ~ 8$/at+(8$*/Bt) ~ [(V —ieA)go+(8/at+ ieAo)$ ]

(6.12)

+ iex(BA/at) (Q*po —Q*Q) —O2, . (6.13)

The important point is the following. If A„ is considered to be a fixed external field, then for the Hamil-
tonian density we get just X, of (6.13) but not the X, part. But, since a/at appears by itself, X, is clearly
not gauge-invariant. In fact, the nonsensical condition that X, is integrable leads to most peculiar results.

In order to solve this problem of the lack of gauge invariance, we observe that the X, of (6.12) is not
the same as the 8 of (6.3). Moreover, the difference is not a three-divergence:

x. —h, =A,QA, —v Q, (vA, +A)+((v. A) —(X v)gj . (6.14)

In the presence of the charged vector-meson field, LjA, is not zero but given by (6.7). Therefore, by
(6.11) and (6.13},
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X= b +X~ —V ~ [Ao(VAO+A)+[(V ~ A) —(X ~ V)]X+ iegAo(P $0 —P~og)j,

where"

(6.15)

X, =-.[(a/8», +ieA, )y~ —(8/a~, +teA }y,*][(.8/ax, —ieA, )y, —(8/ax, —ieA, )y, ]

+[(a/at —ieA )p*] [(8/. at+ieA, )p]-[(V+ieX)p*,].[(v —ieX)p, ] —p*,p, +)* p+ ieK(v xX) (Q+x ))
(6.16)

is gauge -invariant.
This density X, is still not what we need because of its lack of similarity to the 8, of (6.3) even when

e =0. It is necessary to add another three-divergence because, by (2.1),

[(8/at —ieA0)g*] ~ [(8/at+ieAo)P]-[(V+ieX)go] [(V —ieX}go]

-[(v+ ieX)y*, +(a/at —ieA, )y+] [(v- MX)y, +(a/at+ MA, )y]
=-2ReV. [P*,[(v —ieA)P, +(8/at+ieA, )P])+2Reg*,[P, —ie~P (VA, +BA/at)),

(6.17)
and hence

X,= 8» —2V ~ Re[p*, [(v —ieX)p, +(8/at+ieA, )p] j,
where

h =-[(28/ax, +ieA, )yp —(8/ax, +ieA, )y,*][(a/8~., —ieA,.)y, —. (8/8&, — ieA)y, ]

+[(v+ ieX)p+ (8/at —ieAo)p*] ~ [(v —ieX)go+(8/at+ ieAO)p j
+ popo + p* ' Q+ iew(VAo + BX /8 t) ~ (y *go —y ~y ) + ice(v xX) (y + x y) .

(6.16)

(6.19)

From (6.15) and (6.18), the Hamiltonian density X is equal to i,', + 8» plus divergence terms. Field equa-
tions have been used in reaching this conclusion.

We shall use the 8» of (6.19) as the energy density for the charged vector-meson field, and hence the de-
sired boundary condition is that

v (6.20)

over any bounded region, analogous to (6.4) for classical electromagnetic fields. It is interesting to note
the close relation between (6.10) and (6.19).

7. RESULT FROM s-WAVE SCATTERING

Some simple results can be obtained readily from (5.18)-(5.25). First, (5.19) is clearly inconsistent
with (5.5). Therefore, we get~

qXO. (7.1)

Although this is a very weak result, it shows that we can indeed get nontrivial statements about the mag-
netic moment.

Secondly, even without knowing the precise nature of the boundary condition at the origin, we must have

t-"06 =o

to avoid exponentially increasing field near» =0. Thus, for q(1+@)&0,

4 „R»' xp [e[q(1 t)]-'+»R1'2j

and

l»-gC»[[q(1+@)]-'"(E'-R-')+(I+@)-'jexp[-[»t(1+q)]"'R '}.

(7.2)

(7.3}

(7 4)

In order to study the cases -1 & g &0, the more precise formulation of the boundary condition at the ori-
gin, as given by (6.19}and (6.20}, is needed. For the present case, X =0 and Ao = V which is a function of
r only; therefore, (6.19) can be slightly simplified to
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g» =(Vx y*) ~ (Vx y)+[V)*,+ i(E —eV)p*] [VP, —i(E —e V)4]+ P*,Q, + P* ~ )+ice(dV/dr)(gP, —4*,Q,}.
(V.S)

Since this energy density is quadratic in the P s, the various partial waves contribute essentially indepen-
dently. By (3.6), the part due to the s wave is

8, =[d4~»/d» —(E —eV}4„*,][d4»/dr —(E —e V)4„,]+4»4«+4„*,4„,—e~(dV/dr)(4, ",4«+4~»4„) . (7.6)

For the region of small » analyzed in Sec. 5, the term 4 «4» is negligible, and hence by (5.8) and (5.12)

ho-[d4~o/dR —(E'-R '}4,*o][d4*,O/dR —(E'-R ')4„o]+4„*(4,~+(I+»))R (4~~o4„o+4,*O4,o). (V.V)

Consider first the case q = -1. The substitution of (5.20) and (5.21} into (V.V) gives

8, -i C„PR-'[(E' -R-')'+1] .
In order to satisfy the condition that

(7.8)

J R dRSo&»,
0

we must have

Co, -0.
Thus, by (5.20) and (5.21), the solution for 17

= -1 is

4„o-0
and

We next consider the case q(1+q) &0. The substitution of (5.24) and (5.25) into (7.7) gives

&o-(ICo7L'+IC«l')R '[(E'-R ')' —(1 —2»})/q]+oscillatory terms.

('l.9)

(7.10)

(7.11)

(7.12)

(7.13)

Consequently, (7.9) cannot be satisfied unless C» —-C«=0. In other words, no solution is possible for the
s wave if »)(1+@)&0.

The conclusion is therefore reached that, in order that a solution exists for the s wave, either

Yf & 0 or g ~~ -1 . (7.14)

The approximate solutions for small » are given by (7.3) and (7.4), or (V.ll) and (7.12). This is the de-
sired result from the problem of s-wave scattering.

8. HIGHER PARTIAL %AVES

In Secs. 5 and 7, we have analyzed in detail the case n =0, and found that the scattering problem has a
solution only if the magnetic moment of the vector meson satisfies (7.14). In this section, we generalize
the above considerations for n =0 to the cases n ~ 1. This generalization is by no means trivial.

We begin with (3.9)-(3.12). With (5.8) and modified (5.12) in the form

41 n 40lt/g Pt (8.1)

(8 2)

the leading terms [in the same sense as (5.13)-(5.15)] of (3.9)-(3.12) are, respectively,

[R '(d/dR)R'(d/dR) -n(n+l)R ']4, „-[R '(d/dR)R'(E'-R ')+(I+@)R-']4,„+n(s+1)R-'(E'-R ')4„=0,

-n(n+ 1)R 4,„+n(n + 1)R (d/dR)R4„= 0,
-R '(d/dR)4, „+R (d/dR)R (d/dR)4„=0,

and

[ »lR (d/dR) --4 (1vq)+( 5)]R, „4[R+(d/dR)R +rgb (E' -R ')]4,„-n(n+1)R '4„=0.
Note that (8.4) is a trivial consequence of (8.3), which is simply

(8.3)

(8.4)

(8.5}
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4„„=(dldR )R4„.
Because of this redundancy, (3.12) and hence (8.5}are essential.

Let

f =R4„.

(8 6)

(8 V)

We want to get a fourth-order differential equation for f by eliminating 4, „. For this purpose, we first
substitute (8.5), with the 6 function omitted, into (8.2) to get

4, „=[[n(n+1)q] '(d/d-R)R'(d/dR)R'(d/dR) —(I+@)[n(n+I)] '(d/dR) q'-(d/dR)R'+(E'-R ')}f. (8.8)

When (8.8) is substituted back into (8.5), we get the desired equation

Od /dR')R'(d/dR)R'(d/dR) -n(n+1)[(d'/dR')R'+(d/dR)R'(d/dR) -gR '] -g(1+ran)d'/dR' +n~(n +I}'}f=0.

(8 9)

Note again here the miracle that E' does not appear in (8.9).
It is a further miracle that this fourth-order differential equation (8.9) can be solved exactly in terms of

Bessel functions. However, before dealing with the exact solution, we study first some of the simple
properties of (8.9). This differential equation (8.9) has an irregular singular point at R =0. In the vicinity
of this irregular singular point, the behaviors of the four solutions, when (V.14) is satisfied, are listed as
follows:

exp[[@(1+@)]"'/R}, exp[-[q(1+@)]"'/R},
for q&0 or q&-1-[4n(n+1)] ', where

v= ~[1+4n(n+1)(1+q) ']'";
exp j[p(1+q)]"'/R}, exp[-[p(1+p)]'"/R},

for -1-[4n(n+1)] '&q& -1, where

v' = ~[-I —4n(n+1)(1 +@) '] "';
exp[[@(1+@)]'"/R}, exp[-[q(1+q)]'"/R},

g (&+»~ i'2

g (j.+2$v )/I

(8.10)

(8.11)

(8.12)

(8.13)

(8.14)

for q=-1+[4n(n+1)] ~; and, as given by Tamm, ~~

R '"exp[2[n(n+1)]"'R "'}, R "»exp[-2[n(n+1)]'"R "'}
R "'exp[2i[n(n+1)]"4R '"}, and R " exp[-2i[n(n+1)]" R '"} (8.15}

for q=-1.
Once again we face the problem of applying the boundary condition at the origin. We consider first the

case g = -1 and follow the procedure of Sec. V. Since

1
P (x)P„(x)dr=25 „/(2n+1)

-j.

and

pl
P'(x)P'„(x)dr =2n(n+1)6„„/(2n+1),

x

(8.16}

we get from (3.6) and (V.5) that

g„= (2n+ 1)[r n(n+ 1)[d(r4*„)/dr —4 *„„][d(r4„)/dr —4,„]+[d4»„/dr —(E —e V)4» „][d4,„/dr —(E —e V)4„„]
+n(n+1)[r '4*,„—(E —eV}4»][r '40„—(E —eV)4„]+4»0„4,„+4»„,4,„+n(n+l}4»4„
—em(d V/dr)(4»~4, „+4»„„4~)}. (8.1V}

Note that (V.6) is a special case of (8.1V). We want to keep only terms of order g' in (8.1V); thus for ex-
ample the term
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@On@On g @1n@1n

can be neglected. By (3.10), we get

(d/dr)(rC„) —4„„=2 [n(n+1)] '[(E —eV)d4, „/dr —[(E —eV}' —1]C„„j

-g 2R2[n(n+1)] '[(E —eV)d4, „/dR -[(E—e V)' —I]4„„)
and hence the term

r 2n(n + 1)[(d/dr)(r4*„) —4*,„][(d/dr)(r4„) —C„„]

is also negligible. Therefore

g„-(2/2+1) [[dC *,„/dR —(E' -R ')4*„„][dC,„/dR —(E' -R ')4„„]

+n(n+1)[R '41„—(E'-R '}41*„][R'41, „—(E'-R )4'„]

+C*„„C„„+n(n+l)41*„41„+(1+11)R'(4*,„41,„+4*,„4,„)) .

(8.18)

(8.19)

When q = -1, the last term of (8.19) vanishes, and h„ is explicitly a sum of non-negative terms. Suppose
now f is

R " exp[+2i[n(n+I)]" R

Then by (8.8)

R '4, „—(E'-R ')4„--[n(n+I)] 'R'd2f/dR'=O(R '")

(8.20}

(8.21)

which is not square integrable in the neighborhood of R =0. Therefore, of the four forms of (8.15), only
the second one is admissible. Since two additional boundary conditions, specifying the incident waves,
need to be satisfied for x-~, we can get no consistent solution for this case of q = -1." In other words,
from n ~ 1 we get

qe -1 or zo0. (8.22)

Attention is next directed to (8.10). If 4, „ is not highly oscillatory, then by (8.5) it must be finite as
R -0. A comparison of (8.8) and (8.10) thus shows that the third form is admissible only if

(8.23)

Consequently, by (8.11), the boundary conditions can be satisfied only if either

1}&0 or -1 &1l&-I -[4n(n+I)] '.
Since (8.24) must hold for all n, it is equivalent to

q&0 or g = -1.
We combine (8.22) and (8.25) to get our final conclusion,

q&0,

which is just (1.1) in terms of /1.

In Appendixes A-F, we solve (8.9) and study the solutions.

(8.24}

(8.25)

(8.26)

9. BOUNDARY CONDITIONS FOR

TRANSVERSE POLARIZATION

The above result (8.26) has been obtained by con-
sidering only the case where the incident plane
wave is longitudinally polarized. In this section
we show that the more complicated case of trans-
verse polarization gives no further restriction.

When (8.26) is satisfied, the second and third
forms of (8.10) are admissible. Let us consider
first the third form. In this case, we get by

(8.7), (8.6}, and (8.8), respectively, that, as
Z-0,

g (Rv-1/2)

0(Rv —1/2)

(9.1)

(9.2}

P(Rv-1/2} (9.3)

In Sec. 4, we have found that, for n ~ 1, 4~, (2.),
4„„,(r), and 4„,(r) for the case of transverse po-
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larization satisfy exactly the same ordinary dif-
ferential equations as C,„(r), 4 „„(r), and 4„(r) for
longitudinal polarization. Therefore, by (5.8),
(8.1), and (9.1)-(9.3) we get

(9.4)

(9.5)

and

(9.6)

as r-0. Therefore we get from (4.8), (9.5), and

(9.6} that, as r-0,
o(r»p-I/2)

and

where

o(rup-1/2)

(9.7)

po=minv= —1+—
2 K

in particular, (9.V) implies that the last term

ized(dV/dr)(Q*„/Pp —(jh*Qp„)

(9.8)

in the energy density g» of (7.5) is of the order of
r'"0 ' and hence integrable. The remaining four
terms are each non-negative and hence must be
separately integrable.

Attention is now turned toward the differential
equation (4.1V) for 4 p„(r). This differential equa-
tion has no analog in the simpler case of longitudi-
nal polarization. For small r, (4.17) is approxi-
mately

(9 9)

By (9.4) and (9.5), a particular solution of (9.9) is
of the order of r" ' ', while the two solutions of
the corresponding homogeneous equation are of the
orders of r" and r " ' (modified by e'). Of these
two, the one with the behavior of r " ' is not ac-
ceptable because, for example, the second term
on the right-hand side of (V.5) is then noninte-
grable. Thus the solution of (9.8) has the property

(9.10)

as r -0 with one constant to be determined by the
condition of outgoing waves as r -~.

The conclusion is therefore reached from (9.5),
(9.10), and (4.8} that

o(r pp 1/2) (9.11)

[R '(d/dR)R'(d/dR) - (ns1)+R 'j@p„

= -(n —1) [R (d/dR)C/„/„»/ —s(++1}R C'&p i&/1

—(n+2) [R '(d/dR)/f/«„+», —n(n+1)R 4i„+»,].

as r -0. Together with (9.7), (9.11) shows that the

energy density $» of (7.5) is indeed integrable in

this case. Entirely similar considerations show

that the same conclusion holds for the third form
of (8.10). Thus (8.26) is sufficient for both the
longitudinal polarization and the transverse polar-
ization.

10. DISCUSSIONS

In this paper we have studied in detail the prob-
lem of the scattering of a charged vector particle
without electric diPole moment by an external
static Yukawa potential, or in particular a static
Coulomb field. This problem is a natural example
of a nonrenormalizable theory, and furthermore,
for small momentum transfers, is closely related
to the field-theoretic problem of scattering,
through electromagnetic interactions, of a charged
vector particle by a charged particle of spin 0 or

Our main result from studying this problem of
potential scattering is that the anomalous magnet-
ic moment a, instead of being an arbitrary cou-
pling constant, must be larger than unity. We
emphasize that parity is conserved in this problem
of potential scattering.

In this way we have shown that, for nonrenormal-
izable theories, there are in general restrictions
on the values of coupling constants. This result
x) 1 arises in a way which is by no means straight-
forward. In Secs. 5 and 7 where we deal with s-
wave scattering, we find first that K cannot be in
the range from zero to unity. It is clear that this
range is excluded to avoid singular attractive po-
tentials that lead to infinite energy content in every
neighborhood of the origin. At this stage the par-
ticular case a =0 remains admissible. It is the in-
vestigation of higher partial waves in Sec. 8 that
the case ~ & 0 is also excluded. The reason for
this exclusion is much less clear and a detailed
study of the behavior of the solution near the ori-
gin is necessary.

The most striking feature of our result is that ~
cannot be too small (and in fact has to be larger
than unity). In other words, that the vector meson
has one interaction (the electric charge) implies
Nat it must have a sizable second interaction (the
anomalous magnetic moment). There is thus a
similarity in theme to our previous argument, that
on the basis of the g-limiting formalism of Lee
and Yang, ~ the charged intermediate boson has an
electric dipole moment and hence violates parity. "
However, unlike that earlier work, ' the present
result on a is rigorous within the context of po-
tential scattering, no assumption being made about
the. existence of any limit such as $-0.

In the renormalizable case of mg scattering,
Martin and collaborators have obtained bounds on
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In other words, near the singularity of the exter-
nal Yukawa potential, the fields are quenched by a
factor

Vp-1/2
y (10.2)

where v, is given by (9.8). For a-1, this factor
(10.2) approaches r. Such a factor is intimately
related to the fact that the present scattering prob-
lem is entirely finite. In this connection, it will
be extremely interesting to study the Lee model"
with an additional nonrenormalizable interaction
between the N and 8 particles.

We conclude with two technical remarks. First,
the coupling constant g is really

g =+e2. (10.3)

We have considered in detail only the case of the
plus sign. However, the fundamental system of
equations (3.9)-(3.12) is invariant under

V -V,
E -E, and 4p„- -4p„.

(10.4)

(10.5)

Since the sign of E does not play any important
role, there is no new feature for the case of the
minus sign in (10.3). Thus, when e&1, there is
no divergence for both signs of the external field.

Secondly, for the purpose of getting the result
g& 1, there is no need to introduce the scale g and
hence the variable ft through (5.8). Instead, it is
sufficient to study directly the behavior of the par-
tial waves near the origin r =0. However, the fact
that (8.9) can be solved in terms of Bessel func-
tions as shown in Appendix A guarantees that it is
possible to develop a systematic perturbation the-
ory. In a separate paper, we shall use the solu-

various physical quantities. " However, the prob-
lems and the results are fundamentally different
in that case of nw scattering and in the present
case. First, while the nm case is intrinsically
nonlinear due to the role played by unitarity, the

present vector-meson case is linear. The more
important difference is the nature of the resulting
restrictions: The mm scattering amplitude cannot
be too large but can be arbitrarily small; but, for
given et 0, the coupling constant e~ cannot be too
small. This may be a fundamental difference be-
tween renormalizable and nonrenormalizable the-
ories.

Consider the behavior of the total field near the
origin for ~&1. It follows from (3.6), (7.3), ('l.4),
and (9.1)-(9.3) that (9.7) and (9.11) hold for both
longitudinal and transverse polar izations. These
should be compared with the incident plane waves
(2.10) and (2.11), and we find in particular

(10.1)

tions f, and f, of (A31) and (A26), respectively,
to study the scattering when e is small and a& 1.

11. SPECULATIONS

We assume that our results are valid not only for
the limiting situation neglecting recoil effects and

radiative corrections but also for both the field-
theoretic case and the real world involving the
scattering of charged intermediate bosons for
transmitting weak interaction. We speculate brief-
ly about its possible implications.

First, the intermediate boson, being charged,
must have a sizeable anomalous magnetic moment

The presence of such a a changes the produc-
tion cross section by both neutrinos" and pho-
tons, "and it is in particular possible to measure
once the particle is found experimentally. Qn the
basis of entirely different arguments involving the
electromagnetic form factor of the neutrino,
Bernstein and Lee' have reached the conclusion
that z =0 by assuming that the sum of a certain
series has a finite limiting value which is different
from zero. Since the present result contradicts
this answer of Bernstein and Lee, it is extremely
exciting to have an experimental measurement of
this value ~.

We speculate further on the more theoretical
side. As given by (10.2), the field at small dis-
tances may be quenched due to the presence of the
nonrenormalizable interaction. Even though this
quenching is only a power of r, it is independent
of e and may be sufficient to remove many, if not
all, of the ultraviolet divergences. Therefore,
saith suitable restrictions on the coupling constants,
a good nonrenormalizable theory can be "better"
than a renormalizable theory, and may even be
finite.

For the present case of the potential scattering
of a charged vector meson, the restriction, writ-
ten in the form e~& e, expresses a linear inequali-
ty between two coupling constants. In more com-
plicated and realistic cases, there is presumably
no reason why the relation should be linear. Let
us consider one of many possibilities involving two
coupling constants g, and g, as following: By
studying one process, we get a restriction g, «g~;
by studying another process, we get a nonlinear
relation g, c f(g,). Suppose that the result of plot-
ting this function is of the form shown in Fig. 1,
then we reach the conclusion that either g, =g, =0
or (g„g,) must be in the cross-hatched area In.
other words, either it is a free field or the cou-
pling constants are not small. In particular, if it
is not a free field, neither g, nor g~ can be zero in
this case. It is most intriguing to think about the
questions: Why is there such a bewildering num-



ANOMALOUS MAGNETIC MOMENT OF THE CHARGED. . . 2993

sf=«SI&
T

g}=Sf

FIG. 1. A possible situation with two coupling constants.

ber of different couplings in nature? Why is
strong interaction strong'?
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In this appendix we solve (8.9) exactly. Let

Rl/21'

then

APPENDIX A

(Al)

R ' (d /dR )R (d/dR)R (d/dR)f=TOR ' (d/dR)R (d/dR)R f
= 2 (To R To+ TOR TOR —2TOR )f,

where

T = R &»(d2/dR2)-R»2

= d'/dR'+ R-'d/dR --,'R-'

The fourth-order ordinary differential equation (8.9) is therefore

[—,'TOR4TO+~TOR2TOR2 —TOR2 —,'n(n+1)(3TO—R2+ R2TO —2 —2IIR 2)-II(1+@)TO+n~(n+1)2]f=0 .

(A2}

(A3)

(A4)

It is therefore clear that we ought to define the differential operator

T, = To n(n+1-)(q+I) 'R '
=d /dR +R d/dR —I/ R

where (8.11)has been used. In terms of T, , (A4) reduces to

(A5)

[—,'T, R T, +~T, R T~R —T, R —2n(n+1}q(1+II) ~(3T~R'+ R T, —2}—/I(1+'/I)T, +n (n+1) II (I+II) ']f =0.

(A6)

Since the differential operator in (A6} is a polynomial in R and T, , it is natural to apply the Fourier-
Bessel transformation

E g) = VdRf (R)Z„gR)
4Q

and the inversion formula

(AV)

f(R)= Jl CdCAI;)~. (CR)
0

8)

9)

We have made the assumption that the Fourier-Bessel transform of f (R) exists, but this temporary as-
sumption will later be removed by a standard procedure in treating differential equations. If we use ~ to
denote a pair of Fourier-Bessel transformations, then

f~E
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and furthermore by the Bessel differential equation

Txf ~ -&'F (Al 0)

R F~-TF,
where T is the same as T, except for a change of variable from R to &

T =g ' (d /dt' )r„" n-(n+1)(1+1}) 'g '
= d'/dg2+g 'd/-df —12r„-'.

By (A10) and (All), the equation for F is

[—'g'T'g + ')2Tt2T——)2T 2'n(n-+-1)1I(1+iI) '(3t2T+T)2 —2)+1)(1+1))t2+n (2n +1) 21)2( 1+1)I2]F =0.
When (A12) is substituted into (A13), we get

( K' '-(d /dK )t' + K'"-(d'/d0')t (d'/d0'k' K' -(d'/dK')K'"

(All�)

(A12)

(A13)

——,'n(n+I)[3t 2(d /d&2)("2+& ' 2(d /dg )g' —2]+1I(1+iI)& +n (n+1) jF =0. (A14)

P=g 'F (A15)

In (A14), li appears only in the next-to-last term,
and all the dependence on g can be removed by
changing the scale of (.

Let

where

21/2[~(1 + li)]1/4R-l/2 (A23)

In particular, one possible linear combination
from (A22) is

and

C =-'[2}(I+a)] '"&1' (A16)

R ' $d( J „, (xt')I (2t' ), (A24)

then a straightforward but somewhat tedious cal-
culation from (A14) gives that

([d2/d&, 2+&, 'd/dg, —(2n+1)2&1 ] 22I]+F, =0.

Therefore two possible solutions are given by

where C is the contour shown in Fig. 2.
We are now ready to remove the temporary as-

sumption that the Fourier-Bessel transform ofj (R) exists. The expression (A24) has the prop-
erty that it is zero if the I„is replaced by K,.
With reference to (A17), the same differential

or

F d (~ e 412/4)

t' -1J (21II/4(I + 1I)1/4gl/2e 1i 2/4)

(A18)

(A19)

g plane

The substitution into (A8) then gives

f (R) = d&J'QR) J (21} (I+1}) ( ' e"" )

(A21)

then the right-hand side of (A20) can be rewritten
in the form

~e ti 7r /4f (R) =vie""'"R ' (dgI„(,'t )J,„„2(x(), -
0

(A22)

(A20)
The right-hand side of (A20) exists in the sense of
Abel summability.

Let
KR =+4 k'

FIG. 2. The contour C of integration.
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equation is still satisfied if the I,„„is replaced
by Y, +» I,„+» or K2„+g Therefore, the most
general solution of (8.9) is given by

f(R)= R '"f(Jt) (A25)

where f (R) is a linear combination of the following
four functions:

as x-~. Of the above four f's only f, satisfies
(A30), but f„ f4, and f, by themselves do not.
There is, however, a linear combination of f„
f4, and f, that does satisfy (A30), namely,

~ ~~i f}'/4

f, =-, w lim td t'H",„'„(x$)I,(-', $')
6~6+ +6

f, = =,wi I td(K, „„(xt')I.Q t' ),
~c

(A26)
e oog ffl /4

gd ]H,"„'„(xt')I,(-,
' t'2), (A21)

f3= -2m gd)Y&„+x X( Iv —
$

C
(A2V)

f~==,'wi sec(vw) «$ J,„„(x))I„(2$'),
~C

(A28)

f, = =,'wi sec(vw} gd(I, „„(x))I,(2)'). (A29)

For g &0, these four expressions are all real, and
are linearly independent.

With reference to (8.10), the admissible solu-
tions are those f (R) that behave like a linear com-
bination of

exp(=,'x'} and x ' '"

where the contours of integration are taken to be
in the right half-plane. For q & 0, the desired f (R)
is given by (A25), where f (R) is a linear combina-
tion of f, and f, .

Needless to say, the differential equation (8.9)
is originally solved by a totally different method.
The present procedure, devised after knowing the
answer, is much more elegant. In Appendixes
B-F we give some simple properties of the solu-
tion.

When ~ = 0 or I, the solutions can be written di-
rectly in terms of Bessel functions and modified
Struve's functions" (needed only for x = 1}without
further integration. We shall not study further
these particularly simple cases of Corben and
Schwinger" because (1.1) is not satisfied.

APPENDIX B

We discuss here briefly the reason for introducing the factors sec(vw) in (A28) and (A29). Let F,(xt) be
any function analytic in the right half-plane and bounded at the origin, then

/ Q ir/4

(d(d(d(}l (( )=, ~~
„'-, '~

J ) (d(d. (d()d„(-,'(')
+C f 1f/4 Q

-i vx/2—28
eQ

(x(}[II(1)(1)ws(x/R) +A/2) ( ~Is(r/w)]

+ 1 Ivy/2+2
~~i m'/4

(d]F ( I)[II(1)( ((( (w/w) +II/w)( (we- d//2)]

+ Q

=w 'i cos(vw) «)F,(x))K„(&$')+ ' gd(F, (-ix))K„(&(')+
+Q ~d( Q a Q

(dV'0(ixh)K, (25') . (Bl)

For (A28) and (A29), let Eo be, respectively, J,„„and I,„„.For these two special cases, the last two
terms on the right-hand side of (Bl) cancel each other Therefo. re an over-all factor of cos(vw) appears.
We introduce the factor sec(vw) specifically to cancel this cos(vw) so that f4 and f, are not identically zero
when 2v is an odd integer. Otherwise we fail to get four linearly independent solutions in this special case.

By (B1)we have the following alternative expressions for f, and f,:

fd = 2 «(Jw ~(x()K„('()—
NQ

(B2)

(Bs)
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APPENDIX C

In this appendix we discuss the relation between f, , f„f, and f as given by (A31) (A27) (A28)
(A29), respectively. First we note that for f4 and f, the contour C of integration can be deformed to the
two 45'lines, namely, from ~e ""to 0 and then to ~e'"4. From (A29) let

$ =ai$'.

Then

~i 7! /4 e-is /4

f, = 2visec(vx) —
~

)d)I, „(xt)1 (—,']')
Jp 0

(CI)

aors
—i r /4 ~pi e/4

'sec( w)i(-1)" (-e"'J $' fdJ'(,$„'„)I„*(-',$")— -""! ('d('J, „(x$')I (-', $")) (cm)
0 Jp

This expression (C2) can be combined with the f~ of (A28) to give

~gi7r/4 ~~-i'/4
sin(vv)f, + (-I)"f, = =,'v + 5d 5 ~,„„(xh)I„H'),

0 0

because -i cos(vx) = -ie'""+ sin(vx) = -ie "'-sin(vv). Since by (A31)

(C3)

~eiw/4 ~e-iw/4
f~=2x

~

+ )d$42„+~(xt')I„Q( )+~xi )d(Y2„„(xg)I„Q( ),
Np wp ~C

(C4)

we get immediately from (A27}, (C3}, and (C4) that

f, = -f, —sin(vw) f4 —(-I)"f, .
This is the desired relation.

(C&)

APPENDIX D

We next discuss the behavior of f„f„f„and f, for small x, or large R. In this case, we can simply
expand the Bessel functions of order 2n+1. We therefore need to compute the following integral:

C(~}=
t

gd((-,'g)'I„(-,'(').
C

Assume temporarily that

0&T & -2 —2v.

(Dl)

(D2)

~0 ei r/4

C(v) = ' ~ ~! ) (A(-', ~)'I„(-,'(')
+ ~~-ir/4 0

dt(-,'t)"'l„(g)

= 2~ c'os(kvT)+ [vd(-(2()"'&.(&)
0

= 2m[r(-,' ——,
'

v - —,'~)r(-,' + -,'v —~)]-' .
By analytic contimation, (D3) also holds when (D2) is not satisfied. Therefore, by (A28) and (A29),

I)~xa~an+xf4
= w sec(vv) m! I'(m + 2n+ 2)r(——-m ——n —2 v) I (~ —

~2
—

2 n + ~ v)
1 1 1 1 1 1 1 1

(D3)

= P (-1) x' ~""r(—'+-,'m+ ,'n+ —,'v)I'( —,'+~+ ,'n ——,'v)/[—m—!r(m+2n+2)],
m=0

and similarly

(D4)
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f, = Q x' '""I'(-,'+~+ ,'n-+-,'v)I'(-,'+~+-,'n ——,'v}/[m! I'(m+2n+2)].
Nt=o

For q&0, by (8.11) v is always less than n+-,'. Therefore f, and f, are always linearly independent.
Similar formulas can be written down for f, and f„ lnx together with derivative of I' functions appear.

The two leading terms are

(2n)! x-'"-' (2n —1)!x-*""
r(-,' ~ ls —-', )r(-', ~ ln ~ -', ) r(-,' ~ ', —-', )r(-,' ~ —,

' -', ))
and

(2n)! x-~n-~ (2n —I )I x- n+' r(l ~ l —)»(l ~ l + l )
' r(l l —l )r(k ~ l ~ l ))

'

The expansions (D4)-(DV) also show that f„f„f4, and f, are always linearly independent.

APPENDIX E

In this appendix, we give the asymptotic behaviors of f„...,f, for large x or small R.
We begin with the f, of (A31). When x is large, the important contribution to the integral comes from

small t, and thus we can use

I,(-,'(') - (-,'()'"/r(v+1) .
Consequently the contours of integration can be shifted to the real axis"

A Do

f, -w )d)J, ( )}x('$) " /1—(v +I)
4Q

=2w[I'(v+ 1)] '[I'(n+ v + —')/I'(n —v+ —')]x '

(El)

(E2)

In particular this verifies that (A30) is satisfied by f,.
Consider next the f, of (A26). On the positive real axis, this integrand has a minimum near $ = x for

large x. Thus the asymptotic formulas for K,„„and I, may be used to yield

f, - ,'wi -(2—»)) "'d$ exp(-x)+-,'(')
~ C

--', w'"x 'exp(--,'x').

Again (A30) is satisfied.
The asymptotic behavior of f, is easily obtained from (B2) in the same way as f,:

f,- —,'I'(v) I gd(Z, „„(x$}(-',() '"
QQ

= —,'F(v)[I'(n —v + —,')/I'(n + v + —,')]x

And the asymptotic behavior of f, is given by (B3}as
g oo

f,- ', d)(2»)) "'ex-p(x( ——,'$')
~o

- —,'w'"x ' exp(-,'x') .
Finally, by (C5), (E2), (E4), and (E5) the asymptotic behavior of f~ is

f - ( I)))+&—7/&&» & exp( —»w)

(E3)

(E4)

(Es)

(E6)

APPENDIX F

In the formulas (A31} and (A26}-(A29) for f„,f, each integ. r. a. nd is a product of two Bessel functions.
We can trade two Bessel functions for one confluent hypergeometric function. A number of the results in
the preceding appendixes are first obtained through this representation by an integral of a confluent hyper-
geometric function, which we discuss very briefly here.

For definiteness, we treat f, through the expression (B2). Since"
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K„(-,'$') = ~ dt cosh(vt) exp(--,'$' cosht),
0

we get"

(Fl)

f, = -,' dt cosh(vt) gd)J, „„(x))exp(--,'$' cosht)
~0 +0

=I'(n+~)[(2n+1)!] 'x "" dtcosh(vt)(2cosht) " '~'4(n+ —,', 2n+2; —,'x secht)exp(- —,'x'secht),
0

(F2)

where 4 is the confluent hypergeometric function. One of many advantages of (F2) is that the argument of
4 is finite from 0 to —,'x'.
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