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expression in braces in 2 can be written as ~H"'

XF~„, and by (2.V) this is equal to ',F"-'" F„,,~, .
In empty space (i.e., when all C 's and A are as-
sumed to be zero) this last expression can be seen,
by Eq. (2.9), to be equal to,'F" -'" F„,„,, or equal

to —,'I'„,I' "', thus giving the expression"

a(-g) Tr(F" (-pe„+ 8,B~ —sq B~+ IBq, B„]))+c.c.
for the Lagrangian density (3.2) in free space,
which is the Lagrangian density used by Carmeli. '
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The covariant derivative V&$~ of the spinor $z is
V' $&=B $~ —$&I' &, where I'

z& is the spinor affine
~ ~ gt

connection. The corresponding quantity I' z &
deals

with the spinor $&i. Throughout this paper there will be
no need to know the explicit form of any affinities.

Some authors denote these vectors as follows:

0"pp =l&, 0&p& =m", o"~p~ = m", and al'~~. =n".
'It will be noted that in the Yang-Mills theory it is the

spin affinities which are considered as potentials where-
as here the vectors 8& are defined by Eq. (2.1). Obvious-
ly spin affinities are not space-time vectors in the Rie-
mannian space whereas the B's are.

In Ref. 7 the four operators 8, l,i are denoted as fol-
lows: Bpp

——D, Bpl =6 Bfp =6. and B&& =4.
3The similarity of this expression, which can be written

as a second-order Lagrangian density of the form
-~(-g) Tr(El' E„)+c.c., to that given by Eq. (1.5)
of Kibble is obvious. The difference between them is due

only to the group structure, which is SL(2,C) in the pres-
ent case and is the Poincarb group in Kibble's case.
This fact explains why we here need to add the complex
conjugate term in order to make the Lagrangian density
real.
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Models of static, cylindrically symmetric solutions of the combined Einstein-Maxwell
field equations are given. These models consist of extended distributions of matter with sur-
face electric currents and magnetic fields outside the matter. The electric currents serve
as sources of the magnetic fields; the distribution of matter as well as the magnetic fields
serve as sources of the gravitational field. The magnetic lines of force may be parallel to
the axis or circular and centered on the axis. The matter distribution is cylindrically sym-
metric and may be contained within a central cylinder or a tube centered about the axis. All
ordinary physical and geometric requirements are satisfied by the models.

I. INTRODUCTION

The static, cylindrically symmetric source-free
solutions of the combined Einstein-Maxwell gravi-
tational and electromagnetic fields are fairly well
understood. " In most cases these solutions are
singular along the axis and not singular anywhere
else. The singularity along the axis is interpreted

as the source of the fields. To avoid singularities,
it is necessary to introduce a distribution of the
matter region over a finite portion of space. Such
is the purpose of this paper.

Four models are discussed (Fig. I). The first
two consist of a cylinder of matter centered along
the axis with different external magnetic fields.
The other two consist of tubes of matter with dif-
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ferent interior and exterior magnetic fields. Sec-
tion II gives a quick review of the general solutions
of the static, cylindrically symmetric solutions of
the Einstein-Maxwell field equations. Sections III,
IV, V, and VI describe the four models, respec-
tively. All four models satisfy physically reason-
able requirements on the strength of the mass and
pressure densities. The metric tensor and its
first derivative are everywhere continuous.

MODEL A MODEL 8

II. STATIC, CYLINDRICALLY SYMMETRIC SOLUTIONS
OF THE EINSTEIN-MAXWELL FIELDS

=P

Three physically independent types of solutions
exist for the combined Einstein-Maxwell fieId
with static cylindrical symmetry. " These are the
following:

(I) an axial current producing a magnetic field
whose lines are circles in the plane perpendicular
to the axis and centered about the- axis,
(II) an angular current producing a magnetic

field parallel to the axis,
(III) an axial charge distribution producing a

radial electric field.
The general solution for the first two types has

been found but not for the third. Hence the models
we consider will only involve physical types I and
II. The general line element for type I c@n be
written as'

yy

x ~ig~ I

P, P

MODEL C

Z

P, P

MODEL D

FIG. 1. The four model configurations studied. Side
and top views are given. The shading indicates the dis-
tribution of matter. p is the distance from the axis of
symmetry, z is the symmetry axis, and Q an angular
measure about the axis. The symbols I and II indicate
the type or symmetry (circular and axial, respectively)
of the electromagnetic field in the vacuum regions (see
Sec. II).

ds'=-(p+ p,)'" "[k+ (p+ p,)"]'e'&0 '~0(dt' dp')-
+(p+ p.)' "[k+(p+p.)"]'e "d0'+(p+ p.}"[k+(p+ po}"] 'e'"""'d ' (2.1)

where p„y„g„and p,, are constants. c and k are both non-negative, c is related to the mass per unit
length of the source and k to the magnetic field strength as will be described. For model A and the exter-
nal metric of model C, the line element (2.1) can be adjusted by an appropriate scaling of p, z, and t to
have 1j, = t1, =0. In these cases, we call y, =a where a is a constant. Such a rescaling cannot be done si-
multaneously for both the interior and exterior regions in model C.

An examination of the motion of neutral test particles (geodesics} in the region of type-I solutions exter
nal to the mass distribution shows that for small c, the gravitational mass per unit length is given to first
order in c by

~gfgy 8 77C ~

The magnetic lines of force
axis (p-P plane) and centered

Ckl/2( + p
)2c-1

fPc [k+ (p+ p )2c] 2

(2.2)

described by the type-I solution are circles in the plane perpendicular to the
about the axis. The nonvanishing components of the Maxwell, tensor are

(2.3)

The corresponding physical component' of the magnetic field is given by

cy'~'e'
(g 1 ' 33)1/2

(p+ p.)""[k+(p+ p.)"]' (2 4)

The signs are chosen alike in Eqs. (2.3) and (2.4}.
The general line element for type-II solutions is
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( p, )'~ "~'[I+k(p+ p,)"' ]'e'» '~&(dt' —dp')

+( + )"[1+k( + p
)""]-2e-2"dy'+( + ) "[1+k(p+ p)"")'e'"""'d '. (2.5)

Again p2, y„(2, and p2 are constants; 5 and k

are non-negative, 5 is related to the mass per
unit length of the source and k to the magnetic
field strength. For model B and the external met-
ric of model D, a rescaling of coordinates can be
accomplished so that go= p0= 0. We call y, = a as
before.

Again an examination of the motion of neutral
test particles shows that for small 5

(2.6)

The magnetic field is parallel to the z axis. The
nonvanishing components of the Maxwell tensor are

rections and has unit coordinate length along t.
The integral (2.9) reduces to

I~=+2(l+ 5)k'/' (2.11)

III. MODEL A: SOLID CENTRAL CYLINDER,

CIRCULAR EXTERNAL MAGNETIC FIELD

Model A describes a solid central axial cylinder
with an external type-I solution (Fig. 1). The
stress-energy-momentum tensor is taken to be

This is the total current per unit length on the sur-
face of the cylinder bounding the type-II solution.

2$eL/2(p+ ~)l+2ls

[1+k(p+ p, ) ' ]' ' (2.7)

(g llew
22)l/2

2(1 + 5)kl/2e'

(p+ p2) [1+k(p+ p )
+

]
(2.(l)

Again, like signs go together.
The current source, I, of the fields is given by

The corresponding physical component is given by

0 0 0

II .2 2' -2y Pl
0 0 p2 0

(0 0 O'p)

r
0 0 0

or, 0 0

& ~ ~ '..)
with an internal line element given by

(3.1)

I—= — e L Lp J"d3V
Y~

e(N)e(M)F 2 „M"N ' d2V ~ (2.9)

ds2=-e2'/ 2p(dt2- dp')+ p'e '~dltl'+e'p'"de' ~

(3.2)

We define f, v, and q by

(3.3a)
d, V is an invariant element of area, d, V an in-
variant element of volume, V, is the two-surface
bounding V, . V„~, and N in order form a right-
handed orthonormal tetrad, L is a unit vector or-
thogonal to V„e(N) is +1 (-1) if N is spacelike
(timelike). 8" is the current 4-vector and

F„,M" N' is the physical field (2.4) or (2.8). A
surface current will be assumed and the volume
element appropriately chosen to determine the
current.

For a type-I field, V, spans the p, P, and I di-
rections and has unit coordinate length in the t di-
rection. The current source, as calculated from
(2.9), is

I.= ~ 4mca'" (2.10)

I, is directed along the z axis. The a sign is the

same as the + sign in Eq. (2.4) if the matter-free
region is outside the current sheet. The signs are
reversed if the matter-free region is inside the
current sheet.

For a type-II field, V, spans the p, z, and t di-

f =d-Pl-
4P= PP+ VPl

yP
=-- PP+ qP,

(3.3b)

(3.3c)

where the subscript p denotes differentation with
respect to p. The Einstein field equations

1 1
GP I/ g]II I/ 2 gP I/A Q TP I/

reduce to

f =
Ppp Pp 2PpfP l

2
~P I"P+~Pf ~

IPP P

(3.4)

(3.5)

(3.6)

(3.7)

For physically reasonable models, we impose
the following conditions:

(1) The components D, P„P„and P, of the
stress-energy-momentum tensor are finite at all
points.

(2) The energy density D~ 0 within the matter.
(3) For weak fields (small c and k «c), D is of
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the order of the mass density and I'„P„and I',
are the order of the square of the mass density.

D=O(e), Z, =O(e'), for e«1, a=o(P).
(4) Elementary flatness. If g is the ratio of the

circumference of a circle (coordinate radius p) to
its radius, g 2g as p-0, fox' all circles centered
on the axis and perpendicular to it.

The models we take for the distribution of matter
are similar to those of Marder. s Assume

mentary flatness requires that

R=2v(e l')p o=2m

ox'

pp o=O~ Go=co ~

This gives

a= ' + P' —ln[p, (p, + p, )' '].P2& Po c2 1

~+ po @+1 g+1

(3.19a)

(3.19b)

(3.20}

+ QO3 (3.8) The tensor components d, p„p„and p, are given
from (3.3a), (3.5), and (3.6) as

(3.10)

(g~p. )p = p, =(ga,.}p =p, (3.11)

(3.12}

where g„„, is the metric in one region and g~„, is
the metric in the other region, the regions being
separated at p = p, . Applying this to the external
metric [obtained from (2.1}] and the internal met-
ric [obtained from (3.2)] with (3.8) to (3.10),

po
t

P2+ po (3.13)

z, =ln1+~P +
1 po

p yg+1 po+ p2
(3.14)

I-&(p.+ p.} "
Po + Po 1+"(Po + Po}

(3.15)

(p+p} cp 1 ~(p+p
Il+(p, +p,)" (m+1)(p, + p,) I+i(p, + p,) " '

WheX'e &y py 6~ oy po~ Coy Sy pg~ and g ale COn-
stants. To satisfy condition (1) above means to
choose n, m, q &1. The 6rst and second fundamen-
tal forms are to be continuous across the bound-
ary. For the same coordinate grid across the
boundary and for a boundary which corresponds
to a fixed value of the coordinate p, this is equiv-
alent to requiring that

P2 d=Q Pl+2 - Q + p2 p~y

p2 pg=E

p2 ~2= &9' + p

(3.21)

(3.22)

(3.23)

P2 ps=Kg +p — —2

+ 2P m+1 — —(y. — pe+2 ~ —~—~p™I P" p tp"
p2 p &P

2P(n+1) =u(n+2).

Thus for small c and k =O(c'),

(3.25}

(3.26)

and D=0(c). As e or k increases, it would be
necessary only to require (3.26) not (3.25). As-
summing (3.26), condition 2 for a physically rea-
sonable model is sati. sfied if q~ n&1. Hence all
conditions (1}to (4) can be satisfied as well as the
boundary conditions.

One can think of the proper mass per unit proper
length as being represented by

(3.24)

Condition (3) for a physically reasonable model is
satisfied automatically for P, and P, and is satis-
fied for I, if m = n and if

c p2

P2+ Po

(3.16)

(3.1V)

P2
=4m de & pdp ~ (3.27)

eo = e In(p2+ po)
Pa +go/+ 1 po+ p2

(3.18}

The replacements go= po=0 and yo=a have been
made outside the cylinder. The condition of ele-

Let p=yp„
1

M=4v p, 'de &g@.
0

p, 'd is given by (3.21). Hence
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1-kp, -" (n+1)(n+3) (3.28)

m =8vc+O(c'). (3.29)
no=in ~+ —+po 1 po

p2 8+1 p2+ po
(4.2)

Bg I, /2vp. —

In the limi. t p, -0, it should be possible to re-
cover the line element given in Ref. I, which is
given by (2.1) with pa=0, go= pa=0, ~o=s (an ar-
bitrary constant). If this limit is taken, Eq (3.20).
shows that

(3.30)

Q —g lnp + const. (3.31)

This choice of a is needed Rlso to keep &o Rnd

hence M finite as the limit is taken. It can readily
be shown that the coordinates p, z, t, and p can
be rescaled to absorb g,. the infinite value of g in
the limit means an infinite rescaling of Q. In this
may me can recover the general external line ele-
ment for metrics of type I with a singularity on
the axis.

IV. MODEL B: SOLID CENTRAL CYLINDER,
AXIAL EXTERNAL MAGNETIC FIELD

Model B describes a solid centxal axial cylinder
with an external type-II solution (Fig. 1). The
stress-energy-momentum tensor @rill again be
taken as in (3.1) and the internal line element will
be described by (3.2) with (3.8), (3.9), and (3.10).
Hence Eqs. (3.1)-(3.12) and (3.21)-(3.24) hold for
model B. The boundary conditions on the continu-
ity of the components of the metric tensor and its
derivative at the boundary, (3.11) and (3.12), give

po

po+ p2
(4.1)

The proper mass contains only contributions from
the matter. It is independent of p, and k to first
order in c and is the same as the gravitational
mass [Eq. (2.2)] which was determined by the mo-
tion of a test particle for p & p„homever, lt has
higher-ordex' contributions which depend upon the
details of the model mhich the motion of a test
particle at p& p, can not detect.

The model corresponds to a stressed mire with
a surface current [given by (2.10}] and an external
circular magnetic field. It is not difficult to con-
struct models when the surface current is replaced
by current distributions within the matter, ' but we
shall not pursue this point. For small centr'al
mass, the physical field can be found in terms of
the current. Using Eqs. (2.4} and (2.10), for large
py

( +,)""
p. +p. 1+k(p. + p.)""'

1+k(p, + p,)"'~ 6p,
(p+ p.)' (I +I)(p2+p.)

2k(1 +6)(p, + p,)"'~p,
(I +1)[1+k(p, + p,)""]'

, 4(1+8)p.k(p. + p.)""
p, + po 1+k(p2+ p,)'"'~

(4.3)

(4.4)

(4.5)

p.[1+k(p.+ p.)""]' (n+1)(p, +p.)
6~p2 4(1+6)k(p, + po)'"~ p2

(q+1)(p, +p,) 1+k(p, +p,)"" q+1'
(4 'I)

The other three conditions for a physically rea-
sonRble model Rre satlsf led lf s =tsy g ~~0 & ly Rnd

. A+1
po =2 - 5p2.n+2 (4.8}

The conditions on I, I, and q, and the relation
between po and p, are the same for models A and
B. Since the investigation has been carried only
to first order in 5 and k = 0 (6'), this equivalence
is not surprising. Calculating the proper mass
according to Eq. (3.2V) for finite p, yields

M = 8v5 + O(5') . (4.9)

Again the limit p~-0 requires a --621np2+a, and
a rescaling of p, z, t, and f outside the matter re-
gion. %hen p-,

Model B represents a cylinder vrith a surface
current much like that of a solenoid. There is an
external magnetic field but not an internal field.
In the ox'dlna, x'y classical M82cwell theory of Rn ln
finite solenoid, one thinks of a uniform internal
field but a vanishing external field. However, by
adding a constant magnetic field to the system that

60= ln((p2+ po) [1+k(pm+ po) ] }
0'p, 4(1+5)kp, (p, + p,)'"'

(q+1)(pm+ p.) (q+1)[1+k(p, + p.)""]
(4 8)

From the condition for elementary Qatness,
Qo =Co
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po= Q= (70=60=0)

2k p22P= ——e=—
1+kp, ' '

1 2kp '
p 0 In(1 +kp0 )

( 1)(1
2kl /

(1+k ')' '

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

The exterior line element [Eq. (2.5}]for 6 =0
and p, =O is

ds2 — (1 + kp2)2e2a(dt2 d p0)
r

+ (1 + kp') 'd P'+ (1 + k p )'d g' . (4.16)

If this is the line element over all space and a =0,
it is a.singularity-free completely magnetic uni-
verse, ' i.e., a universe satisfying the Einstein-
Maxwell theory and consisting only of a, magnetic
field being held together gravitationally. Taking
model 8 with 6 = 0 to the limit p, -0 recovers the
line element for the completely magnetic universe.
I& remains constant as p, -0. It is interesting
that I@ is needed for finite p, independently of its
size; but, for p, =O, there is no singularity in the
magnetic field configuration and hence no need for
I@.

bucks and cancels the internal field, one has a
consistent solution of the field equations for a so-
lenoid with an external magnetic field and a vanish-
ing internal field. This picture seems more con-
sistent with the Einstein-Maxwell model we have
just described.

An interesting limiting case for model B exists
for which 5=0,

ds'=-(1+kp')'e '&0(dt'-dp')

+ p'(1 +kp') 'e '&ody2

+ (1 + k p')'e'&o+'~ode' (5.2)

p = — 1(p, —p, )x" + n0, (5.3)

(5.4)

r= -p+ (p, p)~—'" +
'

(p, —p) y"'+e„
Q'+1 q+ 1

(5.5)

P P1 P2 —P

p, -pj ' p. - p,

As in the previous models, we shall want
n+ 1

po = 2A, cp2, A. =n+2

(5.6)

(5 't)

The boundary conditions (3.11) and (3.12) applied
at both g and p, yield the values of all remaining
constants, n, n0 p0 pg p2 E'0p eg e and a,

2kp1P2- -2&2-1 (5.8)

1 2A.c
p2 1+2k.c ' (5.9)

~ is the parameter concerned with the exterior
magnetic field; k is the parameter related to the
interior magnetic field. Equation (5.2) is the most
general line element of type II which has no singu-
larity along the axis.

Let (3.2) be the line element within the tubular
matter, with

V. MODEL C: TUBULAR MATTER SOURCE,
AXIAL INTERIOR MAGNETIC FIELD,

CIRCULAR EXTERIOR MAGNETIC FIELD

Model C (Fig. 1) is a tubular cylinder of matter
with an exterior type-I solution (circular magnetic
field) and an interior type-II solution (axial mag-
netic field}. Special cases, of course, consist of
the exterior or interior magnetic fields or both
vanishing. Equations (3.1) to (3.V) describe the
stress-energy-momentum tensor of the matter.
The exterior line element is the simplified form
of (2.1),

1 c (1+2Xc)"—vp2
2'

p, I+2Ac (1+2Ac)"+up, " '

c2

p, (1 + 2xc)

p0= n, = ln(1+2'.c)+ (p, —p, ),

e0=21n(1+kp, ')+ p.,— '1(p, —p, ),q+1

P200-t 0 P'0- g ~ 1~

p0'(1 + 2A.c)' p,PO-
~ + p 2c(1 + 2yc)2c +„+I ( 2

—
1

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

ds'=-(p+p, )" "[a+(p+p,)"]'e"(dt'-dp') a = —ln[p0' + ~ (1 + 2A c)' + 0] + e 0+ ~
( p0 —p ~) .

+ ( p+ p.)' "[~+( p+ p.)"]'dA'

+ (p+ p0)"[~+ (p+ p,)"] 'de'.

The interior line element is

(5.1)
(5.16)

The energy density, D, is non-negative if 2n is
sufficiently greater than q and if q is sufficiently
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greater than n &1. This can be seen by examining
the form of d and realizing that both x and y vary
between 0 and 1.

Qtl 2Nx" ~+ x"—n2x2" —ne x "+'
P2- Pj P 1

(4 17) with a =0]. The constants p, and go of Eq.
(5.2) can be removed by a rescaling of coordinates.
Hence the magnetic universe arises by this limit-
ing process as well as by a limiting case of model
B.

+ &eqx "y —Pi x "—
P~ y "+2PiP~x "y"+—K ——y

p p

(5.17)
Applying Eq. (3.27) to determine the proper

mass per unit length to first order in c, assuming
that K p,-"=0 (c ) and K p, ' =0 (c ), we get

M —Sic 1 pg (5.18)

Our definition of M does not include any contribu-
tions from the magnetic fields inside or outside
the matter region. It is evident that the mass cal-
culated this way does not correspond to the gravi-
tational mass, 8m c [Eq. (2.2)], obtained by con-
sidering the geodesic motion of neutral test parti-
cles. All the conditions for a physically reason-
able model can be satisfied by judicious choice of
the exponents q, q, n, and n .

The surface current (at p= p, ) producing the in-
terior field is angular and given by

r =2k'i2 (5.19)

while the surface current (at p= p,) producing the
exterior field is axial and given by

r, =4~ck'". (5.20)

We shall examine two limiting cases, c =z =0,
and p~ p2- with p2 px finite. If c=a =0, the
external metric is everywhere locally Qat, but
there is still a magnetic field within the cylinder.
The gravitational mass of the tube (Eq. 2.2) van-
ishes but not its proper mass [Eq. (5.18)]. A cal-
culation to first order in k p, ' will yield

16mk p, 2
p2

q+1 pg
(5.21)

As before this is the contribution from the matter
between px and p, .

In this universe, any observer outside the tube
of matter would see a Qat space. However, if he
went around the tube back to his starting point, he
would find that the ratio of the circumference to
the radius is not 2m. The universe is conical.
This gives us a model of a source for the external
metric discussed by Dowker. '

The other limiting case is pi, p2- ~ with p2 —pi
remaining finite. The matter density and pres-
sures remain well defined, the current on the in-
ner surface remains constant [Eq. (5.19)], and the
internal magnetic field remains. In this limit, the
universe becomes the magnetic universe [Eq.

p, =2zep„ 8+1
8+2 (6.1)

Matching boundary conditions will give all the con-
stants as in model C.

235 1
1+2y5 p2

'

1 2kp 1
~2 ~ 2 1+kp 2

1 2K(1+6)(1+2&5)'+~~p,'+'~ 1
1+235 p, 1+K(1+235)'+'~p '+"

p

(6.2)

(6 3)

6~ 1 4K(1+5)(1+235)~'~~p ~+~~ 1
1+2Z5 p, 1+K(1+2Z5)""p""

p

p, =a, = ln(I+2X6)+ 1(p, —p, ),
e, = 2 ln(1 +k p, ') + g, — ' ( p, —p, ),q+1

P2
n+I

(6.4)

(6.5)

(6.6)

(6.V)

(6.8)

p = ln p ~(1+235) ' '[1+Kp '+"(1+285)'+'~]
t'

+„'1( .— )i,
)

(6 9}

a = -Infp, ~ '(1 +2%5) ~ [1+kp,"'~ (1 + 2M}~+'~]'}

E'~
+~0+

1 (Pg —Pg) ~q+ (6.10)

VI. MODEL D: TUBULAR MATTER SOURCE,
AXIAL INTERIOR AND

AXIAL EXTERIOR MAGNETIC FIELD

Model D (Fig. 1) is a tubular cylinder of matter
with an exterior type-II solution (axial magnetic
field) as well as an interior type-II solution. When
the exterior magnetic field is zero, model D is the
same as model C. When the exterior magnetic
field is not zero, the line element is the same as
the exterior line element of model B.

The external line element is described by Eq.
(2.5) with g, = P,,=O, yo=a; and the interior line
element is described by Eq. (5.2). K is the exte-
rior field parameter and k the interior. The met-
ric within the tubular cylinder of matter is as-
sumed to have the form of Eqs. (5.3) to (5.6).
Again
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The physical requirements can all be satisfied
by choosing 2n sufficiently greater than q' and q
sufficiently greater than n &1. The proper mass
per unit length to the first order in 6 is given by
Eq. (5.18) with c replaced by 6. The surface cur-
rent at p=p, is

(6.11)

and the surface current at p = p, is

1,=2(1+6)'". (6.12)

Limiting cases have behaviors which are the ob-
vious analogs of the corresponding limiting cases
discussed for models B and C.

~See Gxavi tati on: An Introduction to Current Research,
edited by L. Witten (Wiley, New York, 1962), Chap. 9.
See also a paper by L. Witten, in Colloquium on the
Theory of Relativity, Centre de Recherches Mathema-
tiques, Free University (Universitaire, Louvain,
Belgium, 1960), p. 59.

2J. L. Safko and L. Witten, J. Math. Phys. 12, 257
(1971).

3We use the signature (-+++). A comma denotes
ordinary differentiation. 16~G=1, G is the gravitational
constant, c=1. The coordinate ranges are 0~p &~,
-~ & ~, t &~, 0~)&2m.

4The physical components are defined as follows: Let
A. ~"„& be an orthonormal tetrad with Ag& timelike and

pointing to the future. The physical components of the
tensor t» are the invariants f~„g= f»gs~&A~a&. We have
chosen

q»=(o, o, (g")'~', o), ~&3&=(o, o, o, (g")'~').

~L. Marder, proc. Roy. Soc. (London) A244, 524 (1958);
A246, 133 (1958).

To deal with currents distributed within the matter,
let T&p(matter) Tpv T~&(EM), where T»(EM) is construct-
ed from f» within the matter. It is necessary to assume
the f» and J& within the matter consistent with (2.9).
Tp„(matter) is then determined. For example, for "skin"
currents choose

fpz fpz (P2) exp t- ~ (P2 -P)l, P —P2

~M. A. Melvin, Phys. Letters 8, 65 (1964); K. S.
Thorne, Phys. Rev. 138, B251 (1965).

J. S. Dowker, Nuovo Cimento 52B, 129 (1967). See
also the discussion in D. Wisnivesky and Y. Aharonov,
Ann. Phys. (N.Y.) 45, 479 (1967).
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A canonical algebra is defined as the algebraic structure common to classical and quan-
tum mechanics. It is a linear space equipped with two bilinear operations: an associative
product, and a Lie product which is a derivation with respect to the associative product.
In addition, the Lie products of the generators of this algebra are constants. The problem
of the algorithmic formulation of a canonical algebra in terms of an auxiliary associative
algebra is solved. The first part of the problem consists of finding all auxiliary algebras
which can algorithmically support a canonical structure. The second part consists of find-

ing all canonical algebras which can be formulated in terms of a given auxili. ary structure.

I. INTRODUCTION

It has been shown by Groenewold' and Moyal 2

that quantum mechanics can be formulated in the
language of classical mechanics, i.e., in the phase-
space language. Koopman' has investigated the
problem of formulating the Lie structure of clas-
sical mechanics in the Heisenberg algebra of quan-
tum mechanics. The purpose of this payer is to
study the general problem suggested by these re-

suits, namely, the problem of algorithmically for-
mulating the algebraic structure of classical or
quantum mechanics in an auxiliary algebra.

Conceptually, classical and quantum mechanics
involve two algebras: an associative algebra of ob-
servables, and a Lie algebra of generators of the
automorphisms of the algebra of observables. It
is a peculiar feature of both theories that these
two algebras have a common underlying set. We
are thus led to define a canonical algebra as a lin-


