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The special choice of putting one of these parame-
ters equal to zero leads immediately to the well-
known Schwarzschild solution as in Einstein’s
theory. Quite generally, however, these two pa-
rameters may be fixed to give better agreement
with experiment [in Dicke’s theory?® there is the
arbitrary parameter w with “w=6" in his Eq. (36)].
For details of these solutions we refer the reader
to Sen’s paper.®

We have shown that our theory brings a very
close and a natural connection between gravitation
of the Lyra type, scaling, and scale invariance.

|

The “switching off” of the gravitational coupling
constant forces « to the value one and hence a
meaning to scaling cannot be given in such a case.
We have also maintained the spin content of Ein-
stein’s theory.
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The quantum (q) concept of space-time dynamics described previously is extended from
free to interacting systems. The idea is developed that the world is not a plenum of q ob-
jects but a plexus of q processes. The q mode of description by Hilbert-space vectors
with a special rule of interpretation (stators) ordinarily used for physical objects is used
instead for physical processes acting upon objects, including free propagation. The geo-
metrical object proposed as stator for a q network of processes is a natural generalization
of a tensor, a Feynman-diagram amplitude, and a chain in a complex, called a plexor. The
notation, algebra, and geometry of plexors is illustrated. A strong Mach principle is a
self-evident feature of such a q-process theory of space-time, in which it is meaningless
to speak of empty space-time or of space-time relations between noninteracting systems.

INTRODUCTION

There has to be a better way to unite relativity
and quantum theory than the present quantum
field theory. It is important that a theory account
for the remarkable relativistic causal structure
and quantum logical structure of the world, but a
theory should also account for the no less remark-
able existence of the world. In quantum field
theory the existence of the world is an as yet un-

verified conjecture. In a theory in close corre-
spondence with the actual microstructure of the
world, the existence of the world would be a
tautology as automatic in the theory as it is in
reality.

The decision to make existence prior to every-
thing else leads one to seriously consider finite
models of the world, to build the world from fi-
nite elements through finite means of assembly,
as a digital computer is assembled from binary
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digits.

Besetting these attempts, and any other funda-
mental theory, is the ever-present pitfall of num-
erology, to be avoided only by stating in advance
the operational meaning of each construct and
computation. By numerology I mean any scheme
that incorporates so little of the rich structure
of the world that the numbers it produces can be
assigned ex post facto meanings to take advantage
of fortuitous coincidences. Here we avoid numer-
ology by fixing the operational meanings of the
relativistic causal order C and the quantum logical
relations C and 1, which we take to have their
ordinary senses in the cq and ¢ domains.! Itisa
nontrivial property of the world that all the con-
cepts of physics can be expressed in the language
of these two structures. For example, the photon
is identifiable by its mass and spin, quantum
numbers of the invariance group of the causal re-
lation; charge is the coupling to the photon. In
a theory which includes these basic (and inciden-
tally dimensionless) concepts there is little am-
biguity about the meaning of derived constructs,
and little doubt about when the theory agrees with
experiment, when it disagrees.

Within finite models a certain quarrel between
the philosophies of relativity and quantum mechan-
ics becomes sharper than was possible in a model
whose existence itself was at stake.

According to relativity, the world is a collection
of processes (events) with an unexpectedly unified
causal or chronological structure. Then an object
is secondary; is a long causal sequence of pro-
cesses, a world line. According to quantum
mechanics the world is a collection of objects
(particles) with an unexpectedly unified logical or
class-theoretical structure. Then a process is
secondary; is a mapping of the objects or of their
initial to their final conditions.

Which are we to build out of our quanta - beings
or becomings, essences or existences? In one
paper along these lines the attempt was to build
objects; in a later paper, processes.! The results
favor a process model, an existential physics.
Let us suppose that the primitive system is an
elementary process, not an object, and that we
assemble these primitive processes into chromo-
somelike code sequences to build simple objects,
and braid and cross-link these strands to make
more complex objects and their interactions.?

The idea of the quantum jump comes into its own,
and reigns supreme, even over space and time.
The primitive quantum processes or chronons of
which world lines are made can be thought of as
acts of emission or creation, Their duals, anti-
chronons, represent acts of absorption or anni-
hilation. A free process, one without interaction,

typically consists of the one followed by the other.
In order to account for the four-dimensional
world it suffices to suppose that the chronon is
binary, is a spin-3 system.?

The germ of such a q-process world is present
in Feynman’s cq conception of elementary-parti-
cle processes. The amplitude for a Feynman dia-
gram is closely related to the wave function for a
process, and when we use Feynman amplitudes
we come close to applying quantum logic to pro-
cesses rather than objects. We shall discuss this
relation between the q and cq processes again at
the end of this paper (Sec. IX).

A still more serious clash between the principles
of relativity and quantum theory happens in finite
models. The basic quantum cannot be Lorentz-
invariant, since there is no nontrivial finite -
dimensional unitary representation of the Lorentz
group. However, we have seen' that Lorentz in-
variance can emerge in the cq limit, hence in the
S matrix., Exact rotational invariance is built in
as SU(2, C) invariance.

1. THE QUANTUM PLEXUS

So I think the world is a plexus, not a plenum;

a quantum network, not a quantum field. Here I
give a language for a quantum (q) plexus, for a
network not of classical (c) currents but of q pro-
cesses. The binary q dynamics I have already
described' is a special case,

The quantum brings in old semantic questions.
To delineate my position I find helpful the new
term stator, that which states, for the old concept
of a vector in Hilbert space with a certain kind of
rule of interpretation or meaning. The stator
differs from a state vector or an electric field
vector only in the definite stipulation of this partic-
ular meaning, which makes ill-formed such name
phrases as “the stator of the system” and there-
fore “the evolution of the stator of the system” and
“the collapse of the stator of the system;” much
as “the adjective of the cat,” “the evolution of the
adjective of the cat,” or “the collapse of the adjec-
tive of the cat” are not quite right in common
speech. Apparently the semantics of many quan-
tum theorists seems to permit them to speak of
the P vector, ket, or wave function of a system as
existing, evolving, or collapsing. It is to get
clear of any possible confusion with such usage that
I have adopted the special term stator. A system
does not have a stator. An energy, a momentum,
an angular momentum, yes. A stator, no (Sec. II).

The plexus leads to syntactic problems. How do
we describe a network of q processes without a
pre-existent space-time plenum? I have a simple
suggestion for the stator of a q plexus that I call
a plexor. A plexor may be represented by a tensor
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whose indices are not arranged in a line but laid
on the cells of an (oriented-cell) complex. If the
complex is of dimension n the plexor is called an
n-plexor. The plexor is an elementary generali-
zation of a tensor, a Feynman-diagram amplitude,
and a chain in a complex, and can be approached
from each of these sides:

Tensors are 0-plexors or specially simple 1-
plexors, those whose complex is a cell decomposi-
tion of a line; general 1-plexors describe q inter-
actions; and there are yet more general n-plexors
whose utility I do not quite foresee.

Plexors are direct descendants of Feynman-dia-
gram amplitudes. The Feynman amplitudes have
a rich c substructure, the relativistic space-time
continuum and the ¢ momentum space which is its
Fourier image, while plexors are pure q entities.
But the lines in the complex still represent prop-
agation processes and the vertices still represent
interaction processes.

A chain is a limiting case of a plexor in which
we first go from q theory to a ¢ limit and then
from finite to infinitesimal quantities. The first
limit replaces noncommutative by commutative
operators, the second replaces multiplicative by
additive combinations (Secs. IV-VII).

A previous model, a q binary dynamics,' is an
example of a pure q theory whose stators are
merely tensors. The generalization from free to
interaction processes leads from tensors to plex-
ors. I suggest world stators are plexors. I show
here how space-time geometrical relations among
processes first arise after a plexor has been as-
signed to them, and are drawn from that plexor.
In the process theory “empty space-time” is a
nonsense phrase. Since a system does not have a
stator, the world does not have a plexor, and
therefore I expect the world too does not have a
preassigned space-time geometry. But a stator
for a system approximates a physical reality for
some ensembles of many similar such systems
and likewise for a plexor and a space-time geome-
try. My starting point is not exactly Mach’s, but

I seem to swing unexpectedly close to his principle.

II. STATORS

A physical theory has to do with physical facts
and with mathematical or linguistic symbols for
them. The link between them, meaning, may at
first be gotten across by common speech. Ulti-
mately, if we are pressed to define our terms
again and again, or if there is a block to under-
standing, we are reduced to physical demonstra-
tion, pointing, touching.

To communicate a physical theory it suffices to
convey a classification scheme, i.e., to point out

|

and name the classes in which the system of the
theory may enjoy membership, and, as the laws

of the theory, the logical relations of inclusion

and exclusion among these classes. A class, to
which corresponds a yes-no question, “Is the sys-
tem of that class?” and a proposition, “The system
is of that class,” may in critical cases be described
operationally by exhibiting how we control mem-
bership in that class. Let us call a device regu-
lating the system in advance a channel*;one deter-
mining membership after the fact, a cochannel.
The operational expression of a class inclusion
AC B is that whenever an A channel is connected
to a B cochannel the outcome is affirmative; of a
class exclusion A 1 B, negative.

A quantity (with values in a set V) is defined
when for each set of values (in V) is given a class,
membership in which is equivalent to the quantity
taking on a value in that set. To define a quantity
operationally, we show how to control the values
of the quantity. We may say the quantity exists,
or is possessed by the system, if the classes P(v),
as v ranges over V, are exhaustive (existence) and
mutually exclusive (uniqueness, implied by tze).
(We need not consider here the technical modifica-
tions of continuous spectra.®)

In ¢ physics, the empirical class calculus of the
system is represented by the class calculus of an
auxiliary set we assign to the system, its phase
space. It then follows that each of the quantities
possessed by the ¢ system corresponds to a func-
tion on the phase-space (into the set of values) in
such a way that a ¢ eigenvalue principle and ex-
pectation-value formula hold. A proposition con-
cerning the c system is represented by a ¢ pro-
jection, a real quantity taking on only the values
0, 1. We may agree to express any information
about the system by such a projection. Then when
we change our information about the system, we
must replace the projection by a new one. This is
just a consequence of the meaning we give the pro-
jection.

To each point p of phase space corresponds a
projection P(p) and a class. Since these classes
are exhaustive and mutually exclusive, the point
in phase space exists, or is possessed by the
system. On the other hand, the totality of all pro-
jection in phase space, while exhaustive, is not
mutually exclusive. Therefore we cannot say the
general projection exists or is possessed by the
system.

In q physics, according to von Neumann and
many others, the empirical class calculus of the
system is represented by the subspace calculus of
an auxiliary Hilbert space we assign to the system.
It then follows that each of the complex quantities
possessed by the system corresponds to a normal
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operator on the Hilbert space in such a way that
the. eigenvalue principle and the expectation-value
formulas of quantum physics hold. A proposition
concerning the system is represented by a q pro-
jection, a Hermitian operator with eigenvalues

o, 1.

’By a quantum or a q system I mean such a sys-
tem.

By a stator I mean a vector in the Hilbert space
we associate with a q system with the rule of in-
terpretation that classes correspond to subspaces,
class inclusion to subspace inclusion, and class
exclusion to subspace orthogonality. Each stator
Y determines a projection P(y) and thus a class of
the system.

We may agree to express information about the
q system by a projection. Then when we change
information about the system we change the pro-
jection. This is just a consequence of the mean-
ing we give the projection. If our projections are
determined by stators, we will have replaced one
stator by another.

Stator projections are exhaustive but not mutually
exclusive. Therefore we cannot say the stator
exists or is possessed by the system.

For each stator i the proposition “The system
is in the class P(¥)” or “P(y) is 1” is meaningful
and might be abbreviated “y!” Stators are names
of qualities, adjectives. In this respect they re-
semble cells of ¢ phase space more than points,

The question “What is tke stator of the system?”
is not of the form “What is the Q of the system?”
for any quantity @ possessed by the system. It is
ill-formed, and so also are references to the
evolution or the collapse of the stator of a system.

References to the (1) evolution and (2) collapse
of state vectors usually should be replaced by
references to (1) the laws of evolution of the quan-
tities of the system and (2) the rules of interpre-
tation that assign particular stators to particular
facts, classes, or controls.

There is the peculiar notion that the system does
not always possess a position, energy, and so on,
but only when we look for one. I think it this no-
tion that led some to foist a y vector upon the de-
prived system by way of compensation. I call
this notion peculiar because every time we look
for a position, energy, and so on, we find one,
and in common sense this would be reasonable
proof that these quantities are always there,
like the trees in the unseen woods. What ever
led anyone to give up this basic rule of interpre-
tation?

What seems to be responsible for abandoning
this part of common sense is the simultaneous
truth of the following three statements about posi-
tion classes P,, momentum classes P,, the univer-

sal class I, and the null class &

(@) There is always some position x: U, P, =L,

(b) There is always some momentum p: U,P,=1L.

(c) Having a position x and a momentum p is
impossible: P,NP,= &.

Carefully read, all three describe operational
realities and are certainly noncontradictory. But
there is a clear operational violation of the dis-
tributive law, or there would be the contradiction

@=U, ,P,NP,=(U,P)N(U,P)=INI=I.

If the operational basis of the distributive law is
not explicit then it is not easy to abandon this law
as we learn more about the world. Then we are
apt to infer from statement (c) that (a) or (b) must
go.

To seek a theory without entities like stators
that are replaced as we learn about the world is
to seek a theory without rules of interpretation,
without communication. To accept but attribute
reality to the replaceable entities in the theory is
to confuse the level of names with the level of
things. To suppose the world must conform to the
patterns of thought that served man in the past,
and in particular to those we have called logic, is
to ignore the lessons of relativity.

III. A STATOR NOTATION

The best notation for the theory of a simple pure
q system is that of Dirac, who designates vectors
by | ), dual vectors by ( |, inner products by ( | ),
and outer products by | ) ( |. But the best notation
for the cq dynamics of interactions is that of Feyn-
man, a network notation. Here I mix the Dirac
and Feynman notations to make a network for pure
q dynamics of interactions.

We hold on to the sign of Dirac for a stator, | ),
but in order later to make networks of stators we
first set | ) free from the printer’s line. | ) can
now jump about as in Fig. 1. So ( | also must des-
ignate a stator for us, not a dual stator. Instead,
thinking of | ) as the head of an arrow, we depict
a dual stator as the tail of an arrow: ) |. This
too may be written anywhere in any way. | ( too is
a dual stator. Evidently | and | ( are not bra and
ket but ar» and row. If an arr is a column then a
row is a row.

The inner product of | ) and ) | is a complex num-
ber that should be | ) | because a complex number
needs no “polarity.” The outer product of | ) and
) | is an operator and should be written ) | ), a com-
plete arrow, to indicate how it acts upon stators
[ ) and upon dual stators ) |. The general linear
operator is ) ). The effect of a linear operator
(A( on a vector (B| is (A(B| or |B)A). These sym-
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bols too may be written anywhere in any way.

Now we consider compound systems. If |1) and
|2) are stators for systems No. 1 and 2, then in
the Dirac linear script an outer-product stator
describing the pair system 1Xx2 is written |1)|2)
and its conjugate is (1](2| or (2|(1|. This makes it
impossible to bring together the factors which
should be together in the inner product [1)|2) (1[(2]
(or |1)]2) (2/(1]). In the arrow notation we desig-
nate a product stator describing the compound sys-
tem by

n ., <
2> <.

The dual product vectors are written
n 1K
)2 [2¢.
The inner products are then the juxtapositions
1, I
[2)2] 221,
and the outer products are
i
)2|2) (2]

For general (nonproduct) vectors or operators of
the product system, we drop the multiplication
sign. Such vectors are drawn

1y
b,

[D=1>]

FIG. 1. Somersault of a stator symbol.

|

Such operators are shown as

AR,
.

Now we take up complex systems. The product
stator describing a sequence of similar systems
is

()

).
The product dual stator of the sequence is drawn

<

[(.
For general stators and dual stators the bars are
united:

)

).

I think of these drawings as the two halves of a
zipper. In the outer product the zipper is open.
When we form an inner product we close the zip-
per. The outer and inner products, with a partial
inner product between them, look like

) ) ) I )
) ) ) )
> ) ) ) » )
>l > AR

It is natural to regard the dual stator ) | as stator
of another kind of system, an antisystem. The
linear operator ) | ) is then stator of a system-
antisystem pair. The inner product | ) | is the am-
plitude for a system-antisystem annihilation leav-
ing no system at all. Thus complex numbers too
may be regarded as stators, for the vacuum.

So far no concepts peculiar to dynamics have
been introduced. The notation expresses concepts
of q logic alone. The order of factors suggested
in the product is spurious; a cyclic rendering like
Fig. 2 is an equally valid picture.

Now we take up q kinematics and chronology.

8
000 = oy

FIG. 2. Unordered tensor product.
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IV. CAUSAL NETWORKS

A q dynamics is a system of (kinematic) pro-
cesses I, a binary composition [1,01II,, and a
class D of dynamical (allowed) processes. In one
dynamics, that of the single free “nuon,” the pro-
cess is a q sequence of binary decisions, and
systems are neither created nor destroyed. Such
processes can be represented, informally at first,
by the pictures (with labels shown)

- e —rer—s G o

’
X XOx xOxox -,

showing one, two, three, :++ chronons x in se-
quence. I suppose the above diagrams also de-
scribe the kinematics of many free nuons, except
that in them the generator - is to be replaced at
every appearance by one of the parallel products
(still informal)

-

IR
e

b
X X0x X0xox -°°-,

which advance an assembly of 1, 2, 3, ... nuons
forward one chronon. Using the sequential product
© and the parallel ® we can make series-parallel
circuits. It is natural to describe interactions by
networks,

We suppose the interactions are the result of
processes of creation and annihilation represented,
still informally, by pictures such as Fig. 3, and ©
products thereof. We can call these processes,

Y, X, etc. after their shape. Processes of this
generalized kind no longer will fall within the
scheme [I1,0, D] because the product is not unique.
If I, is the X process and II, is x®y, then two
products II,0II =II; are defined by joining lines out
of I, into II, in two possible ways.

By a network we mean a collection of points and
a collection of arrows between them. All the pic-
tures we have drawn here are causal networks, in
which the arrows represent the causal relations;
and the points events. We now bring together the
causal and quantum concepts.

V. PLEXORS

We often put into the tensor product as element
of structure a concept of order that is irrelevant
and ignored. We go from tensors to plexors by
generalizing this order, so we must first make it
fully explicit. Consider the tensor product of
three linear spaces L, M, N:

T=LMN
=(L(MN)).

There is a first factor N, a second factor M, and
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a third factor L. If the three factors are replicas
of L we may even number them to show this order:

T=L,L,L,.

Sometimes this order is relevant. In the q theory
of three hard-core particles on a line, the order
of the factors may reflect the order of the parti-
cles. In the nuon model, the order of factors rep-
resents the chronological order of elementary
processes.

More often the order of factors is irrelevant.
When we multiply a position stator ¥ and a spin
stator x to describe a spinning particle, we do not
really want to call the position stator the first fac-
tor or the second factor either. It is enough that
the two factors can be told apart. Only the linear
notation leads us to arbitrarily put one factor
first, and perhaps to feel that some factor has to
come first, whether we like it or not. It is impor-
tant to realize that a product is possible in which
the factors are assigned no order at all.

It is not easy to write a product without intro-
ducing some extraneous order, but the mathemat-
ical concept is clear. A vector in the usual tensor
product LMN is a formal sum of ordered sequences
(¥, @, x) of three vectors ¥, ¢, x, one from each
of the factors L, M, N in that order. We may in-
stead consider a formal sum of urordered sets of
three vectors ¢, ¢, x, with ¢ in L, ¢ in M, and
x in N. If the spaces L, M, N do not overlap then
the three vectors ¥, ¢, yx in the set cannot be con-
fused. If they overlap confusion can be avoided
without introducing an extraneous order. Individ-
uality does not imply order. Instead of numbering
three replicas of a linear space L as L,, L,, L,
we can distinguish them with unordered labels like
Ly, Lo, Lo. If we write or read in the usual
linear way, one factor is going to appear first,
but this linear order is an artifact. If we cannot
shut this order out of our minds, we can have the
three factors read out simultaneously in three dif-
ferent voices, or printed on the same space with
three colors of ink.

To make the order in the tensor product explicit,
I think of the product L,L,L, as formed in two
steps. First we define an order through a network
like

———

S a 5 Q
o o
o a
Y X

FIG. 3. Y and X process.
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Then we put vectors ¢, ¢, x on each arrow in the
diagram. (Putting them on the arrows seems ar-
bitrary but is more useful in my immediate appli-
cation than putting the vectors on the vertices in
the diagram. When we generalize there will be
vectors everywhere.)

Y @x

—_— -

This is the vector in the ordered tensor product
usually written x¢y. Because the order is explicit
the same vector may be written

W
X ¢y or ¢,
¥X

We ignore the accidental visual order and follow
the arrows. With this agreement, the totally un-
ordered kind of product can be written without re-
course to unusual symbols or colored inks as

Pt oot xt

if the vectors ¥, ¢, x are from different spaces.
If the vectors are from the same space we label
them to tell them apart, and since now the only
order that counts is the explicit one of the arrows
we can use letters a, b, ¢ or even numbers, 1, 2,
3 as marks of individuation without paying atten-
tion to their order.

This unordered tensor product has the same
dimension as the ordered tensor product LMN.
There are 1-1 linear-space isomorphisms between
it and LMN, though no natural one. All this prod-
uct lacks is a certain element of structure, the
order. We no longer have the right to say that one
of the factor spaces L or M or N is first, one
second, and one third. We can only address them
by their names.

We have dissolved the irrelevant order. Now
we can establish a more relevant order.? The rel-
evant order may be of a more general kind, such
as a partial order (for example a Y) or a network
(for example an A). These are not linear orders
but they are still one-dimensional structures.

The higher-dimensional structure of an oriented-
cell complex of dimension # is a still more general
kind of order. For now let us stop at that degree
of generality; and I am not even sure n>1 will be
at all useful. It is the causal order we wish to
represent finally.

A product of vectors in a simple or linear order
is an ordered tensor; a plexor will be a product of
vectors in a more general order. For clarity I
parallel their definitions.

An ordered tensor space

n
T=LiLy--L,=1l L,

is defined by a sequence of linear spaces
L,L,...,L, Aplexor space

P=1]L,
oEK
is defined by a complex of linear spaces {L,},
that is, an oriented-cell complex K ={¢} with
a distinct linear space L, given for each cell o
in K.

An ordered product tensor {=3,y,** ¢, in
L,L,---L, is defined by a sequence of vectors
Uiy Yoy ..., ¥, Wwith ¢; in L;.

A product plexor (over a complex K)

7= 11 ¥,
o€k
is defined by giving a complex of vectors ¥, that
is, a vector ¢, in L for each cell o of K.

The general ordered tensor of L,L,-**L, (plexor
of J[I,L,) is a linear combination of ordered prod-
uct tensors (plexors) with identifications express-
ing linearity of the product in each of the factor
vectors.

Let us confine ourselves to the case where all
the linear spaces L  belonging to cells of the same
dimension n are replicas of one linear space L,.
A vector in L can be regarded as a formal pro-
duct of the cell ¢ of dimension » and a vector in L,.
For the sake of the printer I also designate the
plexor space

II L,

ocekK
simply by L¥ or L(K) for short. If the underlying
complex K is a line complex (- or — or —— or **-)
the plexors over K are called linear. Ordinary
tensors are either 0-plexors (no order) or linear
plexors (linear order).

VI. PLEXOR NOTATION

A notation for plexors follows naturally from
that for stators. First we draw the cell complex
K. Then we show the orientation of K with arrs.
Then for many purposes we are done. We do not
need the base symbol of the tensor, its proper
name, because context reveals what object we are
talking about. We have already drawn the stators
on the complex, for the arrs that give the orienta-
tion can be read as stator symbols as well. We
may infer the linear spaces L  from which the
stators are taken from the context. Usually all
stators range freely over their linear spaces in-
dependently so no labels are needed. When some
stators are fixed or related to others, we add
labels to show this.

Linear plexors, for example, I write as one
of the possibilities
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) |)’ I)I>7 I>|>I>, ey

the generic one of which I write as

DEERIPR

Here the linear space attached to the vertices is
C, the complex plane, which serves as an identity
in this calculus and can usually be ignored. There-
fore I have not shown the vertices, only the lines
joining them. The linear space on the lines has
to be given separately. Each arr |) stands for a
vector in this linear space.

When two consecutive processes described by a
plexor are identical (always in the Bose-Einstein
sense) the plexor is to be symmetric with respect
to the exchange of the corresponding stators. I
show this symmetry by a colon regarded as a de-
generate equality sign:

[Yely e ).

The free-nuon process is described by a linear
plexor of this symmetric kind.

VII. PLEXOR ALGEBRA

Plexors over a single complex are added and
multiplied by complex numbers just like tensors.

When the linear spaces L entering into a plexor
product are provided with conjugation or * opera-
tions, assigning to each vector ¢ a dual vector y*
depending antilinearly on i, we provide the plexor
product with a * operation as well. We set (L (K))*
= L*(K*), where the spaces L} are the duals to the
spaces L, and K* is the complex K with all orien-
tations reversed. For example we now conjugate
the ordered tensor product of two stators thus:

() I)* = Ix (=)l )=l ,

where we have used the stator notation already
set up:

l)* = |x(,
9™ =15}
Spaces, plexors, and so on provided with such a *
operation I call * spaces, * plexors, and so on.
Stators are * vectors, for example.
We may multiply two product plexors P =[] 4

and P’ =]y’ of L(K) and L'(K’) by forming the dis-
joint union of their complexes:

K"=K+K',
keeping fixed the vectors associated with the cells
bg =¥,

=y, for oinK’.

for cin K

The general plexors are then multiplied by linear-
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ity. We call this plexor (and its plexor space) the
direct product of the given plexors (and their
plexor spaces), and write it as

L"(K")=L(K)L'(K")=L'(K")L(K).

There are many other plexor products as well.
Every way of connecting the two complexes K, K’
into one K” defines a product of plexors over K,
K'. For example, linear plexors can be multiplied
in sequence,

la) [6) © |m) |n) =|a) |b) |m) |n),

a noncommutative product for which I reserve
the multiplication sign ©, or in parallel,

la) )
la) ) @ |m) |n) =
lm) [n),
a commutative product for which we use the multi-
plication sign ®. The parallel product is merely
the direct product specialized to linear plexors.

Rather than spell out the meaningful intrinsic
relations among plexors one by one, we may at-
tempt to characterize them all at once by their
invariance transformations, the morphisms of
the category of plexor spaces, or the plexor mov-
phisms.

A plexor morphism m: L(K)- L’(K’) is a cell-
complex morphism m: K - K’, and for each cell o
in K, a linear transformation (preserving inner
products in the case of * plexors) m: L - L/,
where o’=mo. The cell-complex morphism m
maps each point (0-cell) o, of K into a point o} of
K', o3=ma,, with points forming a +-oriented cell
of K mapping into points forming a + -oriented cell
of K'.

This definition of plexor morphism is tentative,
and may be modified as we see more closely what
structure is useful to express physical laws. I
give one such relation to reality next, to show the
intertwining of the quantum and the plexus in quan-
tum geometry.

VIII. PLEXOR GEOMETRY

Let us go to free dynamics for an example of how
a description of a dynamical process leads to a
Space-time structure. Now the linear space under-
lying our plexors is the two-dimensional * space
whose vectors are two-component spinors describ-
ing a basic dichotomy or binary process. I picture
the ¢ analog of the process as that undergone by a
man in the game of checkers: forward to the right
or forward to the left.?

A linear plexor like

11 12) 13) (1)
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describes three binary processes or chronons in
sequence. Each has a Pauli algebra of 2x2 matri-
ces for its quantities, and these algebras may be
taken as commuting within the algebra of quantities
of the triple sequence, provided we indicate the
causal order explicitly as in o*(1), o*(2), o*(3).
(»=0,1,2,3 with 0°=1 labels the usual Hermitian
basis for the Pauli algebra.)

A class of chronons is defined by a projection
operator # in the Pauli algebra of L, n*=n=n*,
The o* form a basis for the n’s: n=n,0". We
identify these n’s with (null) directions. Each such
one-chronon projection » has a many-process
counterpart, a coordinate x(n) giving the number
of chronons of the kind n. The four space-time
coordinates x* for a process are only a convenient
choice of basis operators for the expression of the
coordinate x(n) for all n:

x(n)=x(n,o")=3 n,x(c")

=3 muxt.
When we express a single-chronon projection »n
in terms of the operators o" we get its coordinates
n,, real numbers. When we express the many-
chronon coordinate operator x(n) in terms of the
n,, we get the usual coordinates x* of the com-
posite process. From the plexor (1) we infer, for
example,

x*=0t(1)+0*(2)+0*(3)

for the coordinate operators of the compound pro-

cess. This is taken as describing the space-time

displacement undergone in the process. The time

of the process according to this is the number of

chronons in it. For this reason I have called the

elementary q process in this model a chronon.
For two free nuons, a plexor like

1) [2) 13)
[4) 15) [6)

is the stator of a kinematically possible process.
From the order structure of this plexor we see
there are two nuons v, v’ and that they undergo
space-time displacements x*, x’*, respectively,
given by

xt=ck(1)+0*(2)+ 0¥ (3),
xM=ck(4)+a"(5)+0"(6).

Nothing can be said about the coordinate of v rela-
tive to v’. The two nuons might as well be in sep-
arate universes. Unless they are linked by inter-
actions, there is no meaning to their relative
coordinate.

For two interacting nuons, a plexor like Fig. 4
is a kinematically possible stator. We read from

it that there are two nuons v,, v, in the initial and
final states of this process, that the initial relative
coordinate is

xt (v =v,)=0"(1)-0"(4),
that the final relative coordinate (with an arbitrary
labeling of one of the final nuons as v{, the other
v3) is

' (w{—=vg)==0*(6)-a¥(5)+0#(2)+0H(3),

and that one set of coordinates of a final nuon rel-
ative to an initial one is

xH (v, =vg) =0t (1)+0H(2)+0*(3).

When the stators [1),..., |6) are known, these
operators all acquire expectation values, and we
can speak of c-number coordinates.

The familiar causal structure of the ¢ space-
time of special relativity emerges in the ¢ limit
from the fact that the coordinates of long, linear
plexors always have expectation values within the
null cone. I have already given a dynamical law
for nuons that makes these expectation values lie
on the null cone, and gives the free nuon mass
zero. It is that in each segment of a plexor of the
form | ) | ) the two chronons involved are to be
identical in the sense of Bose-Einstein statistics.
This may be suggestively regarded as a degenerate
case of a law akin to Kirchhoff’s: The chronons
going toward a vertex (the middle vertex here) in
some sense add up to those going away from it,

[Y:1).

Graham Frye and I are presently studying exten-
sions of this law.

IX. THE IDEA OF THE PROCESS

Looking at a cq process in ordinary quantum
mechanics helps us understand the q concept and
establish its correspondence limit of classical
time (7 - 0). Imagine that classical time is not

D - B
{

FIG. 4. Plexor of an interaction.
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quantized but merely atomized,
t=nAt.

Then energy is not a useful concept and we take up
instead the unitary operator U=(U( that advances
the system (|’s from ¢ to t+At. Call the system
S.

There are two ways to think of a unitary operator
like U: (i) U is a mapping of stators. This is
old. (ii) U is a stator in its own right. This is the
way important for the present work. The symbol
(U( shows U as a stator of a pair made of an S (de-
scribed by a ( |) and a dual ST (described by a dual
| (). The system of which Uis a stator I call the
primitive process of S. In this simple example,
the primitive process P is merely a pair,

P=SST,

The coordinates of such a process are simply
those of the system, those of the dual system, and
their algebraic combinations.

Similar statements hold for the process of a ¢
system as well, though there the distinction be-
tween S and S 7 is vacuous and the primitive pro-
cess is simply an ordered pair of systems, the
initial one and the final one. Now the transforma-
tion formula for stators

(2| =(u(1|

acquires a purely logical meaning. When a pair
comes from a channel with stator U, and one mem-
ber of the pair passes into the cochannel with
stator (1|, the second member acts as if it came
from the channel with stator (2| given by this for-
mula, a partial inner product of a pair stator and

a one-system stator. This is the way we would
compute the stator of a proton produced from the
ground state of the deuteron by a measurement

upon the neutron.

The composite process 7 in the absence of inter-
actions, or briefly the free process, is simply a
sequence of primitive processes of unspecified
length. Its stators are therefore objects of the
kind

(n| =UOUG---0OU,

the tensor (outer, direct, or uncontracted) product
of several replicas of U. This is a stator of sev-
eral pairs. If we represent U by a matrix |m(U(n|,
this induces a representation of the stator |7) as a
product of matrices

[m Uy | [mofUny|+ =+ [m (U n,|
If successive indices are set equal,

Ny =My, Ny=Mgy ouu,

the resulting product
|m1<U<m2| lm2<U<m3 I °ce ,mp<U<npl

is the Feynman amplitude for the process defined
by the sequence of eigenvalues m,, m,,...,m,, n,.
Thus the Feynman amplitude represents a part of
the geometrical object I take as central here, the
process stator. Setting successive indices equal
destroys the transformation properties. The pro-
cess stator is a geometric object under the unitary
group of S, although the Feynman amplitude is not.
I now use this conceptual apparatus to demand
of the q theory that its process stators give correct
Feynman amplitudes in the cq correspondence
limit ¢~ 0. To construct the Feynman amplitude
we require the plexor structure and not merely
the stator. We must equate causally consecutive
indices of the primitive processes. Then the for-
mation of the S matrix from the Feynman ampli-
tudes is to be carried out as usual.
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