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We show that in a Robertson-Walker space-time, expansion-induced backscattering of elec-
tromagnetic waves is rigorously absent, contrary to earlier expectations. The absence of
backscattering is a direct consequence of the conformal invariance of the equations of motion,
and therefore extends to neutrinos and gravitational waves. Any non-null observation of back-
scattering caused by the expansion would indicate that there exists expansion anisotropy.

I. INTRODUCTION

In 1939, Schrédinger® investigated a peculiar
and potentially very significant phenomenon in the
closed isotropic expanding universe. He found that
a wave traveling in one direction could give rise
to a backscattered wave traveling in the opposite
direction. That is, the homogeneous expanding
space could effectively reflect the wave, in a man-
ner analogous to the reflection of light in a medium
with a time-dependent index of refraction. For
simplicity, Schrédinger investigated the phenom-
enon using the following scalar wave equation?:

(O-m?)¢p=0. (1)

He showed that the backscattering is very slight
when the expansion parameter varies slowly, but
he did not reach a definite conclusion as to the
possibility of observing the effect.

From an observational viewpoint, it is clearly
most important to determine the magnitude of the
backscattering for electromagnetic waves. In our
investigation of that problem, we generalize Schré-
dinger’s work by dealing directly with the electro-
magnetic field as well as the scalar field, and by
considering the open, flat, and closed Robertson-
Walker space-times, rather than just the closed
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model. We show that the backscattering is rigor-
ously absent in the case of light, so that there is
no possibility of observation, unless the expansion
is anisotropic.® The fundamental reason for that
conclusion is that the equations governing the prop-
agation of light in a given background metric are
conformally invariant.*

A conformal transformation is a transformation
of the metric, such that

8w~ 8in=2"%g, (2)

where Q is a scalar function of the coordinates.
The transformation corresponds to a stretching of
the interval at each point (ds=Qds). A field equa-
tion is conformally invariant if, under the confor-
mal transformation (2), together with a transfor-
mation of the field (involving multiplication by a
suitable power of §), the transformed equation
has the same form as the original equation. The
simplest generally covariant equations governing
the massless fields of nonzero spin are all con-
formally invariant,* so that the method we use can
be applied to neutrinos and gravitational waves, as
well as light.5

The backscattering is the classical analog of the
gravitationally induced pair creation investigated
by this author.®~® In contrast to the usual kind of
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backscattering, the backscattered wave receives
its energy from the expansion, and thus does not
deplete the forward-traveling wave. In fact, the
amplitude of the forward wave is somewhat in-
creased, corresponding to the simultaneous pro-
duction of a pair of oppositely directed waves along
the line of motion. The term expansion-induced
backscattering refers to that process. Schroding-
er! was evidently aware of the relationship between
backscattering and pair creation, although he did
not investigate the pair creation further. The
present paper is a generalization and application
of some of the results first obtained in Ref. 6 (see
also Ref. 5) for the Robertson-Walker metric with
flat 3-space. Our considerations will be restricted
to massless fields.

II. SCALAR WAVES

It is instructive to first consider scalar waves,
as did Schrodinger. However, we use the wave
equation

(O+#R)$=0, ®3)

where R denotes the scalar curvature. We use Eq.
(3) in the present context because, unlike Eq. (1),
it shares the property of conformal invariance
with Maxwell’s equations, and our object is to ob-
tain results which are valid for light as well as
scalar waves. We do not mean to imply by our
use of Eq. (3) in the present context that physical
scalar waves necessarily satisfy that equation.®
Under the conformal transformation (2), Eq. (3)
leads to*

(O+4R)$=0, (4)

where O and R are the generalized covariant La-
placian and the scalar curvature in the conformally
transformed space-time, and

P=9¢. (5)
The Robertson-Walker line element is
ds*=a(n*{-dr?+(1 +5eu®)?
X[du? + u*(d6? + sin®0de?)]}, (6)

where €=+1, 0, or —1. We have used the conve-
nient coordinate 7 instead of the cosmic time ¢,
which satisfies dt=a(7)d7. We now make the con-
formal transformation (2), with

Q=a(7). (7)
Then
ds?= —d7% +(1 +seu?) " du® +u*(d6? + sin®0 dp?)], (8)

and

5

? = —6¢. 9)
The wave equation (4) becomes

_ié_'_(s)&('ﬁ_ed‘):(, (10)

ar? ’

where

p=a(n¢, (11)
and (A is the covariant Laplacian operator,
formed from the spatial part of the line element
(8), and applied to ¢ as a scalar under spatial
transformations. The complete set of scalar ei-
genfunctions satisfying

AQw, 6, 9)=-2Q(x, 6, 9) (12)

are well known.!® For e€=+1, the values of X are
(n* - 1) with n=1,2,3, ...; for e=—1, A can have
any real value greater than 1; and for €=0, X is
non-negative and @ is the usual Fourier component.
Thus, one finds that any solution of (10) can be ex-
panded in terms of proper modes of the form

3*) = e Qu, 6, ¢), (13)

where 2=(x+€)'/?, and X is the eigenvalue corre-
sponding to . The corresponding solutions of Eq.
(3) are

o =a(n) ™. (14)

During any period when a(7) is constant, 7is
equal to a~f to within an additive constant, so that
¢>(*) and 4)( -) correspond to oppositely directed
waves of frequency (27)"'k/a. For the case €=0,
they are ordinary plane waves moving in opposite
directions.' If only one of the waves, say ¢'*), is
present during an initial period when a(7) is con-
stant, then in an intermediate period during which
a(7) varies arbitrarily the opposite wave, ¢'~,
will never appear because (16) is an exact solu-
tion; and if a(7) finally comes to rest at another
constant value, only the wave ¢(") traveling in the
original direction will be present. Since a back-
scattered wave does not appear as the result of
any change in a(7), we conclude that precisely no
backscattering occurs for waves satisfying the
conformally invariant scalar wave equation in an
arbitrarily expanding (or contracting) Robertson-
Walker space-time.'® Thus, for example, a wave
packet formed from a set of ¢(*) with nearby fre-
quencies will not develop a backscattered wave
packet as a result of changes in a(7).

III. ELECTROMAGNETIC WAVES

Light waves can be treated analogously to scalar
waves. The fully covariant Maxwell equations in
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vacuum can be written as

3 (—g)*F* =0 (15)
and

9 ;Fr1=0, (16)

where 9; denotes the ordinary derivative. Under
the conformal transformation (2) one obtains the
equations

3,[(-B) 2 F*] =0 (17)
and

3;Fany =0, (18)
with

Fu=Fj (19)
or

FR= Q' Fi*, (20)

Defining the 4-vector potential A, by
F=0,A,- 8,4, (21)
and
V24;=0, (22)
one finds that'?
0A,+R,"4,=0, (23)

where R,,, is the contracted Riemann tensor in the
conformally transformed space-time.

We again consider the Robertson-Walker line
element, and make the conformal transformation
(7) to the static line element (8). Since only elec-
tromagnetic waves in vacuum are under considera-
tion, we set

A,=0. (24)
Making use of
R.P=25.2¢ (a,B=1,2,3), (25)

one finds that with the metric of (8), Eq. (23) be-
comes

9% . S
—FAC,+(3)AA¢+2£A(,=O, (26)

where (YA is applied to A, as a vector under spatial
transformations. The vector eigenfunctions S, of
X have been investigated.!® They satisfy the
equations

V%S, =0 (217)
and

(3)&Sa=_“sa. (28)
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For the case e=+1, u takes the values (#* - 2) with
n=2,3, ..., while for the other two cases, u
ranges over a continuum of non-negative values.
Therefore, the proper modes have the form

AP =e**3 (u, 6, 9), (29)

where k2 =(u - 2€)'? is real.

As in the scalar case, Af,") and /if,') correspond
to waves traveling in opposite directions, and re-
duce to plane waves when €=0. The differentiations
involved in forming F{ = F$¢) from A% =(0, 4")
clearly do not alter the directions of the waves.
Thus

FiP = 0,40 - 0, A (30)

are the proper modes of Eqs. (15) and (16), with
Ff,,,‘ ) and F§[ ) corresponding to oppositely directed
waves. If only Ff,,,+ ), say, is present during an

initial period when a(7) is constant, then an admix-

ture of FS»;) will never appear as the result of an

intermediate period during which a(7) undergoes
arbitrary variations. Therefore, as for the scalar
waves considered earlier, backscattering is rig-
orously absent for light waves in the expanding
isotropic universe.

IV. CONCLUSIONS

The method we have used is quite straightforward,
and may be extended to any conformally invariant
wave equation as follows. In the static metric (8),
any acceptable wave equation must possess a set
of proper modes 2‘*’ of definite frequency [i.e.,
solutions with time dependence exp(+i27)]. Under
the conformal transformation to the general Rob-
ertson-Walker metric (6), the above proper modes,
multiplied by suitable factors of a(7), become ex-
act solutions, 5(*), of the wave equation in the gen-
eral metric. During any period when a(7) is con-
stant, £(’) and E( =) correspond to oppositely di-
rected waves of definite frequency. Because they
are exact solutions even when a(7) is not constant,
no mixing of E(*) and E(') occurs as the result of
any change in a(7). Hence, backscattering of waves
is rigorously absent.

In particular, the abeve reasoning applies to the
wave equations for massless fields of arbitrary
nonzero spin s

vk, cue=0 (v5,0=1,2), (31)

g
which are all conformally invariant.? For s=1,
one obtains the two-compenent neutrino equation,
while the vacuum solutions of Maxwell’s and Ein-
stein’s field equations are simply related to the
solutions of (31) for s=1 and s=2, respectively.
Therefore, we conclude that no backscattering
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occurs for neutrinos and gravitational waves, as
well as light.!s

For a line element with anisotropic expansion
rates, one generally cannot make the conformal
transformation to a static metric. Therefore, the
oppositely directed proper modes of definite fre-
quency, which are present whenever the expansion
parameters are constant, will be mixed as a re-
sult of variations of the expansion parameters.
If expansion-induced backscattering could be ob-
servationally separated from other effects,® then
at least in principle it could serve as a measure

|

of the expansion anisotropy. For example, the
frequency dependence of the backscattering might
serve to distinguish it from other similar effects.
Any non-null result would then be an indication of
expansion anisotropy.'’
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