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vector as it is transported from place to place.
This results in a Riemannian geometry which ap-
pears quite different from the one used in general
relativity with modified derivatives and a metric
tensor which is not covariantly constant. Having

paid this price, we end with an unambiguous
theory with very simple field equations directly
related to the curvature tensor as in general rel-
ativity, in which the scalar field plays a rather
elegant geometrical role.
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The method of recasting the Newman-penrose formalism for the gravitational field equa-
tions into a Yang-Mills —type theory is reviewed. The free-field gravitational Lagrangian
density structured along the lines of the free-field Yang-Mills Lagrangian density by Kibble
is generalized to give the complete set of gravitational field equations one obtains in the New-
man-Penrose formalism.

I. INTRODUCTION

B~ ——S Bp S —S BpS,

Fp, =S 'FpvS,

where

Fq„——B„B„—Bq B,+ [B„,B,],
and [B&,B,] = B&B,—B,B& . The action principle
applied to the Lagrangian density

(1.2)

2 = ——,
' Tr(F„„F"'),

where Tr denotes trace, then gives rise to the free

In Yang-Mills' theory one assumes that Bt each
space-time point there exists a 2-dimensional in-
ternal space. Under an isotopic gauge transforma-
tion S(x), the 2X 2 matrix potential and matrix field
then transform according to

gauge field equation

B,F"'-[B,, F"~] =O. (1 4)

In introducing the gravitational field from a gen-
eralized Poincare invariance, Kibble' has extended
the. above Lagrangian density into

~
( g)~~2 Tr(F F&~) (1.5)

describing the free gravitational field. Here g
= detg„, and g„„is the geometrical metric.

More recently Carmeli, ' who has shown" that the
Newman-Penrose (NP) formalism' for the gravita-
tional field equations can be cast into a Yang-
Mills-type theory by use of the group SL(2, C),
used a first-order form of the Lagrangian. density
(1.5) to obtain the vacuum NP equations.

The question arises as to whether one can gen-
eralize the Lagrangian density (1.5) into one which
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gives the complete NP equations. ' In addition to
the obvious interest in connection with classica, l
gravitational radiation theory, such a Lagrangian
density could be useful in quantum gravidynamics
since, as has recently been pointed out by Pickier
and Russo, ' certain methods used. for gauge fields
can directly be generalized into gravidynamics
when cast as a gauge theory. The purpose of this
paper is to present a Lagrangian density that gives
the full gravitational field equations obtained in the
NP- formalism.

In Sec. II we briefly review previous work so as
to establish our notation. In Sec. III we present a
Lagrangian density from which equations of motion
are derived using Hamilton's principle. The re-
sultant equations of motion are then written explic-
itly in Sec. IV using the standard notation. Section
V is devoted to concluding remarks.

II. GRAVITATIONAL-FIELD

DYNAMICAL VARIABLES

A 5 A
V~ffI =BE ~gb (2 I)

where again, B,'&, with a, b =0, 1, a.re some vec-

In this section we briefly review the formalism
of Newman and Penrose using Carmeli's notation.
For more details the reader is referred to Refs.
4 and 5, and to the original work, Ref. 6.

At each point of space-time, one introduces two
2-component spinors g,A, where a=0, 1, to define a
spin frame. Latin italic capitals are used for spinor
indices taking the values 0, 1. The two spinors
f," are normalized such as (, e»g, = e„, where
the e's are the skew-symmetric Levi-Civita sym-
bols defined by Cps f yp 1 Raising or lowering
a spinor index is done by means of these symbols
with the convention that $" = e" $s and $z = Pcs„
for a spinor $".

An arbitrary spinor SA can now be written in
terms of the spin frame, S =S" f,"f,, , where
S" are some quantities called dyad components of
the spinor S . Here prime indices refer to the
complex conjugate and lower-case indices are used
for dya, d components, taking the values 0, 1. The
latter indices behave the same way algebraically
as ordinary spinor indices except when covariant
differentiation is applied in which case no term in-
volving an affine connection appears for them. By
the same token the quantity V„(", obtained by tak-
ing the covariant derivative of a spinor ]", can
also be written in terms of the spin frame as V& ("
=B „f,", where B'„, with b =0, 1, are two vectors.
(Greek letters are used for space-time indices
running over 0, 1, 2, 3, and the metric is taken to
be + ———.) In particular, the last formula ap-
plies to the two spinors g,A. This gives

where P is the Hermitian conjugate of P. The ele-
ments of the new matrices, however, define a null
tetrad of vectors. Accordingly, o "~, and o "», are
real null vectors whereas o"„,and o "». are com-
plex null vectors, conjugate to ea,ch other, by the
Hermiticity requirements of o". These four null
vectors, ' in addition, satisfy the orthogonality re-
lation of the form o"„.o„,~. =e„c,,„, . The geomet-
rical metric can be obtained as g"'=o"„o"'"
=o "».o" . Contrary to the matrices cr" whose
covariant derivatives vanish by the definition of the
covariant derivative, that of the matrices o" do
not. One has, using Eq. (2.2),

V„o"=B„g"+a "B (2.4)

The commutator of the covariant derivatives,
V, V„—V„V„when applied on f, gives F„,g, where

Fq„= B„Bq—sqB„+[B~,B„j (2.5)

is a 2x 2 complex traceless matrix whose elements
are skew-symmetric tensors. In (2.5) the commu-
tator [B„,B„j=B&B„B,B„. Hen-ce the relation
between the F and B matrices is identical to that
of Eq. (1.2) for the Yang-Mills field. " Moreover,
under a change of the spin frame f =S(', where S
is a 2&& 2 unimodular complex matrix whose ele-
ments S,' are functions of space-time, one easily
finds that B„and F„, transform into

B~ ——S B~S —S 8~S,

Fpv=S FppS y

(2.6)

identically to those of Eqs. (1.1) for the Yang-Mills
field when subjected to an isotopic gauge transfor-

tors. In the above formula. s the cova. riant deriva-
tive' of a spinor is one for which the spinor affine
connection is fixed by the requirement that the co-
variant derivatives of o "»., &», and eA, ~, shall
all vanish. Here the quantities o». define four
2x 2 Hermitian matrices by means of which one
makes the correspondence between tensors and
spinors. (In flat space, when Cartesian coordi-
nates are used, they may be chosen as the unit ma-
trix and the three Pauli matrices. ) Using matrix
notation, Eq. (2.1) becomes

(2.2)

where B„and g are 2x 2 matrices whose elements
are B,'& and (,", respectively. The norma. lization
condition that the two spinors (," have to satisfy
then implies that the matrix B„be traceless and
the matrix g be unimodula. r.

The four Hermitian matrices o" are not vectors.
One defines another set of Hermitian matrices re-
lated to o" by

(2.3)
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cy
= 0 ay ~ P

F' ag cd
—0 gQ '+ cd F'jgP (2.7)

which are again traceless. The B's now describe
the spin coefficients of general relativity accord-
ing to the scheme

mation.
From the matrices B and F one might obtain all

the dynamical variables of the gravitational field
used in the NP formalism by defining two new sets
of matrices

(( g)1/20 Prr ) [B ( +)1/2H 2a] P (3.3)

considered to be the independent field variables,
and Eq. (2.5) is assumed to be unknown. The met-
ric tensor g» as well as a " are introduced in g
as auxiliary quantities in order to accomplish in-
variance.

Application of the usual procedure of variational
calculus then leads to Eq. (2.5) and to the following
equation of motion:

800a ~ B01a

The six F's represent the curvature tensor,

4' +2A

2 ll 1 01
11'00'

+2+4'n -+2-@ii+A) '

-42 —2 A)
11'10' -' )'

(-4'2+4„+A 4'~ -C~, )10'01'
-@,+4„42-4» —A)

F
7

20 @10

(c„-e.,'I
-@'g2 f

(2.8)

(2.9)

Equation (3.3) gives the dynamical equation of mo-
tion which the Riemann tensor has to satisfy, and
accordingly we have a full description of the dy-
namical system. Equation (2.5) gives the Riemann
tensor in terms of the spin coefficients, whereas
(2.4) gives the spin coefficients in terms of the
tetrad of null vectors.

Faaraar = Saa'Baa —saarBaar —(B ar) B/&r

—(B„,,) 2,B,/, + (B,2, )a B/a,

+ (Ba,,) a,Ba/. + [Baa, , Baa'] r

eaa'o aa' (Baa'& )aa +(& Ba a) a

(B,o v) ( 2B1'
)

(4.2)

IV. THE NP EQUATIONS

To recover the NP equations out of (3.3), (2.5),
and (2.4) one has merely to rewrite these equations
in terms of the NP field variables, using (2.V),

(2.8), and (2.9). One obtains the following sets of
equations:

O'" F„.aa, -((B ')'2+ (B ' '), ,
' )F,

(5', :(Ba-a')a. + 5a(B'a '), ')F„,,„,
—[B"',F„,„,] = P,

(4.1)

In these equations the five% 's describe the ten
(real) components of the Weyl tensor, the nine C 's
describe the trace-free part of the Ricci tensor,
and A = —,4R, where R is the Ricci; scalar.

III. ACTION PRINCIPLE

We now write down the action functional

8 de, (3.1)

+ C.C. (3.2)

Here II"'=cr" g "" o .cps~~.J' 8, Tr denotes
trace, c.c. denotes complex conjugate, added so
that the Lagrangian density becomes real, and
g=detg». The matrix elements of B„and I'„, are

where the Lagrangian density 8 is defined by

2 = —2(-g}' '
T r(H ""( 2F&, + 8,B„—e& B,+-[B„,B,]))

(4 3)

Here, dyad indices have been raised and lowered
by means of the Levi-Civita symbols, and the dif-
ferentiation operator B,~, = o "„,8„."

Equations (4.1) and (4.2) are the Newman-Penrose
equations. ' Equation (4.3} is the metric equation.

V. REMARKS

We have seen that the equations of motion (2.5)
and (3.3), obtained from the Lagrangian density
(3.2) using Hamilton's principle, lead to the field
equations (4.1) a.nd (4.2) obtained in the NP formal-
ism. ' The metric equation (4.3) has also been ob-
tained from (2.4).

The Lagrangian density (3.2) is a natural gener-
alization to the free-field Lagrangian density used
by Kibble' and by Carmeli, ' and reduces to the lat-
ter in that case. This can easily be seen since the
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expression in braces in 2 can be written as ~H"'

XF~„, and by (2.V) this is equal to ',F"-'" F„,,~, .
In empty space (i.e., when all C 's and A are as-
sumed to be zero) this last expression can be seen,
by Eq. (2.9), to be equal to,'F" -'" F„,„,, or equal

to —,'I'„,I' "', thus giving the expression"

a(-g) Tr(F" (-pe„+ 8,B~ —sq B~+ IBq, B„]))+c.c.
for the Lagrangian density (3.2) in free space,
which is the Lagrangian density used by Carmeli. '
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The covariant derivative V&$~ of the spinor $z is
V' $&=B $~ —$&I' &, where I'

z& is the spinor affine
~ ~ gt

connection. The corresponding quantity I' z &
deals

with the spinor $&i. Throughout this paper there will be
no need to know the explicit form of any affinities.

Some authors denote these vectors as follows:

0"pp =l&, 0&p& =m", o"~p~ = m", and al'~~. =n".
'It will be noted that in the Yang-Mills theory it is the

spin affinities which are considered as potentials where-
as here the vectors 8& are defined by Eq. (2.1). Obvious-
ly spin affinities are not space-time vectors in the Rie-
mannian space whereas the B's are.

In Ref. 7 the four operators 8, l,i are denoted as fol-
lows: Bpp

——D, Bpl =6 Bfp =6. and B&& =4.
3The similarity of this expression, which can be written

as a second-order Lagrangian density of the form
-~(-g) Tr(El' E„)+c.c., to that given by Eq. (1.5)
of Kibble is obvious. The difference between them is due

only to the group structure, which is SL(2,C) in the pres-
ent case and is the Poincarb group in Kibble's case.
This fact explains why we here need to add the complex
conjugate term in order to make the Lagrangian density
real.
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Models of static, cylindrically symmetric solutions of the combined Einstein-Maxwell
field equations are given. These models consist of extended distributions of matter with sur-
face electric currents and magnetic fields outside the matter. The electric currents serve
as sources of the magnetic fields; the distribution of matter as well as the magnetic fields
serve as sources of the gravitational field. The magnetic lines of force may be parallel to
the axis or circular and centered on the axis. The matter distribution is cylindrically sym-
metric and may be contained within a central cylinder or a tube centered about the axis. All
ordinary physical and geometric requirements are satisfied by the models.

I. INTRODUCTION

The static, cylindrically symmetric source-free
solutions of the combined Einstein-Maxwell gravi-
tational and electromagnetic fields are fairly well
understood. " In most cases these solutions are
singular along the axis and not singular anywhere
else. The singularity along the axis is interpreted

as the source of the fields. To avoid singularities,
it is necessary to introduce a distribution of the
matter region over a finite portion of space. Such
is the purpose of this paper.

Four models are discussed (Fig. I). The first
two consist of a cylinder of matter centered along
the axis with different external magnetic fields.
The other two consist of tubes of matter with dif-


