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Previously suggested two-variable expansions of three-body decay amplitudes in terms of
harmonic functions of an O(4) group are discussed and applied to analyze the Dalitz-plot
distribution of over 3.2 million K m'm ~ x decay events. Among the general features of
the O(4) expansions we wish to stress that they are written in the c.m. system of two of the
final particles, the angular momentum of which is displayed explicitly, and that each term
in the expansion has a good behavior at the threshold, pseudothreshold, and at the boundary
of the physical region. We analyze the recent data of Ford etal. on charged X 3~ decays,
using both O(4) expansion and the standard power-series expansion in terms of the Dalitz-
Fabri variables. In both cases it is perfectly adequate to keep four terms in the correspond-
ing expansion. The g fit is marginally better for the O(4) expansion. We conclude that the
K 3m Dalitz plot has too little structure in it to provide a real test of the advantages or
disadvantages of different treatments. It is thus most desirable to apply the O{4) expansions
to Dalitz plots of other processes, like g 3x or pn men. No conclusive evidence is found
for CP violation. However, the "linear" term in the O(4) expansion of the difference be-
tween the squared matrix elements for K+ and K decays does differ from zero by more
than two standard deviations. The effect is stable with regard to the number of terms kept
in the expansions. An important distinctive feature of the O(4) expansions is their intimate
relation to two-variable O(3, 1) expansions of physical scattering amplitudes.

I. INTRODUCTION

in a previous publication' (to be referred to as
t), we presented a general formalism for perform-
ing harmonic analysis on Dalitz plots, i.e., for
analyzing Dalitz-plot distributions for three-body
decays, involving particles of spin zero. The
main purpose of this paper is to apply the formal-
ism to K'- m'm+m' decays, using the new data of
Ford et al. , ' and also to discuss some further
features of our approach.

The formalism presented in I consists of two-
variable expansions of decay amplitudes in terms
of basis functions of irreducible representations
of the group O(4). It is actually an extension and
modification of an approach developed in a series
of previous articles, 4 "devoted mainly to two-
body scattering. The purpose of the whole ap-
proach is to develop a reaction theory based on
two-variable expansions of relativistic amplitudes
and thus to display the entire dependence on the

kinematic parameters s = (p, +p, )' and t = (p, -p, )'
explicitly in certain special functions, whereas
the entire dynamics of the process under consid-
eration is summarized in the expansion coeffi-
cients, which we call the Lorentz amplitudes.
The motivation is thus twofold, theoretical (the
incorporation of general principles, the forrnula-
tion of dynamical hypotheses) and phenomenologi-
cal —the fitting of larger bodies of data than can
be fitted by single-variable expansions. In this
article the phenomenological aspect is stressed.

For scattering, the two-variable expansions are
obtained, making use of little else than Lorentz
invariance. Indeed, consider the reaction

1+2-3+4
and let the particles have arbitrary masses but
zero spins. The scattering amplitude f(s, t) can
be considered to be a function M(p„. . . , p4) of the
momenta p„.. . , p4, each on its own mass shell.
Lorentz invariance and conservation laws natural-



28'78 H. R. HICKS AND P. WINTERNITZ

ly restrict the form of M(p„p„p„p4). As usual,
a frame of reference is chosen by standardizing
some of the vectors p, . This can always be done
in such a manner that the scattering amplitude
becomes a function of the coordinates of one of
the momenta only (and of the four masses). Thus,
we write f(s, t) M(p„p2, p~, p4) = F(p) = F(a, p).
Here the momentum p (say p„with p, ' =m, ') is
characterized by some curvilinear coordinates
n, P, and P, where n and P are functions of s and
t and the amplitude does not depend on Q. Vfe

thus obtain a mapping of the physical region of a
scattering channel onto the entire upper sheet of
the two-sheeted hyperboloid p' =m'. The scatter-
ing amplitude as a function pn a homogeneous
manifpld can now be quite naturally expanded' '
in terms of the basis functions of a certain set of
irreducible representations of the corresponding
group of motions, namely the homogeneous Lo-
rentz group 0(3, 1). Here let us just mention
some properties of the 0(3, 1) two-variable ex-
pansions of scattering amplitudes.

(1) The actual form of the two-variable expan-
sions depends on three interrelated choices —that
of the frame of reference, of the coordinates on
the hyperboloid, and of the specific basis of the
representations of 0(3, 1).

(2) The O(3, 1) expansions incorporate the fixed-
@ pr fixed-t little-grpup expansionsii-xs in the fpl
lowing manner. If we choose the c.m. frame of
reference by standardizing a timelike vector p, +p,
= (Ws, 0, 0, 0), spherical coordinates on the hyper-
boloid, and a basis corresponding to the group
reduction 0 (3, 1)&0(3) DO(2), then we obtain the
0(3) little-group expansion of partial-wave anal-
ysis, supplemented by an integral expansion for
the partial-wave amplitude a,(s). If we choose the
Breit frame of reference by standardizing a space-
like vector p, -p, =(0, 0, 0, Mt) (for t&0), hyper-
bolic coordinates, and a basis corresponding to
the reduction 0(3, 1}DO(2, l}DO(2), then we ob-
tain the 0(2, 1) expansion of Regge-pole theory,
supplemented by an integral representation of the
Reggeized partial-wave amplitude a(l, t) (the
Froissart-Gribov amplitude" ). If we choose the
"light velocity system" by constructing and stan-
dardizing a lightlike vector K=p~(m, /m4)e "-p,
= (&o, 0, 0, u&) where cosh' = (m, '+m, ' —t)/2m, m4
2nd co is arbitrary s, zo, zx and chpose hprpspheric»
coordinates on the hyperboloid, and a basis corre-
sponding to the group reduction 0(3, 1}DE, DO(2),
then for t = 0 we obtain the Euclidean-group little-
group expansion for non-equal-mass scattering.
For t c0 we obtain a generalized Euclidean-group
expansion, supplemented by an integral expansion
of the corresponding partial-wave amplitude (re-
lated to the impact-parameter approximation).

Finally, the Toiler 0(3, 1) little-group expansion
for elastic forward scattering can be obtained as
a special limiting case of our expansions.

(3) The 0(3, 1)DO(2, 1)DO(2) expansion is par-
ticularly appropriate for considering behavior in
the complex angular momentum plane. Indeed
singularities in the l plane will occur when the
integral representations for a(l, t) diverge. '

(4) The assumption of Mandelstam analyticity
and crossing symmetry for the amplitude f(s, t)
gets reflected in simple analyticity properties of
the Lorentz amplitudes. 7

(5) If we choose a specific "symmetric" frame
of reference, use elliptic coordinates on the hy-
perboloid, and -an appropriate basis consisting of
products of Lame functions, we obtain explicitly
crossing-symmetric expansions' (identical and
convergent in two channels).

(6) All the above properties hold for amplitudes
describing the reaction (1) in a physical scatter-
ing region. The four masses m, are arbitrary, a
generalization to nonzero spins is in progress.
The 0(3, 1) expansions involve at least one inte-
gral -over the four-dimensional angular momen-
tum 0, completely specifying the representations
of 0(3, 1) (for spinless particles), and one further
sum or integral over the representations of the
subgroup 0(3), 0(2, 1), or E,. The presence of
integrals is due to the noncompactness of the
group 0(3, 1), or in other words, to the fact that
the physical scattering regions are infinite.

(7) In I we have shown how the fact that the phys-
ical region for the decay

1-2+3+4

is finite implies that the variables a, P, and f
will lie on a certain section of the hyperboloid
p' =m', p, ~m (a "cup" close to the vertex). This
region was in turn mapped onto an 0(4} sphere
and the amplitude, as a function on this sphere,
was expanded in terms of the irreducible repre-
sentations of 0(4). The expansions obtained are
very similar to the 0(3, 1)30(3)DO(2) expansions
for scattering amplitudes, except that the contin-
uous variable 0 is replaced by a discrete variable
n. The expansions for decay amplitudes then in-
volve double sums, instead of one integral and a
sum (or two integrals). Not surprisingly, it is
much simpler to treat decays than scattering.
Consequently, our first application of the method
tp an actual treatment of data is to fit K- Sm Daj.-
itz plots (all four particles are conveniently spin-
less).

(8) Scattering processes are usually analyzed
using either specific models or single-vari-
able expansions. As far as we know, the only
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exception, not related to the work already men-
tioned, "are articles by Balachandran and co-
workers and by Charap and Minton, "in which two-
variable expansions with convenient properties
with respect to crossing symmetry are suggested.
However, for scattering these are applicable only
in the nonphysical Euclidean region (where the
three-momenta of all particles are imaginary or
zero). Three-body decays, on the other hand, are
customarily treated using two-variable expansions,
so that our approach can be readily compared to

ht of other authors ie-xs

In Sec. II of this article we reproduce the O(4)
expansions as derived in I, discuss some further
properties, and compare them to other treatments
of three-body decays. In Sec. III we discuss the
data on K'-m'w'm' decays and describe the fitting
procedure. Section IV is devoted to the results
of the numerical fitting of data by the expansions
and finally in Sec. V we summarize the results,
conclusions, and further outlook.

II. TWO-VARIABLE EXPANSIONS FOR DECAY AMPLITUDES

Consider the decay

1-2+3+4, (2)

in the center-of-mass-like system, introduced in I (p, =p„p, = -p, ) . Assume that all four particles have
zero spin and use the O(4) variables 0 & n &w, 0&8 &v, satisfying

[(m, +m, }2 —s] [(m, -m, )' —s] 1 lp, l'

with

2s(t -m, 2-m, ')+(s+m, -m, ')(s+m, -m4') p, 'p,
([-s+ (m, +m2)2][-s+ (m, -m2) ] [s —(m~+m~) ] [s —(m~-m4) ]) lp2llpJ

[P,+m, )2 —(m„+m )'][fn, —m, )2 —P, +m4) ]
4m, '(m, +m ~)'

The O(4) expansion of the decay amplitude f(s, t) =f(n, 8) is

f(n, 8) = g g a„,N„, g„,(n, 8),
n=O l=0

a„, =2'„", i s~ndnn sin8d8f(n, 8) g„, (n, 8),
0 0

where

„„~2"~r(1+1}(, )
@+1)r(n -1+I)

2v r(e+1+2) (8)

p„, (n, 8) = (sinn)'C„",'(cosa)P, (cos8)

[C„",'(cos n) is a Gegenbauer polynomial].

(9}

The functions P„,(a, 8) N„, 1) „,(n, 8) form an orthonormal basis for the irreducible unitary representa-
tions of O(4) for which one Casimir operator is J', = L'+X' =n(n+2) and the other is J, = L ~ A =0.

The representation theory of O(4) immediately provides an expansion formula for the square modulus
of f(a, 8), namely

l f(a, 8)l' = Q Q b„N„rP„(n, 8),
N=O L=O

'I

il
2n l Ee a„(a+ i

th
1

(N+1)~ ,n-
b„i = ~ Q [(n 1+)(n' 1+)(21 1+)( 1'21+)]i~(l l'O0 Ll)0

nl, n'f'
l

2N

(10)
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f(a, 8) =f(a, w —8), (12)

i.e., the summation in (6) is over even l only.
Notice that I and I' being even in (11) implies that
I. in (10) is also even.

(2) Let all three final particles be identical.
Then the amplitude f(s, t, u} should be completely
symmetric with respect to permutations of s, t,
andu. Let M =m, and p, =m2=m3 Rz

The condition f(s, t, u) = f(s, u, t) is readily en-
sured by taking only even values of l in (6); how-
ever it is easy to check, e.g., by induction, that
the condition

Note that the coefficients a„, are in general com-
plex, whereas the bNL are real for even L and

pure imaginary for odd L In. (11}, (IOl'O~LO} is an

O(3) Clebsch-Gordan coefficient and the expres-
sion in curly brackets is a 9-J symbol. "

Several properties of the variables n and 8 and

the O(4) expansions (6) and (10) sould be pointed
out.

(1) If particles 3 and 4 are identical, then we

must have

where (n„8,) are given by (3) and (4} and (n„8,)
by the same formulas with s and t interchanged.
We then have

a„=Q X„g as~
NL

with

(15)

0

sm8sd s 4nl( s& s)ksI( 0& 1) '
0

(16)

The calculation of this crossing matrix XNL is a
tedious procedure; what is more, the matrix is
not quasidiagonal and does not have any other
helpful properties, so that the eigenvalue problem
(16) can only be solved approximately.

We found the most advantageous way of approxi-
mately enforcing the crossing symmetry (13) to be
the following: Write a truncated expansion

f(s, t, u) = f(t, s, u) (13)
N n

f(s, t, u) = g Q a„,N„, y„, (n, 8),
n=01=0

(1V)

f(s, t, u) = Q Q a„,N„, y„, (a, , 8, )
n= 01=0

N=OL=O (14)

can never be satisfied by a finite number of terms,
so that complete exact crossing symmetry can
only be achieved by retaining infinitely many
terms in the sum.

Alternatively, we can impose the permutation
symmetry by writing the "s-channel" and "/-
channel" expansions of the left- and right-hand
sides of (12), calculating the partial-wave cross-
ing matrices and finding their eigenvectors.
Indeed, we have

then expand each term into a power series about
the center point s0=t0=u0 3M'+p. '. We can al-
ways make the first few terms in the resulting
expansion

f(s, t, u) = Q b, , (s —s,)'(t —t, )"
i, 0

crossing symmetric, by imposing the symmetry
properties on the coefficients a„, in (1V). The
higher powers in (s —s,) and (t —t,) will not be
symmetric; they will however be small.

(3) As was mentioned in I the expansion (6) does
provide the correct threshold and pseudothreshold
behavior in the s variable. Indeed, we have

m, +m, -s I-m2 -s s —,+m4 ~ m~2 +m4 s
2m, '(m, +m, )R's (18)

so the presence of the factor (sinu)' in each term
[see (9)] ensures that all partial waves except the
s wave (l =0) vanish correctly for s = (m, -m, )'
and for s = (m, +m ~)' [and also for the scattering
threshold s = (m, +m, )2]. The t and u threshold and
pseudothreshold behavior is, however, not incor-
porated explicitly. To illustrate this, consider
the case of three equal-mass final particles, e.g.,
the threshold t = (2&)' on the boundary of the physi-
cal region corresponds to

COS80 = -1, M —5p,cos& M2 2M —p,

a point at which the basis functions (9)do not van-
ish. This is not surprising since the displayed
angular momentum l is associated with a chosen
pair of final particles, namely 3 and 4 (so that it
corresponds to s-channel angular momentum for
scattering).

(4) The equation for the boundary of the physical
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decay region is very simple, namely,

sin8 =0. (19)

I—T3 —T4 3T2 —Qx =v3 (20)

where

Q =T2+T3 4
——

Z
-

2 ™3
We also have

s = (p, -p, )' = (m, -m, )' ——;m,Q(1+y),

t =(p, -p, )'=(m, -m, )' ——,'m, Q(2+~2x-y), (21)

u = (p, —p, )' = (m, -m, )' —-', m, g (2 —WSx -y ) .

An element of phase space can be written as

dxdy = »ds dt
3vS

m

(5) The transformation from the standard Dalitz-
Fabri variables to the O(4) variables is continuous
on the Dalitz plot and the Jacobian of the trans-
formation is reasonably simple, so the expression
for an element of phase space is also reasonable.
Indeed, consider the decay 1-2+3+4 in the rest
frame of particle 1 and let the kinetic energies of
the produced particles in this frame be T„T3,
and T4. The Dalitz-Fabri variables are

In the case of the two-va. riable O(4) expansion
of the matrix element squared, the solution is
found by minimizing

rc t lF(as ga)l -Z &,g4, g(ag gg))
(22)

where there are K bins of data, and (a„g,) is
some "center" point for the kth bin, and where
F(al„g, ) is the experimental value of the ampli-
tude [and a( „ag,) is the corresponding statistical
error]. In the limit that there are an infinite num-
ber of events F(a, 8) [and n. (a, 8)] becomes a con-
tinous function. The number of bins can thus be
increased without bound.

If the data are presented in dxdy bins, then we
have

, ~lF(a, 8)l'-P t„,y„, (a, 8)32
dxdy .

Using (22) the inverse error matrix can be writ-
2O

x
nt, n'1'

' e., (a, 8)e. , (a, 8)
l&(a, 8)l'

x p, (s)sin'ada singdg. (24)

R, , „, , [s —(vn, -m, )']
@PE

&
-m2 g -S

(m '-m ')'
x -s+ '

2 sin'ad a singdg
m, +m, )'

= p. (s) sin'a sing da dg

=g(a) sin'a sing da dg. (22)

Thus, the element of phase space differs from
the invariant measure on the O(4) sphere simply
by a factor u(s) =g(a), depending on the variable
s only, increasing monotonously for (m, +m4)' ~ s
~ (m, -m, )2, and having physically meaningful
singularities lying outside the physical decay re-
gion. Let us note that the coordinate curves e
= const and 8 =const are shown on Fig. 3 of I.

(6) An advantage of expanding amplitudes in
terms of a set of functions orthogonal over the
Dalitz plot is, as wa, s pointed out by Lee" and in
I, that the expansion coefficients will be statisti-
cally independent (i.e., their errors will not be
correlated) if the absolute statistical error varies
properly over the physical region. Statistical in-
dependence is important because it guarantees the
stability of the parameters against truncation of
the expansion.

f(s, t)=JR, x y"
m, k

(25)

and gave expressions for the coefficients Rk in
terms of the O(4) coefficients a„, and vice versa.

Hence, if tL(s) =lA(a, 8)l', the orthogonality of the
functions (II)„, assures that H„, „.; is diagonal:

eifr j
ni n'I'

2 nn' ll'
87T

Equivalently, if a (a, 8) is constant but the data
are presented in d(cosg)d(2a —sin2a) bins, then
the inverse error matrix is diagonal.

Lee's expansion, "on the other hand, yields
statistical independence when using dxdy bins and
constant A(x, y). In any case since n, (a, 8) is de-
termined by both the matrix element and the ex-
perimental efficiency, it is generally not possible
to arrange to satisfy any of the above conditions.

(7) Let us compare the O(4) expansions of three-
body decay amplitudes with some of the other ex-
plicit two-variable expansions in the literature.

The first such treatment which comes to mind
is the standard power-series expansion in terms
of the Dalitz-Fabri variables x and y of Eq. (20).
In I we wrote this expansion as
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Some numerical comparisons between these two

expansions for the K'-m'm'm' decays are given in
the following sections. Obvious advantages of (25)
are its simplicity, the trivial expression dxdy for
an element of phase space, the fact that the linear
approximation R«+R„y is usually good, and the
fact that it is easy to implement symmetry of
f(s, t, u) under permutations for each power N
= m +k separately and exactly:

f =Roo+Roo(x'+y )+RM(y —3yx')

+Roo(& +y ) +

on the other hand, angular momentum is not dis-
played, the equation for the boundary of the phys-
ical region is complicated, no threshold or pseu-
dothreshold conditions are incorporated, and the
individual terms are not mutually orthogonal, so
the coefficients R, are not statistically indepen-
dent.

An equivalent expansion was suggested by Wein-
berg" and is obtained by introducing polar coordi-
nates on the Dalitz plot,

x=psinQ, y =pcosQ.

The expansion is

f(s, t) =Q &„—p" cosmic,
Q

1

(26)

(27)

where it is assumed that the particles 3 and 4 are
identical. The same comments as above apply.

Two-variable expansions in terms of orthogonal
functions have been suggested by Balachandran
etal i6 and Lee x8 Balachandran etal. expand.
three-body amplitudes for particles of arbitrary
masses into a set of orthogonal polynomia. ls.
Their explicit form depends on the masses and
they can be obtained in each specific case using
the Gram-Schmidt orthogonalization method (see
second of Ref s. 16). The polynomials explicitly
display the correct threshold and pseudothreshold
behavior in one variable (say, s}. Angular mo-
mentum (in one channel) is diagonalized and the
polynomials have useful properties with respect
to crossing symmetry. Except for the case when
all four masses are equal, no general expression
is given for the polynomials, they do not have any
known group-theoretical meaning and the expan-
sions, when generalized to scattering, involve
amplitudes in nonphysical regions.

The approach of Lee" consists of mapping the
Dalitz plot onto a circle in some new variables e
and P and then expanding in terms of polynomials,
orthogonal in this circle. The variables e and P
are fixed by the condition that the boundary of the
decay region should be given by the condition e =1,

that the transformation (p, P)- (n, P) should be

continuous over the Dalitz plot, and that an ele-
ment of phase space be

pd pdQ = const n de d P . (26)

The orthogonal polynomials are products of Jacobi
polynomials and trigonometric functions and they
can be interpreted as being basis functions for the

representations of an SU(3) group. A further con-
venience is that the values of P and P coincide
along the sextant boundaries Q = —3'33 3n, . . . , 2m.

In general, the relation between the variables
(a, P) and (x, y) is complicated and not given ex-
plicitly, the formalism is worked out for equal-
mass final particles only, angular momentum and

threshold behavior are not displayed, and it is hard

to foresee a generalization to scattering.
Let us mention again that from our point of view

the intima, te connection between O(3, 1) expansions
for scattering and O(4) ones for decays is a dis-
tinct advantage, which enables us to view the de-
scription of decay data as a "training ground" for
treating scattering.

(8) The parameters (n, 8) of the O(4) expansion
can be simply related to the parameters (x, y} of
the conventional expansion when m, =m, =m4 and

the nonrelativistic limit (m, -m, +m, +m, ) is taken:

cosN

sinn cosg- -x.
This suggests the definitions

= -cosQ y

x' = -sino. cos8.

The element of phase space can then be written as
dxdy = p(s)dx'dy' [see (22)]. The O(4) expansion
can then trivially be rewritten as

f(a, 8) =Q a„,y„,(a, 8)
n, l

&I
myrio

1
~aoo aoo + ~2aoo —2axo y

7r

+(4a o
—v2aoo)y" —&23a x' +os' ].

The physical region is the interior of a circle in
the x', y' plane. Thus, the O(4) expansion is equiv-
alent (except for a rearrangement of coefficients)
to mapping the decay region into a circle and then
performing a conventional power-series expansion.

(9) Several comments on various symmetries of
three-body decays are in order. First consider
various space-time symmetries for K- 3m and
g-3z decays. CPT invariance, strictly speaking,
simply tells us that the decay rates for particles
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+
n7 n) (31}

separately for K' - m'm'm' and K'- w'm'm'. It is
well known that the equality of the constant term
app = app is not a sensitive test of CP violation", '

thus a comparison of higher terms, which we dis-
cuss in Sec. IV, is of interest.

For neutral K decays, CP invariance, besides
forbidding the K~ —2m decay, implies that K~
—wow wo is forbidden (but Ks —w'w w is only sup-
pressed by a centrifugal barrier). Further, both
for K~- m'm m and g- m'm m decays CP invari-
ance (or simply C invariance in the electromag-
netic q- w+w wo decay) implies that the correspond-
ing amplitudes should be symmetric under an inter-
change of w' and w . For the O(4) expansion (6)
this implies that

a„,(Kz, - w'w w') =a„,(2)- w'w w') =0, i=odd

(32)

(if the charged pions are taken to be particles 3
and 4).

Further, consider the implications of the AI =-,'
rule for K- 3m decays. It is well known" that an
exact AI =-,' rule for K- 3m decays would lead to
two relations between the amplitudes of the four
otherwise independent K- Sw decays. Consider
the amplitudes

and antiparticles are equal, and also that separate-
ly the decay rates for 3m, 2m, and leptonic decays
of particles and antiparticles must be equal. Thus,
CPT itself has little bearing on Dalitz-plot distri-
butions.

Consider now the implications of CP invariance.
For charged K decays CP invariance implies" the
equality of K' and K decay amplitudes. Thus

(29)

(30)

For the O(4) expansions CP invariance would
thus imply the equality of all the amplitudes a„,
of (6) and (7) for each of the corresponding K' and
K decays:

are well known. In view of the orthogonality rela-
tions of the O(4) expansion functions P„,(a, 8), we
immediately find that the coefficients in the expan-
sion (6) of the four amplitudes (33) satisfy the re-
lations

and

a„', = -W2a„", (36)

if the b,I =-,' rule holds. Thus, if sufficient infor-
mation on the Dalitz-plot distributions existed for
all four decays, then the equalities (36) and (37)
would provide very complete tests of the AI =-,'
rule. Equation (37) is particularly difficult to test,
since it involves the decay K~- m'm'm'; however,
additional information can be obtained, if we re-
strict ourselves to low values of n in (6) and make
use of the fact that the amplitude F~(u„ruo, uo')
must be completely symmetric under permuta-
tions of the three pions. Thus, in the linear ap-
proximation n & 1 we would keep only the ampli-
tudes a„and a„ in (6). However, total symmetry
implies a» =0. Thus, we find that in the linear
approximation of (6) b.I =

2 implies
+ +Ia» a» (38)

c2A'2+ Pia o+'Y2~+io =0
~ (39)

where o.„P,, and y, are constants, depending on
the K~ and m masses only. In this approximation
Eq. (37}, i.e. , the bI=-', rule implies two con-
straints on the K'- w'w'w and K'- w w w' O(4}
amplitudes:

In the next approximation we keep n & 2. As was
mentioned above, total symmetry can only be im-
posed approximately and indeed, if we keep @,
a,o, a20, and a22 in (6} and expand each term about
the center point of the Dalitz plot c =sp =tp =Qp

3' ' + p.', then we can exclude the term linear
in (s —c} [since the term (t —c) is absent] and sym-
metrize the quadratic terms (s —c)', (t —c)', and
(s —c}(t—c). This can be achieved by imposing
two conditions of the type

F ((d+ (d+ (d ), F ((do(do(d+),

Fr (00, (u (uo), F~((u(&, &uo, (00')
(33)

2 Pl 2o Yl 0 (af 22 t 20 Y' 10}'

i =1, 2. (40)
for the decays K' —m'm'm, K'- m m m', K~
—w'w w, and Kz- w wow, respectively (the w's
are the pion energies). The t2I = —', rule implies

F~(&u, u& uo) = W2F"(u, uo, (u-, ), (34}

F (00~ &d~(d ) +F ((do, 410~ (d+) = W~Fr, ((do, (do, (do-) ~

(35)

The implications of these rules for decay rates

(10}Many different theoretical approaches and
models have been applied to describe the K- 3m

decays. Roughly speaking, these fall into two
classes, depending on whether they ascribe the
structure in K- 3m decays essentially to the weak
interactions themselves, or on the contrary, main-
ly to the final-state strong interactions of the pions.
Among the first, let us mention the applications
of current algebra not only to relate the K-3m and
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K-2z decays, but also to obtain predictions of the
bI =-,' rule and to predict values of the slope param-
eter [the parameter R»/Roo in expansion (25)]. For
details and references we refer to Marshak et al."
The final-state interactions of pions have been
treated either by using a general dispersion-rela-
tion approach, or specific models (or both). Some
of the models predict a definite form for the decay
amplitude f(s, t, u) which can then be used to ex-
plain Dalitz-plot distributions (see, e.g. , Ref. 22).
We plan to return to the problem of various mod-
els, describing three-body decays, to calculate
the O(4) partial-wave amplitudes a„, of (7) for
these models, and to compare these with the val-
ues of a„, obtained phenomenologically by fitting
Dalitz-plot distributions. In particular we hope
to analyze various applications of the Veneziano

model and other dual models to K-3m and g-3m
decays ' from this point of view.

(11) Finally, let us note that expansion (6) also
describes the spectrum of the odd pion. Indeed,
the variable a is a function of s alone [Eq. (3)],
thus of y alone [Eq. (21)]. Integrating expansion
(6) over all values of z, we have

l 1
F(a) =— f(a, 8)dz =~ Q a~C„'(cosa), (41)~» n=o

or alternatively

1 pl 1
S(a) =—t f f(a, e) f'dz =~2 Q b„,C„'(cosa),J-l ~N=O

(42)

with

(43}

where W(a, h, c, d; e,f) is a Racah coefficient.

III. DATA AND FITTING PROCEDURE

(fF, f' —QR,.z., y,.)X2= mk (45)

where (x, , y, ) is either the geometrical center of
the ith bin or some weighted center.

Using the O(4) two-variable expansion we have
fitted the data with both the expansion for the
square of the matrix element (23) and the expan-
sion for the matrix element itself,

g a„,y„,(a„e,)
(46)

Because there are two identical particles, the
Dalitz plot is necessarily symmetric about x=0.

Data were used from recent high-precision K'
- m'p'm' experiments. " In each case the data are
binned into 153 (0.1 x0.1) squares on the z, y plane.
This bin size is somewhat larger than the accura-
cy with which an event can be located on the Dalitz
plot (&0.07). With each bin, I, is associated a
number of events N; and a statistical error N ".
The square of the matrix element

f F, f(and its.
statistical uncertainty 6, ) can be found if the ex-
perimental efficiency for each bin, E, , is known:

(44)

The conventional method is to fit the squared ma-
trix element with a power-series expansion in the
Dalitz-Fabri variables (20) by minimizing

r e,e, e,e, e,e
23 24 34

(47)

where e; is the charge of the ith pion and v;, is the
relative velocity of pions i and j. When the num-
ber of events per bin is divided by C the effects
of such graphs are removed. We expect the re-
moval of these contributions to improve the con-
vergence of the O(4) expansion since these long-
range contributions would contribute to higher par-
tial waves. We find, in fact, that for all the ex-
pansions, the removal of these long-range terms
aids convergence. Hereafter, we shall refer only
to Coulomb-corrected data.

Thus the fits are to half a Dalitz plot, and only
even powers of x or even values of l can enter.
We have compared two methods for handling the
ambiguity in the definition of the "bin center"
(a„8,) or (x;, y;):

(a) Numerical integration was used to average
each expansion function [either P„,(a;, 8;) or xPy,']
over the surface of the bin including the non-
square-edge bins.

(b) The "bin center" was generated by a Monte
Carlo simulation of the experiment. ' This pro-
vides for each bin a single point which is not the
geometric center. For the expansions (23} and
(45) the two methods give identical results. For
expansion (46) procedure (a) is not appropriate.

The data can be modified to partly remove the
effects of final-state Coulomb intera. ctions. "'"
The longest-range part of the graphs with a photon
exchanged by two pions gives rise to a correction
factor ' ' given nonrelativistically by
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allowing us to find

b„') =b„')+b„, and Rq -=R~ +R~

When expansion (46) is fitted to IF;I' we call the
resulting coefficients a„', even though

a'„, wa„', +a„,

in general.
In the published data the two charge states were

detected separately, giving 1626956 events for
each charge. However, the experimental efficien-
cy E, was not determined. Thus for each bin, i,
this experiment gives N,

' and¹,but not E,' or
E,:. The experiment does guarantee that E', =E,
=-E,'. This allows us to calculate the difference
in the squares of the matrix elements for the two
charge states by

N~ ¹~ s a

)+
and the statistical error in

I F, I' by

( g)2 4
I F; I N,'N, ,N,' -N, i
(N,'+N;)3 'N,++N& )

'

(49)

(50)

where the N,"s are from the second experiment
and

I Ef I' and h', are from the first experiment.
Thus

I
F', I'+n, can be used to calculate R', and

db„,.
The minimization of y' was done with the com-

puter program MINUIT~ which we have modified
to include random starting points. Specifically,
a random starting value (within a generous inter-
val) was chosen for each of the (finite number of)
coefficients in the truncated expansion (23), (45),
or (46). From this point in multidimensional
space X is minimized, eventually giving the min-
imum value X,

' and the position of the minimum
(best coefficient values). In each case this pro-
cedure is repeated a sufficient number of times
(»20), so that it is clear that the global minimum
has been found. A sma11 fraction of the tries re-
sult in local minima, but in no case does the cor-
responding X' come close to X' at the global min-
imum, so, in effect, there is always an essential-

Instead of analyzing v' and ~ decay separately,
we have analyzed the sum and difference of the
two charge states. This is appropriate because
the difference is much smaller than the sum.

In Ref. 3 (with 654512 events) the two charge
states are not differentiated. Thus it provides
only the sum of the matrix elements for the two
charge states,

(48)

ly unique solution. This procedure is very reas-
suring for it eliminates almost entirely the depen-
dence on choice of starting values.

IV. NUMERICAL RESULTS

Altogether we obtained best fits for five cases:
expansions (23), (45), and (46) for the r'+7 data,
and expansions (45} and (46) for the v' —r data.
In each we experimented with Coulomb correc-
tions (Sec. III}, dependence on "bin center" defini-
tion (Sec. III), and method of truncation. The two-
variable O(4) sums were always truncated at some
value N of n, the outer sum index. The inner in-
dex l already has a finite range. For any value
of N& 1 the expansion with a„,'s will depend on
more real parameters than the b„, series since
the a„,'s are in general complex. We have con-
strained a,o to be real. We truncated the conven-
tional power-series expansion by requiring k+m
~K. Various values of N (or K) were tried in
each of the five cases in order to find the proper
number of terms required and to test the stability
against truncation.

To determine the proper number of terms in
each truncated expansion it is useful to consider
y /NDF (number of degrees of freedom) as a func-
tion of the number of free parameters (Fig. 1).
Generally, one expects y'/NDF to fall, reach a
minimum, and then increase as the number of pa-
rameters grows large. The minimum reflects the
ideal number of parameters above which one is fit-
ting the noise in the data and below which the data
are not being adequately fitted.

For 2-7 parameters the fits to the ~'+v data
(Fig. 1) indicate that the 2- and 3-parameter fits
are not adequate. The minima are at 6 and 7 pa-
rameters, but in the cases of the two expansions
of the square of the matrix element,

I
M.E.I, the

fits with 4 parameters are only marginally worse.
Thus the evidence in favor of using 6 parameters
in these cases is quite weak. Beyond seven param-
eters y'/NDF increases and the (overparametrized)
fits are no longer unique. It is to be expected that
for large numbers of parameters, the X' surface
will develop many local minima.

Table I gives the parameter values and statisti-
cal errors for the v'+7. data where the best num-
ber of parameters is 4 or 7. The values for the
x, y parameters are consistent with those found by
Remmel' and also with those found by Mainkar et
al." (from a much smaller set of data and thus
with larger errors}. The stability of expansions
(23) and (45) is about equivalent.

CP conservation predicts that ~' —~ is zero.
Our fits to r' —7 data (bottom of Fig. 1) indicate
very little change in y'/NDF as the number of pa-
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FIG. 1. The 7++ 7. data are fitted with 3 parametrizations and the T —7 data are fitted with 2 parametrizations.
The dashed line is merely to separate the 7++ 7. from the T+ —7 fits and to provide a horizontal line against which
to see the small decrease from 4 to 7 parameters. Other "less natural" truncations were tried (giving, e.g. , 5
parameters) but these all failed to be as good as the ones shown.

rameters is varied. Even for zero parameters
(all parameters zero) the fit is not appreciably
worse then at the minimum (4 parameters). There
is no strong evidence that any parameter (Table II)
is nonzero. Thus we see no evidence of CP viola-
tion. It is, however, interesting to note that the
constant term b0, is consistently equal to zero,
within its errors for the 1-, 2-, 4-, and 6-param-
eter fit, whereas the "linear" term b» is consis-
tently greater than two standard deviations above
the zero value.

V. SUMMARY AND CONCLUSIONS

As was mentioned in the Introduction, the stan-
dard theoretical and phenomenological methods
of treating particle scattering usually involve sin-
gle-variable expansions of amplitudes (for fixed
energy or for fixed momentum transfer). On the
other hand, the standard way of treating three-
particle decays is to make use of two-variable

expansions of the decay amplitude (or of the ma. —

trix element).
In this article and in I we have modified an ap-

proach to scattering, based on two-variable ex-
pansions of scattering amplitudes, so as to make
it applicable to three-body decays. This enabled
us to use the mentioned O(3, 1) expansions, ' "
modified to be O(4)-group expansions for decays,
to the actual treatment of K- 3w Dalitz-plot dis-
tributions, which have recently become available
thanks to the high-precision experiments of Ford
et al.' For decays, the two-variable expan-
sions "can thus be compared with other treat-
ments, both as to their general properties and as
to their suitability for the description of a large
body of data.

The general features of the O(4) expansions,
which will also characterize O(3, 1) expansions
for scattering, were compared with those of other
expansions in paragraph 7 of Sec. II. In particu-
lar, we wish to emphasize the threshold and pseu-
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TABLE I. Best-fit parameter values (and statistical
errors) for z++z-. There are 153 bins. The number
of degrees of freedom (NDF) is the number of bins less
the number of free parameters. The data used were the
Coulomb-corrected preliminary data of Remmel's thesis
(Ref. 3). No corrections for possible systematic experi-
mental errors were applied.

Conventional power-series expansion
151 149 147

X

X'/NDF

Rpp

Rfp
R 2()

R p2

Rsp
Rf2

206.53
1.37

0.974 + 0 .002
0.271 + 0.004

176.18
1.18

0.973 ~ 0.003
0.277 + 0.004
0.031+ 0.009

—0.028 + 0.009

172.85
1.18

0.973 ~ 0.003
0.286 + 0.011
0.031 + 0.009

—0.031 + 0.009
-0.006 + 0.020
-0.051 + 0.028

Two-variable O(4) expansion of the
~
M.E.~'

NDF 151 149 147

X

X'/NDF

bpp

bop

bop

b~2

b3p

b32

215.34
1.43

4.56 +0.01
-0.61 + Q.Q1

175.88
1.18

4.54 +0.01
-0.56 + 0.01
-0.05 +0.01
-Q.03 + 0.01

172.33
1.17

4.53 + 0.01
-0.57 + 0.01
-0.04 + 0.01
-0.04 + 0.01
-0.01 + 0.01

0.02 + 0.01

Two-variable 0(4) expansion of the M.E.
NDF 150 146

X

X /NDF
app

Regs(()

Imag p

Rea2p
Ima)sp

Reas)~

Ima&2

246.49
1.64

4.491+0.004
-0.307+ 0.004

0+0.05

170.58
1.17

4.457 + 0.008
—0.278 + 0.006
-0.40 +0.03
-0.046+ 0.005
0.114+0.054

-0.025 + 0.007
-0.176 + 0.068

dothreshold behavior, the behavior on the bound-
ary of the physical region, the orthogonality of the
basis functions over the physical region, and the
diagonalization of angular momentum. Other fea-
tures, typical for the O(3, 1) expansions, but los-
ing their meaning for decays (like the relation to
Regge-pole theory), are discussed in the refer-
ences. ' "

In Sec. IV we found that the O(4) expansions are
perfectly adequate for fitting the 3.2 million K'
—3m events, measured by Ford et al." As can
be seen from Fig. 1, an excellent fit to the data
is obtained when the square of the matrix element
is fitted using 4 parameters in the O(4) expansion.

Table I shows that the fit is reasonably stable with

respect to the truncation of the expansion, i.e. ,
the parameters b», once established for N «N„
do not change much when we add further param-
eters with N&NO. It is of course also obvious
from Table I that the conventional expansion (25}
into a power series in x and y fits the data equal-
ly well with the same number of parameters (i.e. ,
we keep the terms: const, y, y', and x'). Ac-
cording to our opinion this is due to the fact that
there is very little phase space available for the
K- 3m decays, so the Dalitz-plot distribution is
very smooth and is thus easily fitted by a constant
term plus any sort of correction containing at least
three parameters (this agrees with the conclusions
of other authors' )

When fitting the Dalitz-plot distribution for the
difference between the K' and K decays into
charged pions we, like Ford et al. ,"find no real
evidence for CP violation. However, as was men-
tioned in Sec. IV, a glance at Table II will con-
vince us that the coefficient of the first noncon-
stant term b,o in the O(4) expansion of the differ-
ence (F;) —

~
F, (' is consistently nonzero (in the

2-, 4-, and 6-parameter fits) and becomes more
pronouncedly so as the number of parameters in-
creases. It is well known, on the other hand, that
the CPT theorem, together with the bI « —,

' rule es-
sentially implies that the constant term (in any ex-
pansion of the difference

~
F;~' —~F, ~') is equal to

zero, even if CP is violated. Several comments
are in order here. The byo coefficient, which dif-
fers quite significantly from zero, emphasizes the
top and the bottom of the Dalitz plot (where cosn
-+I, i.e., y -+I). Unfortunately the top lines in
the Dalitz plot are precisely those for which the
data are least reliable'" and most influenced by
possible experimental asymmetries (in the spec-
trometer magnet}. Indeed if we omit the data from
the top four rows of lines in our O(4) analysis, the
effect in the b» coefficient vanishes. From the
point of view of discovering a CP violation this is
somewhat dissappointing. Let us, however, note
that from the point of view of the O(4) expansions
themselves we find the situation encouraging. In-
deed, the O(4) expansions, as opposed to, say,
the x, y expansions, turned out to be sensitive to
a numerical asymmetry in the treated Dalitz plots,
be it dynamical (a CP violation) or purely instru-
mental.

The above observations together indicate that,
notwithstanding the impressive amount of data
already collected on K'- m'm'm' decays" it is still
very desirable to increase the number of observed
events considerably, in the hope that the coeffi-
cient b» will still remain at the same level but its
error will be decreased (by a factor of 2 or so).
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TABLE II. Best-fit parameter values (and statistical errors) for 7.+ —v . All parameter values

have been multiplied by 102.

153
Conventional power-series expansion

152 151

X

X2/NDF

~ io
A~2o

A4o2

Rsod

R~&2

143.15
0.936

143.09
0.941

0.01 + 0.05

140.70
0.932

-0.02 + 0.06
-0.18 + 0.12

137.79
0.925

0.03 ~ 0.10
-0.26 + 0.12
—0.37 + 0.24
0.15 + 0.28

136.99
0.932

0.05 + 0.11
0.02 ~ 0.33

-0.45 + 0.29
0.11+ 0.29

-0.50 + 0.60
-0.55+ 0.86

NDF 153
Two-variable 0(4) expansion of the

~
M.E.~t

152 151 149 147

X2

X /NDF
boo

b)o
b2o

b~o
bd

143.15
0.936

143.09
0.941

0.06+0.23

139.95
0.927

—0.27+ 0.30
0.46 + 0.26

137.45
0.922

—0.34 ~ 0.31
0.76 ~ 0.33

—0.43 + 0.28
0.13+0.29

136.91
0.931

-0.39+ 0.32
0.85 + 0.36

-0.50+ 0.36
0.01 + 0.35
0.09 + 0.29
0.20 + 0.31

As far as the O(4) expansions are concerned, we
can only conclude that they fit the data just as well
as any other expansion, model, or approximation
used to fit E-3z decays. This in itself is certain-
ly encouraging enough to carry over the techniques
to an O(3, 1) treatment of scattering. In the im-
mediate future we plan to look at other processes,
for which the physical region of allowed kinematic
parameters s and t is also finite, but for which
the Dalitz plots have a, more interesting structure.
Such are the q- 3m decays and nucleon-antinucleon
annihilations into three pions (for fixed values of
the initial energy). The generalization of the
O(3, 1) and O(4) expansions to nonzero spins, nec-
essary for the last application, is in progress.
A satisfactory treatment of the Pn- m m m' Dalitz
plots is one of the major successes of the Vene-
ziano model and its extensions. "" We hope to
compare our O(4) treatment with the predictions

of the Veneziano model, in particular to calculate
the O(4) partial-wave amplitudes in this model.
A meaningful check of the bI =-,' rule predictions,
using the O(4) expansion, has to be postponed until
more data on other K- 3m expansions are available.
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