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We give a representation for the product of two currents sandwiched between two-particle
states, akin to the Deser-Gilbert-Sudarshan representation of commutators. In this case,
arguments based on causality are not available for the two-particle matrix element. It is
shown that in the process pp—u*u~ +anything, the cross section cannot decrease rapidly in
q, (the perpendicular momentum transfer) for ¢,%<<q? (g is the u*u~ momentum), unless it
decreases extremely rapidly in ¢>. An application of the free-quark model to the product
of two pion currents yields Feynman scaling for the process pp — 7 +anything, when proper
account is taken of the rapid decrease in g, of this cross section.

I. INTRODUCTION

The Deser-Gilbert-Sudarshan (DGS) represen-
tation? (a specialized version of the Jost-Leh-
mann-Dyson representation), based on causality
and spectrum conditions, has been of great value
in the investigation of deep-inelastic electropro-
duction and neutrino production.® For these semi-
leptonic inclusive reactions, matrix elements of
the type

(PI[J(x), J,(0)] | ) (1)

(where |p) is a single-hadron state) determine
the cross sections. Thus the commutator, with
its causal structure, is directly accessible exper-
imentally.

The situation is different for hadronically in-
duced inclusive processes, such as pp—pu*pu~
+anything or pp - 7 +anything. Cross sections for
these processes depend on matrix elements of the
type

<P1Pzin|J(x)J(0)|P1P21n> , (2)

which are of a different character from (1) for
several reasons. First, the experiments measure
the ordinary (Wightman) product, not the commu-
tator, so that conventional causality arguments
are not available for constructing a spectral rep-
resentation for (2). Second, the two-particle
states |p,p,in) behave very much like an unsta-
ble single-particle state would, and this leads to
some nontrivial technical complications with the
spectrum conditions. Third, one must distinguish
between in and out states in (2), while this is irrel-
evant for (1). This is of no consequence for the
general nature of the spectral representations we
shall give for matrix elements of the type (2), ex-
cept for certain reality properties.

In this paper, we give a spectral representation
for matrix elements such as (2), based on a
straightforward generalization of the conventional
DGS representation for (1). The needed general-
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ization is perfectly transparent, but the proof that
it is valid is not, for the reasons given above:
Causality arguments are lacking, and there are
problems with spectrum conditions. In fact, we
do not give a completely general proof, although
one could probably be constructed along the lines
of Nakanishi’s? recent discussion of the usual DGS
representation in perturbation theory.

In Sec. II, we point out that it is very simple to
go from the commutation matrix element (1) to the
Wightman matrix element, in the case that |p) is
a stable single-hadron state. This is because the
two orderings of Wightman products in (1) have
Fourier transforms with disjoint support in mo-
mentum space. A similar line of argument fails
for the commutator matrix element corresponding
to (2), because the supports in momentum space
overlap, as is well known. [Precisely the same
problem arises in (1) if |p) simulates an unstable
state.] Two complementary approaches are avail-
able for circumventing this difficulty; the first is
to develop, directly from Feynman graphs for the
matrix element,

(p,p,out| (J(x)J(0)),|p,p,in) , ®3)

a representation for the time-ordered product. It
is then easy to go from this to the Wightman prod-
uct. Two apparent problems arise here: A vari-
able of integration which should be positive at
first sight appears to take on negative values, all
the way down to negative infinity. In fact, the vari-
able of integration can be chosen to be always pos-
itive, by deforming the contour of integration with
due regard to the analytic properties of the inte-
grand. The other apparent problem, that the
Wightman product corresponding to (3) is sand-
wiched between an out and an in state [unlike (2)],
is easily resolved in principle by taking disconti-
nuities of spectral functions.*

The second general approach to a spectral rep-
resentation for (2) invokes minimal analyticity
properties in the external momenta p, and p,. A
completely satisfactory treatment can only be
based on a further reduction of (2) in which, for
example, the state of momentum p, is taken off
the mass shell. Nevertheless, it is plausible that
no general features of the spectral representation
for (2) are changed by allowing p, or p, to have a
small imaginary part. This permits the resolu-
tion of the overlap between the two orderings in
the commutator matrix element, and the argument
used for stable single-particle states can be tak-
en over.’

In Sec. I, we give the only application of the
representation that we know of, which can be
made plausible without specification of detailed

dynamics. It holds for the process pp—pu*p~
+anything, in which the p*u~ pair is formed from
the decay of a massive timelike photon of momen-
tum g. Let us consider the case ¢°*>M?, where
M is a typical hadron mass (~1 GeV); then we ar-
gue that the cross section for the process is rath-
er insensitive to the perpendicular momentum
transfer squared ¢,2 if q,>< ¢* [i.e., ¢,% <OM?)].
This is, of course, in sharp contrast to hadronic
processes, where the perpendicular-momentum-
transfer spectrum of any single particle is rapidly
decreasing.® We hasten to point out that this re-
sult has nothing to do with the assumption of scale
invariance, light-cone dominance, or the like,
nor is it a kinematic triviality; it holds only be-
cause the Fourier transform of (2) is constrained
by the spectral representation we give. The avail-
able experimental evidence’ supports the relative
insensitivity of the cross section to variations in
q., which is claimed to be independent of q,° at
least out to 1 GeV? (typical hadronic cross sec-
tions decrease like e~%74),

This result is perhaps not surprising, and has
been discussed by other authors®® in the context
of specific physical mechanisms (e.g., the parton
model). Nevertheless, it is interesting that this
result can be made plausible on the general
grounds of the space-time structure of a product
of two currents.

Unlike electroproduction, where the asymptotic
cross sections are governed by the operator prod-
uct of two currents near the light cone, hadronical-
ly induced inclusive processes may or may not be
related to light-cone expansions.!® One obvious
question is whether the Feynman-Yang scaling
law'! for such processes can be derived from plau-
sible light-cone expansions for the product of, e.g.,
two pion currents; Segré'? has argued that this is
not possible. We argue that this scaling law does
follow naturally from the free-quark model for the
current product, provided that one takes into ac-
count the observed rapid decrease of the cross
section in ¢,. In this connection, the spectral rep-
resentation is extremely useful in disentangling
the s [s=(p, +p,)?] dependence of the Fourier
transform of (3) from the g dependence, a step
which is necessary in establishing the relevance
of light-cone expansions.

Many readers will be interested primarily in the
applications of the representation, and not in its
derivation, since it is such an obvious generaliza-
tion of the usual DGS representation. These read-
ers should skip (or skim) Sec. II. We go into some
detail in this section primarily to allay the fears
of those who discover that one variable of integra-
tion which should be positive appears to take on
negative values.
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II. DERIVATION OF THE SPECTRAL REPRESENTATION

We begin with a review of well-known material. The DGS representation for the single-particle matrix
element of the scalar currents is (physical states covariantly normalized)

(p1[J(x), K(0)] | p) = fo " J'_ll dBhr(X2, Pe'® *ia(x; X?). (@)

(The limits of integration are purely formal; we only require that » vanish outside the given limits.) A is
the usual free-field commutator.!®* For the Fourier transform we have

f d*x !X p|[J(x), K(0)] [ p) =25 (2m)*6(p +q — p){p|J(0) | n) {n]|K(0)|p)
=33 (2m)*8(p — g - p, )| K(0) | n) {n|J(0)|p)

=21 [ DN dph(, He(do+ BpIO(a+ P - 32). (5)

Let M, and M, be the lowest masses occurring, respectively, in the first and second sums over states in
(5), and M be the mass of state |p), taken to be at rest (5=0). If M <3(M,+M,), the supports in g space
of the two sums in (5) are disjoint, as is well known. Correspondingly, there must be two distinct regions
of support based on the integral in (5), that is, the regions

do=—BM £ (G +2?)'/2 (6)

must be disjoint, the plus sign going with the first sum in (5). Throughout each of the two regions (6), the
€ function in (5) has a unique sign, and we conclude immediately* that

(plJ(xK0)|p) = f dx*dg h(x2, B)e*® > A ,(x; 2?), (Ta)

(pIK(x)J(0)|p) = f AN2dB h(2, - B)e'B" A ,(x; 2?), (Tb)
where

ALx v):ﬁl;)—a f A% €6 (k) 5(k? — 3?) @®)

is the free-field function for the ordinary product.

Clearly, the line of attack used here breaks down if M = ;(M, +M,), so that the supports of the two sums

in (5) overlap. The above inequality implies M > min{M »M,}, so that in applications (where the currents
J, K are replaced by weak or electromagnetic currents) the state |p) would be unstable to electromagnetic
or weak decay, and perhaps unstable to strong decay as well. Of course, we are not interested in describ-
ing, say, electroproduction from an unstable target like an N*, but this overlap of support regions inevita-
bly occurs in hadronically induced inclusive processes, dependent on matrix elements of the type (2).
Here p is replaced by p, +p,, with (p,+p,)?=s=W? and M,=M, is the mass of the lowest-mass unob-
served state in the process p, +p,~ (single observed particle) +anything. Clearly, for this process to go
at all, W>M,, and the supports of the two product orderings in the commutator overlap.

There is no problem in writing down the matrix elements of the commutator between two-particle states:

<p1p2'[‘](x)) J(O)] |p1p2> Ec(xzy Dro X Py %, P, pz)

© 1 1
B f n f dﬁlf dﬁzh(kzy Bys Bas s)ei(ﬂlh‘x*ﬂzpz.x)iA(x; A%). 9)
o -1 -1
This obvious generalization of the DGS represen- 'mass spectrum to lie between -1 and +1. Again,
tation relies on the fact that C, which depends on it is obvious what the changes in (9) must be to
the listed invariants, vanishes for x*<0 (as A represent the matrix element of the ordinary prod-
does) and has a Fourier transform with respect uct J(x)J(0); iA(x; A?*) should be replaced by A, (x;

to p, *x and p, * x, whose support is limited by the A%). It is not, however, quite obvious to prove
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this; the point is that there could conceivably be
a term in the ordinary product which is an inte-
gral over the symmetric function A,(x)=A ,(x)
+A,(-x) and which does not interfere with causal-
ity when the commutator is formed.

Although strictly speaking the representation (9)
does not carry any information about off-shell be-
havior of the momenta p, and p,, let us suppose
that we can consider p, or p, (or both) to be com-
plex 4-vectors, with a forward timelike imaginary
part. When (9) is written out as a sum over states
[cf. (5)], the first sum will have terms in &(p, +p,
+q-p,) and the second terms in 8(p, +p, — ¢ = p,).
Since the momenta p, of intermediate states are
real, it follows that the first sum can be nonvan-
ishing only when g has a backward timelike imag-
inary part, and the second term only when ¢ has a
forward timelike imaginary part. In this way, the
two overlapping supports can be resolved, and a
proof similar to that leading from (4) to (7) might
be constructed.®

While such an argument is satisfying in its gen-
erality, it lacks the details which lead to convic-
tion. We therefore turn to perturbation theory,
where a naive treatment suggests that the integral
over X% in (9) runs from - to «, apparently vio-
lating causality. A closer look shows that this is
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FIG. 1. A typical Feynman graph for the process
pp—p*u” +anything.

Feynman graphs are naturally suited to the dis-
cussion of matrix elements between in and out
states of time-ordered products. Eventually, we
want a matrix element between two in states, but
changing from an out to an in state does not change
the space-time character of the spectral repre-
sentation, only the character of the spectral func-
tion, so we will develop from a Feynman graph
the representation of the ordinary product between
in and out states.

not the case, and )\® is restricted to positive values. Define
]
t(qZ’ b4, b0 q, b, pz) =i f a'x eiq'xT(xZ, br XD %P, pz) ) (10)
where
T(x*, py* X, P2 * %, by * 2) = (DD 0ut| (J(X)J(0)), [P, P, in) . 11)
A typical Feynman graph contributing to ¢ is shown in Fig. 1. Up to an over-all constant, ¢ has the ex-
pression
da; 5(1 -3 o)) a,a,
t= .
f II [a5(1 = a3)g® +2a5(a, + a,)p, * g +20 0,0, g+ a,(a, + ay)s —M?(1 - a,)? —-M?a,]? (12)
Here s=(p,+p,)’, and all particles have mass M. With the change of variables
_atay, Y 2 _M? 1 - B.)2
AToa P Toa MoT-a to MAB- B - (8- g)+1]-sp(1- 8}, (13)
Eq. (12) becomes
! 81 dx? da
t= f dBl f de fET(l - Bl)(Bl = Bz) 3—7\_2a [((I+ Bipy+ szz)z - 7\2+i€] . (14)
[} o 3
.
In (14), we are to substitute the appropriate where
branch of the roots of the third equation in (13):
X2=M2[(ﬁ1 - 32)2 - (B] - Bz) + 1] - Sﬁz(l - Bl) 1)
L1 X2_M% oy (16)

RPN Tea T

day =aa(l—ozﬁ) (15)
ax? ET

2= (A2 =M? - X2 —4M2X2,

The fact that the g-dependent term in (14) appears
to the minus fourth power is immaterial; this
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power can be reduced to minus one, as in the usu-
al DGS representation, by integration by parts.

First, consider the unphysical case.0<s<4M?,
It is not difficult to show that in such a case »* =0,
X220 for allowed values of 8, and 8, in (14), and
that the minimum value attained by A* as a, goes
from 0 to 1 is

Ami2= (M +X)* (X>0), amn

corresponding to y*=0. As @, goes from 0 to
MM +X)™!, X* goes from « to A,;> corresponding
to the minus sign in (15), and in the interval

MM +X)"'< a, <1, A% goes from A, ° to «, cor-
responding to the plus sign in (15). This unphysi-
cal case is entirely analogous to the ordinary one-
particle DGS representation for a stable particle
of momentum p, +p,, which can be gotten from
Fig. 1 by contracting the lines labeled 4; this has
the effect of setting B, =5, in Egs. (13), (15), and

(16).

However, in the physical case s >4M?, there
are always values of 8, and B, for which X2<0, so
that from (13) and (16) A\* apparently covers the
range —©<\?<e as a, goes from 0 to 1. These
values spread out from the point B, = 132:% at
s=4M? and encroach more and more into the
allowed regions of B3, and B, as s increases. Call
this allowed region R, and divide into two parts,
R, for which X?>0, and R_ for which X2 <0.
Correspondingly, the integral (14) is divided into
two parts; that over R, causes no trouble and can
be handled as described in the previous paragraph.
In the integral over R,, A®=M? from (17), since
X =0 on the boundary of R,.

In the integral over R_, A\® goes once from —«
to «, instead of fwice from M? to » (as in R,). It
is easily verified that the appropriate branch of
Egs. (15) is @, = a,; which gives a;=0 at A= -
and @, =1 at A?=+ [note that y® continues to be non-
negative, since the roots of y*=0 are X2=(xxM)?
20, but X?*<0in R _].

The integral over R _ in (14) is, schematically,

f dp,dg, f A2F(N, B, By, 5)
R_ —c

X[(g+B, P, +BoPs) = N2 +i€]™*,
(18)

where F behaves no worse than A* as |A%| == in
any direction in the complex plane, and has its
only singularities in the finite plane at the roots
of y=0. These properties of F follow from the
substitution of (15) and (16) into (14), the tedious
details of which we omit. Let us take Img?,

Imp, + q, Imp, + >0, so that the square bracket in
(18) is free of singularities for A? in the lower
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half plane, and exchange the order of integration,
leaving the )? integration to the last. The integral
over B, and B, in (18) will give rise to end-point
singularities in A?, coming from a root of y=0
when B,, B, are on the boundary of R_. Since this
boundary is just X=0, (16) shows that there will
be an end-point singularity at A*=M?. Thus (18)
is an integral of the type

fm azGc(x,...), (19)

where the only singularity of G in the lower half
plane is a branch point at A*=M2, and where G de-
creases like | 1]~ at infinity. It is then possible
to bend the contour of integration back on itself,
pivoting on the branch point at A%>=M? through the
lower half plane, until (19) is an integral from M?
to « of a certain discontinuity of G.'®

At this point, we have proven the following: The
contribution of Fig. 1to 7, as given by Eq. (11),
has the representation

T= f d)2dB,dB, h(X2, By, By S)

Xei(Blpl'JH ngz'x)iAF(x; )\2), (20)

where the minimum value of A\? is M? (more gen-
erally, m,® where m, is the mass of the line as-
sociated with the 3 in Fig. 1). To this we add the
contribution of the crossed graph, for which g in
(14) is replaced by —g, or, alternatively, B, and
B, are replaced by -3, and —8,. Thus, in general,
the weight function % is symmetric under this in-
terchange. We now easily find the Wightman ma-
trix element. For x°>0,

T(x)=(p,p,out|J(x)J(0)|p, p,in) =W(x),
while for x°<0,
T(x) ={p, p,out|J(0)J(x)|p, p,in) = W(-x), (21b)

this latter following from translational invariance.
On the other hand,

(21a)

18 (x5 A7) = 6(x2)A ,(x; A2) + 8(=x°)A , (—x; A?).
(22)

Compare (20) with (21a) for x°>0, and (20) with
(21b) for x°<0, in the latter case replacing x by
—x and using the symmetry of % under (B,, 3,)
(=B, =B,), to conclude

W(x) = f dN*dB,dB, (X2, By, By; s)

X e By ¥ Bapa A (xs \2) (23)

which is the desired representation. It is fairly
clear that the proof could be generalized to any
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Feynman graph, using the ideas of Nakanishi.?

It only remains to discuss the Wightman prod-
uct between two in states. It is clear that (23)
still holds, with certain restrictions on k; if J(x)
is a Hermitian current, » must be real. One way
to show that (23) holds is to note that the requisite
connected in-in matrix element in Fig. 1 can be
gotten from the time-ordered product by replacing
the propagators labeled 1 and 3 in Fig. 1 by
276( poi)8( p;> —m;?) (i=1,3). This can be done by
taking the double discontinuity of the original Feyn-
man graph — as given by an expression like (12),
but for general masses —inm,* and m,?, and in-
serting the 0 functions by hand. These 6 functions
can be shown to be equivalent to the 6 function con-
tained in A, in (23), while taking the discontinuity
produces the appropriate 6 function (or derivative
thereof). We omit the uninstructive details.

We end this section by noting that the parton-
model results of Bjorken et al.® for inclusive pro-
cesses are equivalent to the representation (23).
See, e.g., their Eq. (A38), which has a 6 function
in it corresponding to that contained in the Fourier
transform of (23).

III. APPLICATIONS TO MASSIVE
LEPTON PAIR PRODUCTION

Applications of the representation (23) are of
two types: Those which do and do not require as-
sumptions about specific dynamics which go be-
yond those entering into the derivation of the rep-
resentation itself. In this section, we mention the
only application we know of which requires no dy-
namical hypotheses, except that the weight func-
tion % in (23) does not exhibit such pathology as
infinite oscillations.

The cross section for the process pp— '~
+anything can be written

do a?

= WK
2q°d3qdq2_12173q2[s(s—4M2)]”2( Wb, (24)

where a=13r, s=(p,+p,)% the initial photon mo-
mentum is ¢, and we have neglected the muon
mass. Here

Wuu= f d“xe-iqx<P1P21nlJu (x)Ju(O)lP1P21n>c,
(25)

where the subscript ¢ indicates that only fully con-
nected graphs are to be saved. According to the
work of Mueller, Stapp, and Tan,* W,, is a cer-
tain discontinuity of the time-ordered product be-
tween in and out states, as discussed in Sec. II,
and W, has a representation

W= fdxzdﬁldﬁzhuu(xa Bus Bz $)60(=qo+ By Pro+ Bz P20)
X5((—¢I+BIP1+32P2)2—7\2), (26)

where £,, is a real tensor. The tensor indices on
hyy are formed from the components of p,, p,, and
g, but this tensor structure is irrelevant to our
discussion, except to note that we need only save
terms symmetric in exchange of u and v. Then
h,y is symmetric under the operation (8,, 3,)

—~ (=B, =B) (crossing symmetry), and because the
two initial particles are identical, %, is also sym-
metric under (B8,, B,) ~— (B, By)-

We are interested in the cross section (24) at
large ¢°, which necessarily means large s, since
q* <(s'?-2M)>?. Suppose for the moment that the
produced initial photon were replaced by a pion.
Then the differential cross section would fall rap-
idly in ¢q,® (perhaps like e ™®%, with ¢, in GeV),
where ¢, is the component of g perpendicular to
the incident beam. What we shall make plausible
is that, in the case ¢*> ¢,* (which can be attained
for virtual photons but not for pions), the cross
section is either relatively insensitive to q,%, com-
pared to typical pure hadronic cross sections, or
hypersensitive to variations in ¢*>. Our remarks
are complementary to those of other authors,®®
who argue that, at large q, (that is, q,%/s finite),
cross sections such as (24) fall off like a power,
much less rapidly than the exponential behavior
in g, that one extrapolates for inclusive produc-
tion by purely hadronic processes.

As we have mentioned before, this is not a sur-
prising result, but it is interesting to trace its
origins in the space-time structure of the product
of the currents, as given in (23).

The cross section (24) depends on the variables
S, P.*q, by* q, and ¢* from which we may define
q,% in a Lorentz-invariant way as

1 1
0.7 =5la bu+p)l - gpla (b= PP - 47

27

What we will show is that, in general, W,, is
more or less equally sensitive to variations in

q.% or ¢°. In the regime ¢*>q,% a large percent-
age change in g, corresponds to but a small per-
centage change in ¢?, for equal variations Ag?
~Agq,?® Barring an unforeseen hypersensitive de-
pendence of the cross section on ¢%, it cannot be
as sensitive as hadronic cross sections to vari-
ations in ¢,% In the limit s >M?, we may express
q*p,and g p, in terms of q,, gq,, and ¢* as
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q-p, =38 -q, +(q.%+q.%+¢*)"?],
(28)
g =35 +q, +(q.* +q.* + )],

where ¢, is the longitudinal momentum in the

J

AS(—q+B b1+ B br)? = N)=06"((-q+ By by + B 15)% = 2?)
X{qu[l - %81/2(31 +Bz)(¢1u2

Equation (28) is to be integrated over the weight
function % as in (26) to yield the variation of W,,,,.
After this weighted integration has been per-
formed, it is clear that the coefficient of Ag* may
be larvge compared to the coefficient of Ag,? if the
weighted value of B, + 3, is sufficiently small com-
pared to 1, but it cannot be small, except for ex-
ceptional values of s, ¢%, and ¢,%. So W,y is no
more sensitive to variations in ¢,? than it is to
those in ¢°. We illustrate the significance of this
fact with an example: Take

q.=Aq,=0.2GeV, ¢°=4 GeV?,
Aq,’=A0q%, so AG%/q*~2%.

Now we do not expect - or observe in experi-
ments - that the p-pair-production cross section
changes by an amount comparable to itself if
AG?/¢?~(1-2)%. Yet, in a typical inclusive reac-
tion in which a single hadron is observed, with
cross section proportional to e~®%, the cross sec-
tion changes by a factor of 3 for ¢, =Aq, =0.2 GeV.
1t follows that, for large ¢?, the u-pair inclusive
reaction is far less sensitive to g, than a typical
pure hadronic reaction. This insensitivity has
been recorded in the Columbia experiment,” where
the cross section is observed to be nearly flat out
to q,2=1 GeV2.

From the above discussion we conclude that the
behavior in ¢, of inclusive cross sections is tied
to the mass of the produced particle. It is worth
noting that, for the inclusive production of hadrons
such as 7, K, and p, the exponential decrease in
g, of the cross sections is the less severe the
more massive the produced hadron, i.e., the
larger ¢® is.® This qualitative trend is to be ex-
pected on the basis of the representation (23).

IV. LIGHT CONE AND INCLUSIVE PROCESSES

There is only one class of inclusive processes
for which the cross sections are necessarily dom-
inated at high energy by the region near the light
cone: the well-known electroproduction or neutri-
no-production process.'®!” The situation is much
less clear for inclusive processes such as pp —a
+anything, where a is a u pair or a pion of mo-

center-of-mass frame. Substitute these expres-
sions into the 6 function in (26) to find that for
fixed ¢, and s the sensitivity of W, to variations
in ¢% and ¢,? is expressed through the equation
(¢*>q.?)

+q.°) 7% - A, P 2sVH(B + B)q P +q.7) TR (29)

-
mentum ¢g. The contribution from the light cone
may’® or may not!® be the most significant. The
problem here is that the light cone is reached in
the limit g- «,'” with all other momenta held
fixed. This is an unphysical limit for the above
processes, since g— = requires s—« also. The
relevance of the light cone can be established on-
ly with some specification of the s dependence of
the relevant matrix element.

In this section, we study qualitatively the pro-
cess pp— " +anything, using the representation
(23), and find that Feynman scaling emerges in a
natural way. The cross section is given by

d
2q0ﬁ =3(2m) Y s(s -4 M?)] 712

><fdxe'i"’(plpzin|J+(x)J_(O)Ip1p2in)c,
(30)

where J, are the charged pion currents. The ma-
trix element in (29) will be constrained to reflect
the following physics: (1) the fact that this cross
section does indeed decrease rapidly in q,; (2)
the free-quark-model prediction for the small-x
behavior of the current product.

The second point will be considered first. In the
quark model, the pion current is

Jo (%) =M o F . (x)ivsh (%), (31)

where M g, is the quark mass, and F,~94 MeV is
the pion decay constant. This combination of fac-
tors gives an approximate Goldberger-Treiman
relation [with (-G,/G,) ~ 1] for the quark axial-
vector current. It is easy to extract, for free
quarks, the light-cone expansion

[ Mg % o
TIN0) o —i ( e )[zp(x))\a)\,,y ¥(0) - Hec.]

1
X8a<m)+"', (32)

where the omitted terms are less singular in x%.
Essentially this model was used by Cornwall and
Levy® in large-angle 7N elastic scattering, where
it yields a scaling law in excellent agreement with
experiment. It is interesting to note that the bilo-
cal operators displayed in (32) are exactly the
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same as in the light-cone expansion of the vector
(or two axial-vector) currents,'”?' as used to deal
with the electroproduction and neutrinoproduction
experiments.

Because of the appearance of 9, in (32), the rep-
resentation (23) must be modified so that # con-
tains gradient terms. We write

(pb2in|J,(x)J _(0)|p,p,in) .

(N2, By, Bos S)
xe"‘(ﬂl'l+52’2)A,,(x; 22).

(33)

=i(p1+p2)-8f

Of course, other terms may be present, involving
no gradients or some other combination such as
(p,—p,) * 9, but they will not change the essential
features we wish to discuss. With the help of the
formula

20 x?—iex®’

AL(x %) ~ <__4:r_2>—1—_ (34)

we use (32) in (33) to find sum rules for moments
of the weight function z. Setting x=0 in the bilo-
cal operator of (32) and in Eq. (33) yields a sum
rule for the antisymmetric (in a, b) spectral func-
tions &k, while saving the first power of x in (32)
and (33) gives sum rules for the symmetric func-
tions. The antisymmetric sum rule reads

2(2M o/F )X p, p, in|J5(0) | p, b, in),

=(pi+b)” [ Ba0 By i 9),
(35)

where J,' is the isospin current, and b, =h, —h_
is the difference of spectral functions for inclu-
sive 7* or 7~ production. In (35), if one of the
states were an out state, we could use the Low?
theorem for conserved currents to estimate the
left-hand side (saving only connected states re-
moves external-bremsstrahlung graphs). Let us
estimate the in-in matrix element by the absolute
value of the out-in matrix element (see Sanda and
Suzuki® for further discussion), and ignore off-
mass-shell derivatives which would enter because
saving only connected states does not exactly cor-
respond to the matrix element discussed by Low.
Then we shall use the isospin analog of Low’s
result?*:

S

do

nonsingular part of (p,p,out|J5(0)|p, p,in)
o 9T
=(P1+P2) _8;-’ (36)

where T is the forward scattering amplitude for
pp—~pp. At infinite s, 8T/ds~io,,, and our esti-
mate for the left-hand side of (35) leads to

j hA(A2, 61’ ﬁz; S) =~ (ZMQ/FW)Zotot . (37)

A similar sum rule holds for the integral of
(By+B,)(h, +h_), yielding a value of the order of
the right-hand side of (37). This sum rule is
based on the Low theorem as applied to the stress-
energy tensor, which emerges'® (in the free-quark
model) as one of the operators in the first-order
expansion of the bilocal operator in (32). We shall
see that the essential feature for Feynman scaling
is that these integrals be independent of s.
Nevertheless, k must depend on s, in order that
the cross section (30) show the usual sharp de-
crease in ¢g,. Introduce the Feynman scaling vari-
able y=gq,/p~ 2s"'/2q, (the second form holding
when s > M?2), where g, is the center-of-mass
longitudinal momentum. We assume in what fol-
lows that ¢, >0; if g, <0, the role of p, and p,
should be exchanged in the discussion below.
From (28), the following limits are found for
s»M?, g=m "2:

2+m 2
px'q"qlTy'L’ Pg'q"%s}’- (38)
The cross section (30) involves an integral of &
over a 6 function, as in (26); the argument of this
6 function is

m? —%L(qﬁm 1) = Bysy + 5By By + M2(By — B) = 2.
(39)

In view of the arguments of Sec. III, if this quan-
tity depends sensitively on ¢,%, it will depend hy-
persensitively on s. The s dependence in (39)
must be suppressed, and one simple way to do
this is to assign the following s dependence to A:

h=sF(X? B, $B,) +(By— Bo), (40)

which is consistent with the s independence of (37).
With the substitution z =sg,, (33), (38), and (40)
lead to a cross section

2q033; =# f dN?dB,dz F(\%, B, 2)0(=qo+ B, P10 +(2/5)D20)

x6(m % = (B/yNq.2+m %) — zy+ 2B, +M*(B, — B.)* = 2*)+O(s ), (41)

where part of the O(s™') term comes from that
part of (40) in which 8, is exchanged with B8,. As

r
Feynman scaling demands, ! the leading term of
the right-hand side of (41) has the form y(y, q.%),
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independent of s at fixed y. This s independence
is a consequence of the ansatz (40), which was
motivated by the requirements: that (37) be inde-
pendent of s, and that the s dependence not be
coupled strongly to the ¢, dependence, as would
be the case in general [Eq. (39) and Sec. IIIJ.

V. DISCUSSION

Inclusive reactions with two hadrons in the ini-
tial state are considerably more complex, both
kinematically and dynamically, than those (such
as electroproduction) with only one hadron in the
initial state. The most obvious extra complica-
tion is the dependence on s of two-particle matrix
elements, and little of use can be extracted from
the representation (23) without some knowledge
of the dependence of the spectral function % on s.
Section IV is a very preliminary step in that di-
rection, but it must be considerably augmented
before one can make any decision on the relevance
of the light cone'®!""?! and associated operator ex-
pansions.?*?* To repeat, the reason is that light-
cone dynamics can only freely be applied when s
is fixed and g - «, but we can only do the experi-
ment discussed in Secs. III and IV with s >¢®>. For
this reason, it is presently of little value to cata-
log the kinematic sum rules relating integrals
over cross sections to various singularities at

JOHN M. CORNWALL
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small x*, which have proven to be so useful in
electroproduction.® Such sum rules will be impor-
tant if the arguments concerning s dependence in
Sec. IV can be strengthened and extended, but
even then formidable difficulties ensue, such as
separating out the fully connected part of the sum
rules and dealing with matrix elements having in
states only. These latter problems are equivalent
to the problem of taking a certain discontinuity of
Feynman amplitudes of the type (11).* With such
a great deal of dynamics remaining to be supplied,
it is no surprise that present applications, such
as in Sec. III, are so limited.

We have not dealt here with an analysis like that
of Sec. IV for the process pp—u*u” +any-
thing,” '® %23 which could be based on light cone
dynamics and the Low theorem?? extended to
the other conserved operators. Certain difficul-
ties arise which remain to be fully analyzed; we
hope to return to this subject in a future publica-
tion.
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Previously suggested two-variable expansions of three-body decay amplitudes in terms of
harmonic functions of an O(4) group are discussed and applied to analyze the Dalitz-plot
distribution of over 3.2 million K*— r*7* ¥ decay events. Among the general features of
the O(4) expansions we wish to stress that they are written in the c.m. system of two of the
final particles, the angular momentum of which is displayed explicitly, and that each term
in the expansion has a good behavior at the threshold, pseudothreshold, and at the boundary
of the physical region. We analyze the recent data of Ford et al. on charged K — 3 decays,
using both O(4) expansion and the standard power-series expansion in terms of the Dalitz-
Fabri variables. In both cases it is perfectly adequate to keep four terms in the correspond-
ing expansion. The x? fit is marginally better for the O(4) expansion. We conclude that the
K — 3w Dalitz plot has too little structure in it to provide a real test of the advantages or
disadvantages of different treatments. It is thus most desirable to apply the O(4) expansions
to Dalitz plots of other processes, like n— 37 or pn— mnm. No conclusive evidence is found
for CP violation. However, the ‘“linear” term in the O(4) expansion of the difference be-
tween the squared matrix elements for K* and K~ decays does differ from zero by more
than two standard deviations. The effect is stable with regard to the number of terms kept
in the expansions. An important distinctive feature of the O(4) expansions is their intimate
relation to two-variable O(3,1) expansions of physical scattering amplitudes.

I. INTRODUCTION

In a previous publication! (to be referred to as
I), we presented a general formalism for perform-
ing harmonic analysis on Dalitz plots, i.e., for
analyzing Dalitz-plot distributions for three-body
decays, involving particles of spin zero. The
main purpose of this paper is to apply the formal-
ism to K*—~ w*n*nr* decays, using the new data of
Ford etal.,? ® and also to discuss some further
features of our approach.

The formalism presented in I consists of two-
variable expansions of decay amplitudes in terms
of basis functions of irreducible representations
of the group O(4). It is actually an extension and
modification of an approach developed in a series
of previous articles,*"!! devoted mainly to two-
body scattering. The purpose of the whole ap-
proach is to develop a reaction theory based on
two-variable expansions of relativistic amplitudes
and thus to display the entire dependence on the

kinematic parameters s = (p, +p,)* and t = (p, - p,)?
explicitly in certain special functions, whereas
the entire dynamics of the process under consid-
eration is summarized in the expansion coeffi-
cients, which we call the Lorentz amplitudes.
The motivation is thus twofold, theoretical (the
incorporation of general principles, the formula-
tion of dynamical hypotheses) and phenomenologi-
cal — the fitting of larger bodies of data than can
be fitted by single-variable expansions. In this
article the phenomenological aspect is stressed.
For scattering, the two-variable expansions are
obtained, making use of little else than Lorentz
invariance. Indeed, consider the reaction

1+2-3+4 1)

and let the particles have arbitrary masses but
zero spins. The scattering amplitude f(s, ¢) can
be considered to be a function M(p,, ..., p,) of the
momenta p,, ..., p,, each on its own mass shell.
Lorentz invariance and conservation laws natural-



