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A variation of the relativistic quark model of Feynman, Ravndal, and Kislinger is consid-
ered that admits spatial wave functions normalizable in all components of the relative vari-
ables. With these wave functions, the matrix elements of the hadronic electromagnetic
current between the nucleon and excited states are calculated for final states up to 1700
MeV in mass. Very good agreement between the predicted elastic nucleon electromagnetic
form factors and experiment is obtained. Cross sections for the electroproduction of nucle-
on resonances through the third resonance are derived and compared with experiment. A

discussion of the consistency and limitations of the model is presented.

I. INTRODUCTION

A recent formulation of a relativistic equation
to represent the symmetric quark model was pro-
posedby Feynmam, Ravndal, and Kislinger. '
Their encouraging results have led us to use this
model with a different solution to the relativistic
equation. This solution is required to vanish
when any variable describing the relative position
of two quarks becomes infinite and leads to nor-
malizable wave functions. Such a solution was
first considered by Fujimura, Kobayashi, and
Namiki, ' but their choice of the electromagnetic
hadronic current differs from that of the present
paper.

In Sec. II we develop the model. We derive the
spatial wave function, consider a subsidiary to
eliminate unphysical states, and present a sum-
mary of the calculations in Table I. The spin and
unitary-spin wave functions are treated and pre-
sented in Table II. We discuss the over-all wave
function and baryon spectrum of states with mass-
es below about 1700 MeV. Finally, we conclude
the section by giving a prescription for the elec-
tromagnetic hadronic current.

In Sec. III we give the results of the model. We
discuss the elastic nucleon form factors for which
agreement with experimental data is very good. '
The photoelectric matrix elements for excitation
of nucleon resonances are presented for proton
and neutron targets and compared with experi-
ment. These results are essentially the same as
those of nonrelativistic quark models. We give
results for electroproduction Qf the first, second,
and third nucleon resonances which are in general
agreement with experiment.

In Sec. IV we discuss two problems of the model.
The solution that is given in this work to the first
problem involving the mass spectrum will prob-
ably not be sufficient when the hadronic current
acts more than once. The solution to the second
problem involving handling large momentum

II. PRESENTATION OF THE MODEL

A. Space VVave Function

The basic assumption about the dynamics of the
three-quark system is that the quarks effectively
interact through a four-dimensional harmonic-
oscillator potential. ' This is motivated by the
success of the symmetric nonrelativistic oscil-
lator quark model, '4 and provides one way of
extending those results to relativistic quark mo-
tion. The limitations and philosophy of this ap-
proach are discussed in Ref. 1.

We take the spatial wave function g(r„r„r,) to
satisfy the equation

{&g+&,+&, + V —,—'Vo. '[(x, —x,)'+(x, —x,}'

+ (x, —x,}']]q(x„x„x,) = 0,

where CI,. =g"'(8/sx",. )(a/ax, '. ) (the metric g"=+ 1,
g"=g"=g"= -l is used throughout the paper)
and (x; —x~)'=g""(x, —x, )„(x,—x, ), . The equation
diagonalizes in the coordinates

p=(-,')'"(x, +x, +x,),
5 =(2)'"(», -«.),
g = ('-,)"'(x, + x, —2x,},

and becomes

[0~+Cl(+ „+V, —(-',)a'(g'+q')] q(p, &, n) =0.
The usual separation of variables g(p, t', g)
= U(p) V(q) W(() gives

( +c,) U(p) =0,

(0„+c, —-' o.'q') V(q) =0,

( K+c —ecP('}W($)=0,

(sa)

(sb)

(sc)

transfers between baryons is probably correct
and seems to be borne out by experiment. Finally,
the successes of the model are summarized.
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where c, +c,+c, = V„ the depth of the potential.
Equation (3a) has the familiar solution U(p)
=e '~ 'p ~&, where P~ is a four-vector satisfying
P' =3c,. Equations (3b), (3c) are two independent
four-dimensional harmonic-oscillator equations.
We choose, as done in Ref. 2, solutions that are
normalizable in all four variables, i.e., 1"„~V(g)~'

xdg„&~and similarly for W($). This solution
differs from the one chosen in Ref. 1, but with

some modification (see the section on nucleon
form factors) leads asymptotically to a dipole nu-
cleon elastic form factor. Both (3b) and (3c) de-
scribe four independent quantum oscillators with
the number of excitations satisfying a condition
that leads to the mass spectrum

P' = Mo' + 2 a [n, + n, + n, —n, + l, + I, + l, —l, J

= M~2+ 2nN, (4)

2

=e -4Z pgS
3F

(sb)

The excited states differ from the ground state
only by factors of products of Hermite polyno-
mials in g„, $„. They have the form in their rest
frame

n n n , l l l n n n , l lr y z' r yz nxnynz' ryz

g, p, (, g; 0 ,

(6)

where N„„„«,is the appropriate normaliza-
tion constant. From the mass spectrum (4), we
see that a sufficiently large number of timelike
excitations implies states of imaginary mass. To
avoid this catastrophe (for which we have no phys-
ical interpretation), we restrict ourselves as in
Eq. (6) to spacelike excitations only in the sys-

where n„and l„are the number of excitations in
the p.th component of g and (, respectively Mp
= (4a+3 V,)'" is the mass of the system when all
oscillators are in the ground state, and N is the
total number of spacelike minus timelike excita-
tions. In the rest frame P"=(M„O, O, O), the
ground-state wave function (normalized in relative
coordinates g, g) is

t.(s, (, eo)=~ '"'"'*(™
)

x exp[- -', a(q, '+ q'+ &,'+ &')], (5a)

which can be written covariantly as

tern's rest frame. The price we pay is the loss
of unitarity; various sum rules for the electro-
magnetic current cannot be satisfied unless the
timelike excitations are included. To express the
excited wave functions covariantly, the arguments
of the Hermite polynomials become components
of the spacelike four-vectors q„- (P g jM,')P„,
$ „—(P (/M, ') P„and g, (p, $, q; 0) becomes (Sb).

The reader may wonder why these details of the
spatial wave functions are given when one cus-
tomarily describes such systems with creation
and destruction operators acting on a ground
state. We have found the algebraic techniques
less useful since an orthogonality condition be-
tween states of different excitation in relative
motion does not hold. '

A listing of the spatial wave functions through
N=2 is given in Table I. These functions are
states of definite angular momentum and sym-
metry type. '

B. Spin- Unitary-Spin Wave Functions

To obtain the spin-unitary-spin wave functions,
we assume all baryon resonances are qqq com-
posites of spin--,', SU(3)-triplet, positive-parity
quarks, and that they fall into mass-degenerate
representations of SU(6) 0(3), with SU(6) being
the symmetry of spin and unitary spin and 0(3)
classifying the system's orbital angular momen-
tum. The three quark states can be in the 56-,
70-, or 20-dimensional representations of SU(6),
while the spatial wave function of the previous
section will determine the orbital angular momen-
tum. In interactions, the baryons will generally
reach relativistic motion, so we will use the rel-
ativistic generalization of SU(6).' There are well-
known basic difficulties with this approach, ' but
electromagnetic interactions can always be de-
scribed in a frame where the initial and final
baryons and the photon (real or virtual) are co-
linear. So, the actual symmetry at the hadronic
vertex is SU(6)~, which is known to give good re-
sults, ' and not the full U(12) of Ref. I.

The spin wave functions have a Dirac index
i=1, , 4 for each quark; furthermore, they are
required to satisfy the Bargmann-Wigner" equa-
tions

(8 M);;.q, ,„=(-P-M)...y„„
= (P- M),-, , q,.„., =0

for all i, j, k.
For quark spin &, the wave function D„.„must

be totally symmetric in all indices, which leads
to

/+M
D,» =

2
&" C (y„(P))„

1j
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where Cy„C '=-y„, all F matrices are in the
metric of Ref. 11, and g„(P) is the Rarita-
Schwinger spin- & wave function of momentum P
and mass M.

For quark spin —,', two independent wave func-
tions exist, depending upon the symmetry under
quark interchange. The one that is antisymmetric
under the interchange of quarks 1 and 2 must
satisfy g, .~ =-X,.;~ and g„.~+g», +y»,. =0, which(~) (&) (&) (~) (&)

leads to'

y5C U P
ij

(8a)

(Tl) (L)1/2 ( (~) (() ) (Sb)

where the superscript p just indicates it has the
same symmetry under quark interchm~e that the
variable q of Eq. (2) does, while y', ~ has the sym-
metry of the variable $, and D,-» has the sym-
metry of p.

The unitary-spin wave functions are familiar
from SU(3). Each quark has a triplet index
n =1, 2, 3. The state symmetric under interchange

where U(P) is the usual Dirac spinor of momentum
P and mass M. We use as the other independent
spin--,' wave function, one that is symmetric under
the interchange of quarks 1 and 2:

of any two quarks is the 10-dimensional repre-
sentation b, 8 . There are two independent 8-
dimensional representations, just as there are
two independent wave functions for quark spin —,'.
The one antisymmetric under interchange of
quarks 1 and 2 we will write as U ~By 6 8&By,
where ~ ~~ is the Levi-Civita symbol and B i

the usual baryon-octet matrix. The one symmet-
ric under interchange of quark 1 and 2 we will

there is a one-dimensional singlet c ~ S, where
S is the particle state.

The spin and unitary-spin wave functions are
combined into states of definite symmetry type
to form the irreducible SU(6} representations in
the rest frame of the system. We use the notation
'~ "Bfor a multiplet of quark spin S and SU(3)
representation of dimension B. The multiplets 410
and '8 comprise the 56, the multiplets ~8, '8, '10,
and '1 the VO, and the multiplets '1 and '8 the 20.
The combinations of wave functions that produce
the SU(6} irreducible representations in the par-
ticle rest frame are displayed in Table II.

C. Baryon Spectrum and Over-all Wave Function

We assume the over-all baryon wave functions
are symmetric under the interchange of any two

TABLE I. Spatial wave functions. The ground-state wave functions $0(p, q, (; p) and $0(p, g, $; 0)
are given in Eq. (5). All states are normalized to unity in their rest frame.

Excitations Symmetry Angular momentum %ave function

N=O

N=l

Symmetric

Mixed g

Mixed (

L =O

L=1

C0(P, n, (; P)

q~
—

2 P~ $0(p, 7), $; p)

2 Pp $0(P q $' P)

N=2 Symmetric

Mixed g

Mixed $

Mixed g

L=0

L=2

L=2

(-'}'" &+
3

n' — I +t'-
M 40(P, n, t;&}

4~ ~ 1/2

[n'Y2(Q„)+&'Y2(Q&)i&0(p, n, (;O)

n 2 P $ 2 P ~ g

2e P ~ P
&0(P. n &'P)

4~ ~ 1/2

[ ~2Y2(Qg)+(2Y2(QK)~~0(p q ~ O

Mixed $ 87(a [g( Y2(Q&Q& )]$0(p, g, $; O)

Antisymm.
van

kappa&

'I P 40(P 8 h' P)

b
'TheL =2 states are expressed in the rest frame. In a moving frame p —p —(P. p/M2)P and similarly for (P'

Y2(Q„Q&) is the angular part obtained by combining p and $ to form L = 2 and normalizing to unity over Qz, Q& ~
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quarks, but avoid the question of what type of
statistics the quarks obey."" To discuss the
supermultiplets we use the notation [A, I.~J „,
where A is the SU(6) multiplet of the particle at
rest, L is the internal angular momentum, N is
the number of excitations of the spatial wave func-
tions, and I'=(-1)"is the parity of the system
The quark spin can combine with the orbital angu-
lar momentum to form the particles' total angu-
lar momentum J which we indicate by placing a
suffix J on the ' "B~notation for the constituent
multiplets.

The ground state [56, O' J, is that which contains
the famous '10,/2 and 8z/2 The over-all wave
function is the N=O function from Table I multi-
plied by the 56 states of Table II.

The first excited state is the [70, 1 ], since the
spatial wave function necessarily has a mixed
symmetry which means the spin-unitary-spin state
must also. The single excitation states have L = 1,
so the supermultiplet contains the nucleon states
8,/2, 83/2y ~/2y 3/2y 85/2, and ~10 /2, 103/2.

form the over-all wave function of definite angular
momentum J and projection J„we combine the
space part with L = 1 to the spin-unitary spin part
which has S = —,

' or & with the appropriate Clebsch-
Gordan coefficients.

With a total of two excitations, we can combine
the individual symmetry types' to form spatial
states that are symmetric with L=O and L=2,
mixed with L = 0 and L = 2, and antisymmetric with

L =1. The symmetric and mixed spatial states lie
in the [56, 0']„ [56, 2']„ [70, 0']„ and [70, 2'],

which can accommodate all the nucleon resonances
not assigned to the lower lying [56, 0']„[70,1 ],.
The antisymmetric spatial states belong in the

[20, 1'], which does not seem to be needed to clas-
sify presently observed resonances. This is inter-
esting since models of interactions with perturba-
tions that act on only one quark predict that the
antisymmetric 20 could not be excited from states
in the symmetric 56.

In Table GI we assign the nucleon resonances to
these supermultiplets. Most of the resonances
have been observed; those that are speculative
have an estimate of the mass and a "7"following
the assignment.

D. Prescription for the Electromagnetic Current

The dynamical E{l. (1) is supposed to describe
a composite fermion, yet it contains only Klein-
Gordon operators and no Dirac matrices. This
means if we assume minimal electromagnetic
coupling (via s~ - a„+ieA„), we will produce a
current operator that cannot mix upper and lower
components as does the operator in the usual
spinor electrodynamics. A solution to this di-
lemma was proposed in Ref. 1, whereby the Klein-
Gordon operators were written as,. = y„a,". y„b,.",
i=1, 2, or 3. As stated there, this does not af-
fect the dynamical equation, but only defines the
perturbational effects of the electromagnetic po-
tential. We can construct the following Lagrangian
density that leads to the dynamical Eq. (1):

TABLE II. Spin-unitary-spin wave functions. The functions are norxnalized
to 2Z~ByE»y, 2Tr(BB), and 2SS for the decimet, octet, and singlet, respectively.

SU(6) representation SU(2) @SU(3) substate Wave function

70 g type

70 ( type

10

28

10

48

28

21

10

48

28

21

D;~kA~ By

(c) (~) (n) (n)
2 tXijk f){By +Xtjk aBy~

Xt jk &~By
(7))

{2) Disa Uahy

(c) (c) (g) (q)
2

~ Xgj k Uf)f By Xtjk Uf)f By~

Xt jk &n By
S'~ S/2 (q)

(c)X„-k&f) By

(-, ) D;jkU~By
& u2 (S)

(K) (q) (q) (K)
—,
'

~xtjk U~H'y + X;jk U~By~

t &/2 (C)(-, ) X;jk &~By S

20 28

41

y~Xt'jk Ua By
—Xtjk Ucf By]

(c) (q) (n) (0

{$) Di jaen Sy s
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—
Tt f V, —,—', n'[(x, —x,)'+ (x, —x,)'+ (x, —x,)']] y,

where the index i refers to the quark on which the
operator it labels acts, yoy, y, is the direct
product of matrices acting on the three quarks
simultaneously, and g = ft (y,y, y, ) M.mimal
electromagnetic coupling adds a piece to the La-
grangian, which to first order in the potential A„
is

y(j) Qjy($) &&jl 0} r

(10)

where Q is the SU(3) charge operator [Q= —,
'

A. ,
+ (I/2v 3 )A., with Gell-Mann's X matrices] mea-
sured in units of the electron charge. Each term
in the sum is the same because of the symmetry
of the wave function, so we need only consider
one term, say for the third quark. The effective
current acting at the position x, of the third quark
is

j"(x ) =3i
J

d'x d'x, g[a„y"Qy" y-"Qy" s„]g,
(l1)

where we have dropped the label 3 in the SU(2) 8
SU(3) space. This current differs from the one of
Ref. 2 because of basic differences in the models.
Although the same spatial wave functions are used,
the authors of Ref. 2 do not use the relativistic
SU(6) wave function of Sec. II 8. Instead they take
the nonrelativistic spin-unitary-spin wave func-

TABLE III. Quark-model nucleon resonance assignments and helicity amplitudes for photon excitation.
The quantities A, B, r, and A, are defined by the equations at the end of Sec. II E.

Width
Supermultiplet Substate Nucleon resonance (MeV) Target

[56, o+j,

[7o, 1 ],

[56, 0+12

[56, 2']2

28
1/2

410 3/2

28
1/2

8 3/2

's
1/2

4s
3/2

48
5/2

10 1/2

210 3/2

28
1/2

41P 3/2

28
3/2

28
5/2

P 11(938)

P33(1236)

S«(1535)

D13(1520)

Sii (1700)

D13 (1700)?

D15 (1670)

S31(1650)

D33 (1670)

P 11 (1470)

P33(16gp) 'P

P13(170P)7

F15(1688)

120

120

120

250

1507

140

150

240

250

250'P

200?

125

2B

(
3 )1/2A
2

(g)i/2A
2

(
3 )1/2~
5

(2 )1/2~

(
3 )1/2A
2

(g)1/2g2B

g( 3 )1/2~
2 m

v6B

--', W6B

-(2/v 3)B

-A ——AB1

(1 )1/2A + W
2

&~}"'A—~2/3 Pa

——AB1
3

1 (1 )1/2~
5

(1 )1/2~

A —-AB1
3

2/3)AB

(g)1/2g 2B
2

(W2/3P 'B

1 g2B

(-) ~ (73A +KB )

2 (g)i/2g2B

(&)«2~(- ~A+ZB)
2 (3)1/2g2B

-W2x r
W2xr

-v 2xr

(1 )«2g2r
2

(2 )1/2g2r

0

($}1/2g2I
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tions" for the composite nucleon, add the two
lower components by which Dirac and Pauli spin-
ors at rest differ, and boost to relativistic mo-
tion. An analogous procedure is used for the ex-
cited final states. The nonrelativistic electro-
magnetic current operator is generalized in a
corresponding manner, but requires further mod-
ification for current conservation when initial and
final states differ in mass. In contrast, the cur-
rent (ll) is divergenceless as can be explicitly
demonstrated since P, P satisfy Eq. (1):

= -3 i d'x, d'x, {[(0,+ g, )y]Qq

where the last step follows from integration by

parts. This result holds for any initial and final
states that satisfy Eq. (1}. Consequently, current
conservation will hold only if Eq. (4) is satisfied,
i.e., only in the limit of strictly degenerate mul-
tiplets. The empirical masses of different parti-
cles assigned to the same multiplets, of course,
differ. We will maintain current conservation by
allowing the o. in Eq. (4) to depend on the experi-
mental resonance mass.

Let us now derive a more convenient expression
for the current. Expression (11}is for a configu-
ration-space current, but we would like a momen-
tum-space expression to utilize the conventional
formulas of quantum electrodynamics. Expression
(11) is the matrix element of the hadronic current
at point x, between an initial baryon with momen-
tum P and a final (possibly excited) baryon of mo-
mentum P'. Taking the four-dimensional Fourier
transform gives

d4x e "*&j"(x~) = (2v)46 (P' -P —q)(-27) g&, „~Qp; 2„~[(P' —3P)"I —2i( —', )'~'I" ]+$»»Qio""q, g, ,„,I j,
(12)

with

where the g, „,are the SU(2) SU(3) spin-unitary-
spin wave functions and the g($, g; P) are the parts
of the spatial wave functions that depend only on
the relative coordinates since the center-of-mass
motion factor e ' "" has been integrated out.
The momentum-space expression for the current
is obtained by removing the (2 )'x(6'P- P—q):

j ~ (P', P) = 27 y, ,„,Q{(P' —', P)» I —2i(-;P'I"-
+io""q,)y, ,„,. (13a)

We normalize the current by considering the time
component for identical initial and final states.
We replace Q by the identity operator since we are
counting particles and not their charge and multi-
ply by —,

' since we are not concerned with a super-
position of ways in which the individual quarks
can interact with the electromagnetic potential.
This gives 6E~P, ,„,(P)g;,„,(P), so the matrix
element of the hadronic current normalized to one
baryon per unit volume is

~" (P ' P) =I' "(P ' P) [ 36+&s ' Ty 2 xs 4y 2 xs

(13b)

where E~, E~. are the energies of the initial and
final baryons, respectively.

In the Appendix we evaluate a useful integral
from which the overlap integrals I, I" in Eq. (12)
can be determined. As we shall see, these over-
lap integrals are closely related to the nucleon
excitation form factors.

E. Matrix Elements of Hadronic Current

To study the electromagnetic excitation of the
nucleon, we need to evaluate the hadronic current
(13b) for excited final states. This is conveniently
done in the rest frame of the excited resonance in
a coordinate system with the photon (real or vir-
tual) and nucleon momenta defining the z axis.
The transverse photons couple to J' =v(-,')'"
(J', a iJ„), the scalar photons couple to J„and
we need not consider the longitudinal photons
separately since current conservation requires
fgJ = 0 = pp Jp q, J, . We assume the initial nu-
cleon has spin projection +-,' along the z axis, so' produces a final state with projection +—„J
one with --,', and J' one with +—,'. These specific
matrix elements for the normalized current of
Eq. (13b) multiplied by E~E~,/2M" are given in
Table III for experimentally observed resonances
and some speculative ones. A factor II/2 has been
removed from all matrix elements for reasons
discussed in Sec. III A. They are expressed as
functions of the invariants M', which is the ini-
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tial mass squared, M", which is the final mass
squared, and P ~ P' for ease in presentation and
not, of course, to suggest that they are Lorentz
invariants. The quantities A, B, I', and A. that
appear in this table are defined by the following
equations:

Q H 1/2 MI2

4g. 3~ M'

)(3 G P P' —MM' 'i M+M'
4 MM' M'

1 =,2
— ——,+3 M'+ MM'

M" (P P')' —M'M" )"'
p p'Pns M'

with H = (P .P'+ MM')/MM' and G is the function
evaluated in the Appendix.

III. RESULTS OF THE MODEL

A. Nucleon Elastic Form Factors

For proton states of moments P' and p, the hadronic current of Eq. (13b) becomes

q2 2M2 3q2

(14a)

where the spinors are normalized so that uu = 1. If we normalize the spinors to uu = 2M and perform a
Gordon decomposition, we obtain the form

1 q' 2M' —3q' 4M' zJ'"(P', P)=(4E E y
G(q') 1-4M u ~, 2M2- 2 + 2M2- 2 2Mos s' -q

which allows us to read off the nucleon form factors"

(14b)

q2 2M2 3q2F (F )=('(F )((
4M'F., (e') = ((F') ()—

and determine charge and magnetic form factors

2

(;„(F'}=(,(F')(1-, 3.

So, as pointed out in Ref. 1, this model pre-
dicts the magnetic moment G»(0) = p~ for the pro-
ton to be 3 nuclear magnetons, when experimen-
tally it is 2.79. If, for the moment, we neglect
the factor 1-q'/4M', the model predicts G»(q')
—q ' as q'- ~ which seems to be the case ex-
perimentally. In fact, the factor G(q') provides
a fit' to the experimental data for G» (q')/p~.
This comparison is shown in Fig. 1. The fitted
value of a is 0.39 GeV . When the Regge recur-
rence E„(1688)of the nucleon is identified as a
state having two spatial excitations, we see from
Eq. (4) that a should be approximately 0.5 GeV',
so the fitted value is consistent to within about
209o

4E~Ep, )'"
2 2

which has charge and magnetic form factors

Gs„(q') =0,
2

G .(F')=&(F')((-4M. (-2)

(15)

Experimentally, the charge form factor departs
slightly from zero, but is certainly consistent

The experimental situation" "concerning the
ratio G»/(G»/g~) is not clear, but the most re-
cent measurements indicate that the ratio de-
creases with -q' in the region 1 s —q' ~ 3 GeV'.
The model predicts an increase consistent with
only a couple of experimental points" having large
error bars. It, thus, appears that the model fails
for this ratio. An extension of experimental mea-
surements to larger q' would be very helpful in
clarifying the extent of failure.

The hadronic current between neutron states of
momentum P' and P is
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with zero to within the accuracy of the model.
The neutron magnetic moment G„„(0)= g„ from
the well-known SU(6} result is predicted to be

The model gives -2 nuclear magnetons
while experiment gives -1.91. With neglect of
the factor 1 —q'/4M', the scaling result is pre-
dicted in the form G» (q')/p~ = G„„(q')/p„= G(q')
which gives a good fit to the data. '

Let us now comment on the neglect of 1 —q'/4M'.
When a nucleon absorbs a photon and changes its
four-momentum, it also changes its spin wave
function. A change in the composite spin wave
function implies a change in the individual spin
wave functions of all three identical constituent
quarks. Yet, our model hypothesizes an explicit
perturbation of only one quark. We can give no
satisfactory solution to the problem of how the
two unperturbed quarks change their spin wave
functions. Instead, we propose the following ap-
proximate treatment: Discard the factor H/2
= (P P'+ M M')/2M M' present in most of the
SU(2) SU(3) matrix elements which roughly rep-
resents the overlap between the spin wave func-
tions of the two unperturbed quarks. It is just
this factor (1 —q'/4M' in the equal-mass case)
that we have neglected above. We can give no
other justification except that the correct asymp-
totic q' dependence seems to result from this
procedure.

Other models' ' "involving a harmonic inter-
action between quarks predict an exponential fall-
off in q' for the form factors. The wave function
of Ref. 1 causes an overlap that exceeds unity and
actually diverges as an exponential for large q';
this forces the introduction of an adjustment fac-
tor for comparison with experimental data. In
contrast, this model overcomes both defects by a
choice of spatial wave functions that couples the
space and time components of the relative vari-
ables q, $ when the particle is in motion [Eg. (5b)].
This feature reduces the form factor falloff in
large q' from an exponential to a power that is ob-
served experimentally.

relationship to within a sign is

(16}

where A, , A are Walker's A3(2 Ay(g respective-
ly. Since we have not calculated the amplitude for
the resonance to decay to a pion and nucleon, we

cannot determine the sign of A3/2 Ay/2 In Table
IV we present a comparison of the predicted and

experimental magnitudes for these amplitudes.
The principal experimental features of photo-

production discussed by Walker in Ref. 19 are
reproduced by the model, but these are almost
independent of the details of the spatial wave func-
tions. Such features include (i) a dominant mag-
netic dipole amplitude in the first resonance, (ii) a
small A„, amplitude for the D»(1520), (iii) a, small
A,I, amplitude for the F„(1688), and (iv) small ex-
citation of the F»(1688}from a neutron target.
More quantitatively, the predictions for the first
resonance are good to within 20Pp. Those for the

10-'

10

B. Photoproduction Matrix Elements

An experimental analysis of photoproduction ma-
trix elements has been made by Walker" ' in
which numerical values of he1.icity amplitudes are
determined. To compare with Walker's results,
we must multiply the normalized current (13b) by

E~ E~ 4m+
I

10
q

2 (GeV2)

l

20
I

30

where cy is the fine-structure constant, and co is
the energy of the photon, since he uses a different
normalization. In terms of the I', of Table III, the

FIG. 1. Comparison of experimental Gz&/p& with
the empirical dipole fit [(1-q2/0. 71) J and G(q ) with
u = 0.39 GeV2. Experimental data from Ref. 33.
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second are good to within 40% for the S»(1535),
are very close for the A„, amplitude of the
D»(1520}, but off by a factor of 1.8 for the A„,
amplitude. The predictions for the third reso-
nance are too small by a factor of 4.2 for the
F»(1688) A„, amplitude, but it should be noted
that Walker's fit assumed only that the F»(1688}
and the D»(1670) contributed to this resonance.
However, other resonance contributions are quite
possible, and, if present, would probably diminish
the F»(1688) A„, value. The F»(1688) A«, ampli-
tude is small as experimentally required.

C. Electroproduction of Nucleon Resonances

q' =(P' —P)' = (P,' —P,)' = 4EE' sin'(-,' 6)- (17)

and this final baryon mass M'. Equation (17) ne-

We have already seen that the model as modified
in Sec. III A can, successfully determine nucleon
elastic form factors even at large momentum trans-
fers. Considering the enormous effort in particle
physics that has been made to understand these
form factors, we view this success as quite signif-
icant. In this section, we shall extend the model
to treat electroproduction of nucleon resonances. '

The reaction consists of incoming electron and
nucleon of four-momenta P, = (E, P,) and P = (E„P),
respectively, scattering to outgoing electron and
baryon system of four-momenta P,' =(E', P, ) and
P' =(E„P'), respectively. We assume the reac-
tion proceeds through one-photon exchange. Be-
cause the final baryon system can have any mass,
the hadron vertex depends on two invariants which
we can take as the momentum transfer or virtual-
photon mass squared

glects the electron mass as we will do throughout.
As Hand showed, "we can express the doubly dif-

ferential cross section for this reaction in the lab-
oratory frame as

do cP E' K cot (28)
dE'dQ (-q ) E 4v'n 1 —qo'/q'

cot'(-,' 8)
+ sz moo(M ~q)1 —gp //Q

(18}

where qo =E —E' and K = (M" M')/—2M is the equiv-
alent energy for a real photon to photoproduce the
final state of mass M'. o,(M', q') is the cross sec-
tion for nucleon absorption of transverse photons
of mass'=-q at energy M'. In terms of the had-
ronic current (13b), we have when the final state
is a single particle

o,(M', q'}

, ' Q f &d&'(&'- '&- lqHI&. I* ~ I&, I')
a,a'

o,a'

a(M" —(P+q)') g —,'riF, f'+ iF i'],
(19a)

where the F, come from Table III. oo(M', q ) is a,

combination of cross sections for nucleon absorp-
tion of longitudinal and scalar photons which has
the same value, because of current conservation,
in all frames reached from the laboratory frame
by a boost along the final-baryon momentum direc-

TABLE IV. Photoproduction matrix elements. The quantities A, B, and A,

are defined by the equations at the end of Sec. II E.

State

P 33(1236)

Sgg (1535)

Di 3(1520)

D„(1670)

S3) (1650)

D 33 (1670)

P
g ) (1470)

Fgs(1688)

Target Model A3/2

0.202

0.082
0.082

0
0.036

0.071

0.033
0

Exp A3/2

0.244

0.151
0,132

0.040

Model A f/2

0.117

0.122
0.085

0.031
0.021

0
0.026

0.040

0.068

0.039
0,026

0.024
0.032

Exp Ag/2

0.138

0.096
0.118

0.026

rv 0
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tion. In terms of the hadronic current

vo(M', q ) (21)

(19b)

Most experiments detect only the final electron,
so the cross section of Eq. (18) is measured, and
not cr, or 00 individually. Consequently, we will
compare the cross sections (21) with the quantity

where the photon's momentum q* and the amplitude
I 0, given by Table III, are evaluated in the final-
baryon rest frame. For single-particle resonance
production, we see from Eqs. (19) that both o, and

oo have a factor 5(M" —(P+q)'). To compare with

experiment, we approximate this by a Breit-Wig-
ner form

with

2 -1

e =cot'(-,'8) 2 1 —~ +cot'(-,'&)

(22a)

(22b)

.~ mM'I'

(20)
where 1 is the width of the resonance, and the last
expression is the approximate form of the 5 func-
tion at the peak cross section. So the theoretical
o, and 0, are given by

2 -1
2+ 1 —

~ cot'(-,'8), (22c)4v'Z -q'

as measured at the value of E' and q' correspond-
ing to the resonant peak. These comparisons are
shown in Figs. 2 through 6. We have evaluated
v„v, for all resonances predicted by the quark
model that could contribute to the first, second,
or third peaks. This includes some unobserved
states having the same quark spin and SU(3) rep-

600—

500—

P~~ (1236)

400()-..- &&

-300
N

200—

100—

0
0.0 0.5 1.0 1.5

q~ (GeV~
2.0 2.5 3.0

FIG. 2. Experimental Z~ and theoretical o& and 00 for P&&(1236) from proton target. Experimental data
from Refs. 31 and 32.
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60

Dip (1520)

resentation as observed states, so we have as-
sumed they have roughly the same masses. "

The model has three types of selection rules.
First, the time component of the current cannot
couple states of differing quark spin, so v, van-
ishes for all final states of quark spin —,

' produced
from nucleon targets. Second, oo vanishes for the
production of a 8 of a 56 from a neutron target.
In the model this selection rule is a generalization
of the usual quark-model prediction that the charge
form factor G~„of the neutron vanish. Third, the
Moorhouse" selection rule given for the nonrela-
tivistic quark model holds since the relativistic
model has the same symmetries under quark inter-
change and corresponding unitary-spin matrix ele-
ments. This means the '8&,2p 8py2p and 8„, of the
[|0,1 ], are not electroproduced from the proton.

The first resonance is entirely due to the
P»(1236) which is in the [56,0']o with the nucle-
on P»(938) In th. e model which has no mass-
splitting mechanism their masses are degenerate,
but the kinematic factors in Eq. (21) require the
experimental masses. We treat this problem by
calculating the form factor G of Table III and the

Appendix as if no mass splitting were present
which means M =M'. We take M to be the proton
mass and e =0.39 GeV' as in the elastic form-
factor fit, which assumes that the elastic form
factor is appropriate for electromagnetic transi-
tions in the [56,0']o. In the remaining terms in
Eq. (21) we use the experimental masses M'
=1.236 GeV, M =0.938 GeV to handle the kine-
matic factors properly. The comparison of o,
with the experimental Z, is shown in Fig. 2. o,
in the low -q' region (&0.5 GeV') is too low by the
order of 30%, but experimental agreement is good
for -q'&0. 5 Ge

The Roper "resonance" P»(1470) of pion-nucleon
phase shifts does not appear experimentally in
electroproduction. Although its status as a reso-
nance is not settled, we can assign it to a quark-
model classification to derive a prediction. If we
assign it to the [20, 1']„then we can explain its
absence in electroproduction. This follows from
the fact that interactions involving only one quark
cannot connect a 56 and a 20. The more conven-
tional assignment to the [56,0'], gives the result
of Fig. 5. In this and all the following calculations
we have used M =0.938 GeV', M' equals the reso-
nance mass, and o. = (M" —M2)/2N with N the num-
ber of spatial excitations. This very small cross

50 50—
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40 40—
90

30
N

30 80

20 20 70

10

0
0

20

15—

I I 0
2 3 0

-q2 (Gey2)

I 20
s„(1650)

15

2
-q~ (Gey')

—50
N

40

30

&10— 10
20

10

'o 2
-q2 (GeV )

0
0 1 2

—q~(GeV )

0
0.0 0.5 1.0 1.5

—q2 (Gey ~)
2.0 2.5 3.0

FIG. 3. Theoretical aq and op for the individual states
S(1 (1535), D(3(1520), 83)(1650), and D33(1670) from a pro-
ton target.

FIG. 4. Experimental Z, and theoretical a, and op
for the second resonance peak from a proton target.
The dashed curve is for S&&-state mixing with an angle
of 35'. Experimental data from Refs. 31 and 32.
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section would not produce a resonant "bump" un-
less accompanied by other resonances with approx-
imately the same mass.

The second peak receives contributions from the
S»(1535) and the D»(1520), individually shown in
Fig. 3 and collectively compared to Z, in Fig. 4.
The theoretical values are too large for -q'z0. 5

QeV', but the shape of the falloff appears correct.
Also, the contribution to o, from the S»(1535) is
about twice that of the D»(1535) for low q', con-
trary to results of photoproduction analyses. "'
If the physical states S»(1535) and S»(1700) were
mixtures of the 8„, and '8», in the [70, 1 ]„
since the '8yg2 cannot contribute, the cross sec-
tion for S»(1535) would be decreased by cos'8,
where e is the mixing angle. Qualitatively, this
decreases both the theoretical o, and the ratio of
the S»(1535}to D»(1520) production as called for
by experiment. To give some quantitative feeling
for the effect of mixing, we present the dashed
curves for cr, in Fig. 4 calculated for the mixing
angle of 35' determined by Faiman and Hendry. "
The mixing hardly affects cTO.

The third peak has many contributors in the

p~q (1690)

quark model. These are the S»(1650), D»(1670),
E»(1688), P»(1685), and P»(1700) whose indi-
vidual cross sections are shown in Figs. 3 and 5.
The speculative P»(1685) is the partner of the
P»(1470) in the [56, 0'], as the P»(1236) is the
partner of the nucleon in [5~6 0'),. We a,rrive at
this mass by assuming the same splitting in mass
squared, i.e., 0.65 GeV'. Actually, its inclusion
is unimportant since, as shown in Fig. 5, its con-
tribution to the resonant peak is negligibly small.
The unobserved P„(1700) is the '8„, in the [56, 2'],
and should be roughly degenerate in mass with
the '8», F„(1688}as Ravndal points out in Ref. 20
(see also Ref. 22}. Conventionally, the P»(1860}
is assigned to the '8„, at the loss of approximate
mass degeneracy. The P»(1700) is an important
contributor to the third peak, accounting for about
one-fourth of the low q' cross section. Photopro-
duction analysis for the third resonance' revealed
a dominant E»(1688) contribution, not borne out by
this model, but it assumed that the D»(1670) was
the only other contributor. Theoretically, at least,
the D»(1670) is not produced, so the analysis may
have been too restrictive. For the third peak,
comparison with experiment is shown in Fig. 6.
The theoretical value is too small at low q', but
looks good for ~' & 0.8 GeV'. If mixing is con-
sidered, the situation improves as shown by the

100

m 4 90—

0'
0 2

—q~ (GeV )

0,
0 2

-q~ (Gev')

80—

70—

60—

Sp) (1650)
+ Dpp (1670)
+ P ~~ (1690 )

+ Fi5 (1688)
+ P)~(1700)

10 0— Ff 5 (1688)

30

20

10

0
0 1 2

-q ~ (GeV )

0
3 0 1 2

-q~ (GeV )

0
0.0 0.5 1.0 1.5 20

-q~ (GeV')
2.5 3.0

FIG. 5. Theoretical o~ and o'0 for the individual states
P1~(1470), P33(1690), P&3(1700), and F&5(1688) from a
proton target.

FIG. 6. Experimental Z~ and theoretical o~ and oo
for the third resonance peak from a proton target. The
dashed curve is for 8&&-state mixing with an angle of
35'. Experimental data from Refs. 31 and 32.
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dashed curve for a mixing angle of 35'.
Brasse et al. ' have found a fit to the ratio R of

the scalar cross section go to the transverse
cross section 0, which satisfies R «0.2 for 0.5
«-q2 «2.0 and R «0.35 for 2.p & q2 «4.p. For
the second resonance the model predicts an R
which is compatible with this fit for 2.0 & -q
«4.0, but too large by, at most, a factor of 2 for
0.5 «-q' «2.0. For the third resonance the mod-
el predicts an R which is too large by, at most,
a factor of 1.4 for 2.0&-q' «4.0 and, at most, a
factor of 2.8 for 0.5 «-q' «2.0. When S» state
mixing is considered, the model predictions are
essentially unchanged.

IV. DISCUSSION

A glaring problem with the model is, of course,
the mass spectrum which allows imaginary mass
when the number of timelike excitations becomes
sufficiently large. To eliminate the imaginary
masses for which we have no interpretation, we
restrict ourselves to only spacelike excitations
in the rest frame of the particle. This procedure
provides a partial solution in the sense that no
difficulties arise if the current operator acts only
once, as it does in all processes considered in
this paper. We have not formulated a way to han-
dle cases in which it acts more than once, but in
such cases the timelike excited states will certain-
ly appear in sums over a complete set of inter-
mediate states unless unitarity is forfeited. These
are problems we have not solved.

A second problem is the elimination of the factor
If/2 from all matrix elements of the hadronic cur-
rent. We can only justify this step by the success-
ful fits to the elastic form factors and general
good agreement with electroproduction data. In
further defense of this procedure, it is interesting
to notice the following: The structure function
W3(v, q') of Bjorken and Walecka ~ can be ex-
pressed as

vW,
M' —M —q

q -, &'flXed
1+

-(q') '
(24}

So, Eq. (24) shows in this limit that o, +o, -(q') '.
If we believe the duality of Bloom and Gilman, "
the resonances (M' ~1.8) will have the same be-
havior in this limit. From Eq. (21) and Table 111

we see that, indeed, o, +o, -(q ) ' since o, -(q') ',
o, -(q') '. The H/2 elimination is consistent with
all experimental information presently available.

On the positive side, the main successes of the
model with this choice of spatial wave function
are the prediction of the nucleon elastic form fac-
tors for all measured q' and the general agree-
ment with the electroproduction data. The elastic
form factor results are not new, ' nor a complete
success because of the trouble with the ratio
Gs~(q')/G»(q'). Nevertheless, they are features
of the model that require adjustment of only the
parameter u to achieve a highly successful fit
to G»(q'); no other model can make such a claim
and tremendous theoretical effort has been de-
voted to understanding nucleon form factors. This
leads us to believe that the model is on the right
track. The predictions for electroproduction are
new and give good general agreement, although
not as detailed as one might wish. The hope is,
of course, that resolution of the two problems dis-
cussed above will produce closer agreement with
experiment.
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APPENDIX

To determine the matrix elements of the hadronic current (13), we need to evaluate the integrals I and P
of Eq. (12). Both |iz($, q, P) and g,.($, q, P) are linear combinations of terms whose t' and q dependence fac-
tors, so I, P will be sums of integrals of the form
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J
d qd''(exq -™x(, )

~(, ) e( n ) e( )
—q —(' eex"'e" qx, (q)L,((),

(A1)

where L, (Ql), L,($) are polynomials in the components of q, $, respectively. Since L,(q)e'o'" can be gen-
erated by a suitable linear combination of derivatives of e'o'" with respect to the components of Q [and
analogously for L,(()e' o'~], we can easily calculate I, I" from a knowledge of

F(Q)-=( )
—fd q'p --, (';")'.

(
")*,* I.' .

F(Q) is a Lorentz invariant, so we will evaluate it in the convenient frame where P=(M, 0, 0, 0), P
=(&, O, O, P), Q=(Q, , Q„O, Q,). In this frame

F(Q)=(X ) fd qexp '——
q,

' —Qq, (X Q) —
(X Q)

n E PE 3i 2

e~ -3 M, g,
' —2

M 2~' 2m@~ ~' M' I' E 2a

"~--:.-". q--. q ~ —". q--Q — —" q:——"Q.Q 9'
M' 3 2 2 2 2P

(A2)

In terms of the invariants,

2P p'qp q
(A2)

so we can write

F(Q)=,exp ——2, —Q'
MM' 3 P'QP Q

(A4)

In the case of the )7 integration we see from I, I" that Q =(-,')'"(P' —P), whereas in the t integration, Q = 0,
so that every term in I, I" will contain the factor

Q(e') -=F((-.*)'"(P'- F))F(q) = *; * xp —
~ ) .M'+M" —q' 2(r(M +M'2 —q')

In the case of the elastic form factors, M =M', and G(qQ) reduces to the expression in Eq. (14a)

Q(e')=(( —,) xp —*((—,)

(A5)

(A6)
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