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2See Secs. IVB and VA in paper I.
3A discussion of these solutions can be found in Sec.
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4See Sec. V B and Appendix A in paper I.
~See Sec. V B and the references in paper I.
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A scalar-tensor theory of gravitation is constructed using the Weyl formulation of Rie-
mannian geometry. The scalar field is given an important geometrical role to play and is
relate/ to the integrable change in length of a. vector as it is transported from point to
point in space-time. The geometry uses modified covariant derivatives and a. metric ten-
sor which is not covariantly constant. The field equations can be written down very simply
in terms of a modified curvature tensor. The theory agrees with the usual Lagrangian
formalism in its experimental predictions and offers a, reformulation or reinterpretation
of the transformation of units considered by Dicke.

I. INTRODUCTION

Brans and Dicke' have formulated a scalar-ten-
sor theory of gravitation using a Lagrangian for-
malism in which the coupling of the scalar field is
I/&u. The theory reduces to Einstein's tensor the-
ory if the parameter ~ is infinite. Observations
on the perihelion rotation of Mercury agree with
the value calculated from the Einstein theory but
allow for a contribution from the scalar field if the
sun is oblate. Dicke and Goldenberg' have mea-
sured this oblateness and find that 8'%%up of the resid-
ual precession may be due to a solar quadrupole
moment. Ingersoll and Spiegel' have suggested
that a surface temperature differential between the
pole and the equator in the sun could account for
these oblateness data. The lithium-beryllium abun-
dances observed at the sun's surface lends support
to a quadrupole moment however. ' The recent
planetary radar reflection experiment of Shapiro
et al. ' found A, =1.02+0.05 where A. is a parameter
which is 1.0 for general relativity and less than
1.0 for the scalar-tensor theory. This result sug-
gests that the fractional contribution of the scalar
field is at most 3%%up or 4%.

The present work considers a scalar-tensor the-
ory of gravitation which incorporates a scalar field
into general relativity in a very direct unambiguous
way, using a modification of Riemannian geometry
originally considered by Weyl' ' in connection with
his work on a unified field theory. We treat the

scalar field from the beginning as an object with
well-defined geometrical meaning in the spirit of
general relativity and arrive at a formalism quite
different from the usual Lagrangian theory of Brans
and Dicke. The two formalisms agree in their
predictions of experimental results, however. In
Sec. II we will define the geometry we use. The
field equations for nonempty space and the geodesic
equations of motion are discussed in Secs. III and
IV. The spherically symmetric, time-independent
solution is given in Sec. V. This is used to compute
experimental results for red shift, deflection of
starlight, and perihelion advance in Sec. VI.

II. DEFINITION OF THE GEOMETRY

The geometry that we will use is based upon

dl =IT dx (linear form)

and

ds'=g„, dx" dx" (bilinear form with
symmetric g„,) .

T is a vector which is related to the scalar field
in (33). The l appearing in (1) is the length of an
arbitrary vector where, for a general vector $„,
we have

(3)

Equation (1) thus specifies how the length of a vec-
tor changes under displacement through space-
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(7)

depends upon the metric and transforms under a
gauge transformation (5) as

(8)

The vector b is said to be of weight unity. A ten-
sor is of weight n if it is multiplied by a factor
f (x )" under a gauge transformation (5). For our
field equations involving g„, we will be interested
in tensors of weight zero (which are said to be
gauge-independent).

In this geometry we also have the law of parallel
displacement which specifies how the components
of a vector change under displacement,

dg = r »g'dx& . (9)

In (9), the I'"e& are the coefficients of the affine
connection. In ordinary Riemannian geometry, we
have

I
, Py

(1O)

where {gz) is the Christoffel symbol of the second
kind. In the present geometry, the connections are
given by

I ex= — +g (Z eTy+Z yTe k"eyT ).
P 'Y

We can easily derive (11) from

time. This T is related to gauge transformations
in the following way. Let us transform gauges
such that in the new gauge

T = T„+-,'(Inf)i (4)

where f (x ) is an arbitrary scalar field and the sin-
gle short vertical bar denotes ordinary partial dif-
ferentiation with respect to s . From Weyl's w'ork

we then have in the new gauge

(5)

and
JIE r 8)o'

The metric tensor undergoes a stretching transfor-
mation. By allowing gauge transformations of the
type shown in (5), Weyl used a more general geom-
etry than the geometry used in ordinary general
relativity in which a vector does not change length
under displacement.

Weyl' also introduced the concept of the weight
of a tensor under gauge transformations. If we
consider a given contravariant vector 5 to be giv-
en independently of the metric, then the covariant
form

From (11) we note that

(13)

Since w'e have an explicit form for I &» covari-
ant derivatives can be defined as

and

: (14)

knlla= (nlg+r n8(y (15)

and substituting (11) gives

ns 2 n8T
lip

Similarly,

gnI ll, =2g eT&

and

(17)

(19)

In general g;„does not commute with covariant dif-
ferentiation and one must be careful in doing ten-
sor manipu'ations. From (17) we also find the in-
teresting relationship

(2O)

Thus T" is just the divergence of the metric. This
expression does not imply that a knowledge of g'"
leads to a knowledge of T", however, because the
T" arises from the operational definition of the
covariant derivative.

Now the condition for integrability of (1) is just

Tnlg —T gin = 0 o (21)

If (21) holds, we can always carry out a gauge
transformation (4) in such a way that in the new
gauge T„=O.' In other words, (21} is the neces-
sary and sufficient condition that a Weyl geometry
can be reduced to a Riemannian geometry by a
proper gauge transformation. The Weyl formalism
can be useful even in a.pure Riemannian geometry.
It allows a wider choice of metric tensor as in (5)
at the expense of having vectors change length as
they are moved by parallel displacement. In the
original metric g &

in (5), we have T„=O and the
lengths of vectors are preserved under parallel
displacement from (12). In the new metric g z in
(5), the square of the length of a vector is

where a double vertical bar denotes covariant dif-
ferentiation. These covariant derivatives trans-
form as tensors.

An important consequence of the above geometry
is that the metric tensor is no longer covariantly
constant. In fact we have

ge = ne —I'e gaw —py we

d(l') = d(g„„&"(' ) = 2l (l T„dx") . (12) I' =g eh 5
' =f (x")I' (22)
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and is a function of position. The same displace-
ment law (9) using g„y leads to

== s (lnf)l&d
dl

(23)

where

))~))s $ ))s)(~
= S „„s$ (24)

Sy „8———Fy „~8+Fy„s~ "+Fy 8F)' -Fy „F~„B.

(25)

We can use (11) to write this out in terms of g~„
and T as

which is the same as (22). Thus T =-,'(Inf)~ from
(1) which is the same as (4).

In the work that follows, (21) will always hold as
we shall see in (31). Thus we are in a pure Rie
manniam I,eornetry. We shall take advantage of the
versatility afforded by the Weyl formalism to
choose a modified metric (5), however. Relative
to this modified metric, vectors change length as
they are displaced. The transformation (5) is very
similar to the "units transformations" discussed
by Dicke."

We can now introduce the extended curvature
tensor by way of

III. FIELD EQUATIONS FOR NONEMPTY SPACE

S on~- S a~+-0 (29)

S fxag Oo (3o)

These equations are unique in the sense that we
have used all possible contractions of the gauge-
invariant form of the extended curvature tensor.
These equations are purely geometrical and. hold
at space-time points where matter and charge den-
sities vanish. In ordinary general relativity (30)
would vanish identically from symmetry.

Our field equation (30) can be written

S"„ss=4(Tslls Ts))s) =4(Ts)s —Ts)s) =0, (31)

and (29) yields finally

S ~ys =R ~ys —3T&lls+ Tsll& (g~ Ts)~~y

+2TST —2g gT T~

In analogy with general relativity we form con-
tractions of S"q, & to get the field equations for non-
empty space. If we restrict ourselves to gauge-
invariant equations, the only possible contractions
are S ~~y, S By~, and S ~By. We thus postulate
the following field equations using (28):

Sy„s=Ry„„s+(T terms), (28) =0

where Ry, ~ is the usual Riemann curvature ten-
sor.

Now let us consider integrability conditions in
this geometry as a springboard to the field equa-
tions. The condition for integrability of the law of
parallel displacement, (9), is just

S By~=0. (27)

The condition for integrability of (1) is just (21).
In analogy to ordinary general relativity, it is then
very reasonable to take (21) and (27) to be our
field equations in completely empty space.

Now we would like to write down the field equa-
tions for nonempty space. Let us first, however,
consider the symmetry and gauge-invariance prop-
erties of S"ss y. From (13) we have

S 85y=-S gy (28)

This is the only symmetry S qyq possesses. R~qy~
on the other hand is also antisymmetric under in-
terchange of o. and P and symmetric under inter-
change of the pairs uP and y5.

We note from (25) that Sy„„sis made up entirely
of I'y„s and is thus gauge-invariant. Quantities
such as Sy, ~, Sy 8, Sy' ~, Sy', etc. are not
gauge-invariant since g„„also occurs when we

write them out.

Our field equations are thus (31) and (32). Since
(31) always holds, we can write

Ta = P])n =.Q)n y

where y is the fundamental scalar field in our the-
ory. The condition (31) that T„can be written as

is also the necessary and sufficient condition
that we have a Riemannian geometry. If a scalar
field is to be put into the formalism as in (33) we
are forced to have a Riemannian geometry. We
note that (31) is the same as (21), our integrability
condition for dl. Thus (21) follows quite naturally
from the extended curvature tensor S ~q y. It need
not be postulated separately. In the present work
dl is always integrable and we are in a classical
Riemannian geometry in contrast to Weyl's unified-
field theory where dl is not integrable if an electro-
magnetic field is present. Since (1) is always inte-
grable in our theory, we escape a major objection
to the use of Weyl geometry. In 1918 Einstein"
pointed out that two atoms located at a given point
in a spherically symmetric electric field could
have different periods in the Weyl unified field the-
ory if they had different previous histories. In
other words, since (1) is not integrable in Weyl's
unified field theory, the period of an atom depends
upon the path that a given atom follows to a given
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space-time point. In the present theory, on the
other hand, this path dependence does not exist
since (1) is always integrable.

Also we note that if we postulate that (31) always
holds, then in addition to the symmetry (26) we
also have

(34)

(35)

so that S"
8&q has the same symmetry properties

RS 8 gyp'
It is important to emphasize at this point that (31)

and (32) are completely gauge-invariant since S~,„B
is made up entirely of I'~~„ from (25) and the I'"g„
are unchanged undex gauge transfox'mations from
(6). Thus (31) will hold in all gauges. Also (32)
will hold in all gauges even though its form will
change. Under a gauge transformation both the
R",&~ and the T„p rat sof (32) will change. In the
gauge in which T~=O, for example, the B",„~part
will carry the information previously carried by
the T . This information is carried in the modified

f (x ) factor which now multiplies the g„8 in the
new gauge as in (5).

In what follows we will woxk in a specific gauge.
Since (32) is gauge-invariant, it is immaterial
what gauge we choose in this equation. It is clear-
ly necessary to choose a specific gauge since we
identify the scalar fieM y with T = y~„ in (33).
Gauge transformations (4) will add an arbitrary
scalar function to y. This is clearly inadmissible
if y is to represent a physical field. The gauge we
choose to work in is the one in which the entire
physical scalar field y appears in

for the change in length of a vector This gau. ge
is defined uniquely up to an additive constant. The
metric tensor is not the usual one of general rel-
ativity. In fact, in this gauge we can use (33}to
write the field equation (32}in terms of y as

S~B =R~B —2%~.[~8-(g'.s g" P~~)~~[„

+20te@I -2g'~8 g 'Pt, V'~

(3V)

where 8 & is the usual contx"acted Hiemann curva-
tuxe tensor written in terms of our modified met-
ric snd S,s = S „8. Equation (3V} is our field equa-
tion for the modified metric in this particular
gauge, given y. Vfe still need an equation for y
in this gauge. This equation will clearly depend
on the gauge because y by definition is gauge-de-
pendent. %e wiQ obtain the required equation for

y using (3V) and a variational principle.
The field equations of general relativity can be

obtained from the variational principle

5 Rv-gd'x=0,

where A is the fully contracted scalar curvature
and the variation is carried out with respect to the
metric tensor. . In our modified metric, this vari-
ational principle becomes

5 ' S~gd'x=o, (39)

where S ~g'SS,&. When (39) is varied with respect
to the modified metric tensor, a gauge-invariant
Euler-Lagrange equation results since terms
such as BS/Bg" 8 are of weight zero (both S and
g"~ are of weight -1}. From gauge invariance
and the definition of S,s in (25}this Euler-I. a-
grange equation is just our gauge-invariant field
equation (32}. This is obvious since in the gauge
where S= R, we ge-t the R„, =0 version of (32}.
When (39}is varied with respect to cp, the result-
ing Euler-Lagrange equation is no longer gauge-
invariant because terms such as BS/By are not of
weight Eexo and because the specific q dependence
of S depends on the gauge we choose. In the above
gauge, (39) becomes

6 l (R-"g &cpi
)i

-Gyes"yi )V-gd~x=0, (40)

where we used (3V). The Euler-Lagrange equa-
tions fox' q0 Rx'e

BS BS 8$

( + ——=0.
~tn!)8 ~taiga

This becomes

(41)

+6g-
~~„~t,

-~2&~ t~. =O (42)

and using (17) and (33) gives finally

~I
)t

-O (43)

where p =-g grig. Equation (43) ls clearly gauge-
dependent. It follows from (3V) and the variational
principle (39) and can be thought of as the gauge
condltlon speclfylng the Rbove gRuge. It xnlght be
mentioned at this point that our choice of gauge is
equivalent to the units chosen in the original
Brans-Dlcke theol y in which Sy c~ Rnd PRx'tlcle
masses are constant. Geodesic equations are ob-
tained in that theory but Einstein's field equations
are not valid [see (3V}]and the gravitational con-
stant G depends on the scalar field [see (69)].

Equations (3V) and (43) constitute our field equa-
tions in nonempty space in terms of y. If we
write these out in terms of the usual Christoffel
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symbols (defined' in terms of the modified metric},
we get

-E.s g P~ t&+2%~~ +N.sg)'0! a y„5
r Qy

(44)=0

respectively. We used (14), (15), and (16) with

(11) substituted in to write out the derivatives.
Our curvature tensor satisfies the Bianchi iden-

tity

~ »&tt +~ 8& lty+~ 8 &It&
-0 (46)

whi. ch we ean easily see by explicit calculation us-
ing the properties of the I'"8 . We can use (46) to
show

r"(s.s ——.'g.ss}tl.=o, (4V)

where S=—g""S„,. Thus if we take (4V) to be what

we mean by the divergence of a quantity, we can
write our field equation (SV) in divergenceless
form as-

d x
dt2 +'

OO

In vector notation this becomes

(52)

dt
=-~c ggyo -c Vy.

For a single central point mass M, corresyori-
dence with Newton's theory then xequires

(54)

because of the pxesence of q terms in I'"„8but
still represent geodesics of our modified geome-
try. The geodesic equations (50}follow from our
field equations exactly as in general relativity.
This can be shown by substituting our modified
I'"

~ for -( ~~) in the derivations. "
Let us now look at the weak-field limit of (50).

Considex a time-independent metric

gyp=gyp +~yppy (51)

where g(„,) is the Lorentzian flat-space metric
with a signature (1, -1, -1, -1}. If we assume that

q 1,=0 and cp~ is of order ~ for all + w0 and work
to first order in e and v/c only, then (50) is sat-
isfied identically for p. =0 and for p, =i 10 can be
written

This form is also completely gauge-invariant
since we can write the last term as ——,'g„sg ~S

z
and this combination of metric tensors in invari-
ant (S itself is not gauge-invariant, for example).
The present theory holds only in regions of space
which have no charge and mass densities. As in
general relativity, we can generalize (48}to in-
clude a source term by writing

(49)

where K is the gravitational constant and T„B the
energy-momentum tensor. Equation (48} shouM
also have a source term on the right-hand side.
The precise form of this equation for y goes be-
yond the geometrical considerations above and re-
quires a Lagrangian formalism with energy-mo-
mentum terms included as in the work of Brans
and Dicke. ' We shall limit ourselves to regions
where charge and mass densities vanish.

IV. GEODESIC EQUATIONS OF MOTION

In the px'esent theory test particles will follow
geodesics of the geometry given by the gauge-in-
dependent equation

where K is the gravitational constant. We will use
this result in See. V.

V. SCHWARZSCHILD SOLUTIONS

Let us. now consider the solution to our field
equations for the case of a point particle of mass
M at the origin assuming time independence and
spherical symmetry. From symmetry the metric
can be written as

ev(r)

~ k(y')

2

-& sin 8

Let us also denote dy(r)/dr =f(r}. From (4-4} we
ave ol the ~00& ~j1& and 822 equations& respec

tively,

v" --,' v'A'+ ,' v" +2v'/r-2f'+X-'f -Sfv'

+4f'-4//r=0,
(56}

v" + —,
' v" ——,

' X'v' —2X'/r 6f' —v' f—+ 8k'f —4f/r = 0,

d2~ ~
p

de~ dx~
ds2 d8 ds

These differ from the usual geodesic equations

(50)
—,
' v'/r- ,' X'/r +1/r'-e~/r —4f/r-+2f

-f'+ fA.
' -2fv' = 0.

(58)
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The S» equation is identical with (58}and all S,B
with m a p are identically zero. To first order the
solution of (45) is

p(r) =A+B/r, (59)

where A and B are constants. It is interesting
that this leads to a change in the square of the
length of a vector from (22) and (4) of l' = e 'e+l'.
The metric tensor must of course also be modi-
fied from the usual one of general relativity so
that this variable length can be incorporated into
Riemannian geometry in accord with our argu-
ments following (21). We see this explicitly in (72)
and (V3). Equations (56), (57), and (58) are all
self-consistent. In fact, an exact solution to these
equations for the approximate cp(r) given in (59) is
fust

perimental results.

K'M/ c' = B+KM/c', (69)

where K' is the gravitational constant measured
experimentally. In terms of m' =—K'M/c', we have

m'=B+m. (70)

Putting everything in terms of m' gives to second
order

VI. TESTS OF THE THEORY

The gravitational weight of a body is determined
by gpp to lowest order and so is the gravitational
red shift. Thus we expect the same result for the
gravitational red shift as in Einstein's theory.
From (64) we must redefine the gravitational con-
stant K so that

e~ = (1+B/r)'/(1+ C,e ~"B/r)
y(r) =B/r+m'B/r'+3B'/r', (Vl)

ev e2B/r + (C B/r)ese (61)

where C, is a constant. It is interesting mathe-
matically that this exact solution exists, but phys-
ically it is accurate to first order only since we
used (59). To first order these can be written

e~ = 1+2B/r C,B/r- (62)

e"=1+2B/r+C, B/r . (63}

From the correspondence principle and in order
for (63) to be consistent with (54) we must have
A=O in (59) and C, =--4 —2m/B, where m=KM/c'.
Then,

e" = 1 —(2 m+ 2B)/r (64)

e" = 1+ (2m+ 6B)/r (65)

to first order in m/r and B/r. B is the parameter
which gives the strength of the scalar field. We
are assuming that B and m are approximately the
same order. Using (64) and (65) in (45) lets us
calculate y(r) to second order giving

y(r)=B/r+mB/r'+4B /r . (66)

Using (66) in (56), (57), and (58) then gives to sec-
ond order

e~ = 1+2m'/r+ 4B/r+ 4m "/r'+ 18m'B/r'+ 23B'/r',
(V2)

(V3)

The deflection of starlight also depends on g, y so
the results of general relativity are modified. It
is easy to show using the first-order terms in (71},
(V2), and (73) that to first order the deflection is

5 = (general-relativity result)(1+B/m') . (V4)

The advance in the perihelion of a planetary or-
bit requires gpp to second order and g, y to first
order. Taking these from (72) and (73) above
gives the result,

shift/revolution = (general-relativity resu]t)

x(1+vB/m'-x M'/m"). (V5)

Brans and Dicke' calculate a correction factor
(3+2(u)/(4+2(u) in (V4) and (4+3(o)/(6+3(o) in (75).
Our results agree with this to first order if

B/m' = —k (I/~)

Thus the two forms of the scalar-tensor theory
predict the same experimental results. We see
that if &u & 6, then ~B/m'~ & ~& and B'/m" correc-
tions are small. The results of Shapiro et al. '
suggest that J3 is probably smaller than this by at
least a factor of 3.

e" = 1 —2m/r - 2B/r 4mB/r ' —2B'/—r' (67) VII. CONCLUSION

e~ = 1+2m/r+ 6B/r+ 4m'/r'+ 45B'/r'+, 26mB/r'

(68)

Let us now use these solutions to calculate ex-

The present scalar-tensor theory of gravity is
an alternative to the usual Brans-Dicke formal-
ism in regions of space free of mass and charge
densities. The scalar field enters the two theo-
ries very differently. In the present work it is
related to the integrable change in length of a
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vector as it is transported from place to place.
This results in a Riemannian geometry which ap-
pears quite different from the one used in general
relativity with modified derivatives and a metric
tensor which is not covariantly constant. Having

paid this price, we end with an unambiguous
theory with very simple field equations directly
related to the curvature tensor as in general rel-
ativity, in which the scalar field plays a rather
elegant geometrical role.
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The method of recasting the Newman-penrose formalism for the gravitational field equa-
tions into a Yang-Mills —type theory is reviewed. The free-field gravitational Lagrangian
density structured along the lines of the free-field Yang-Mills Lagrangian density by Kibble
is generalized to give the complete set of gravitational field equations one obtains in the New-
man-Penrose formalism.

I. INTRODUCTION

B~ ——S Bp S —S BpS,

Fp, =S 'FpvS,

where

Fq„——B„B„—Bq B,+ [B„,B,],
and [B&,B,] = B&B,—B,B& . The action principle
applied to the Lagrangian density

(1.2)

2 = ——,
' Tr(F„„F"'),

where Tr denotes trace, then gives rise to the free

In Yang-Mills' theory one assumes that Bt each
space-time point there exists a 2-dimensional in-
ternal space. Under an isotopic gauge transforma-
tion S(x), the 2X 2 matrix potential and matrix field
then transform according to

gauge field equation

B,F"'-[B,, F"~] =O. (1 4)

In introducing the gravitational field from a gen-
eralized Poincare invariance, Kibble' has extended
the. above Lagrangian density into

~
( g)~~2 Tr(F F&~) (1.5)

describing the free gravitational field. Here g
= detg„, and g„„is the geometrical metric.

More recently Carmeli, ' who has shown" that the
Newman-Penrose (NP) formalism' for the gravita-
tional field equations can be cast into a Yang-
Mills-type theory by use of the group SL(2, C),
used a first-order form of the Lagrangian. density
(1.5) to obtain the vacuum NP equations.

The question arises as to whether one can gen-
eralize the Lagrangian density (1.5) into one which


