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Are There Fixed Singularities in T, ?
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Nonforward scaling and the light-cone commutator are shown to require the existence of
a Kronecker 5 term in T j,. The present data may be consistent with the possibility that this
Kronecker 5 term vanishes at t =0 and q =-~. Analyticity implies a connection between
scaling behavior and Regge behavior.
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Suppose that there is no fixed singularity in the
J plane. Then T, presumably satisfies an unsub-
tracted dispersion relation for t& t0 for some
t &0, viz. ,

dv
T, (v, Q2, t, 8)=,2 2 W, (v', Q2, t, 5) (2a)

0

du' W, (&u', Q~, t, 5)
(d CO —CO

Recently, Gross' argued on the basis of unitar-
ity and the assumed absence of oscillatory be-
havior that the absorptive parts of the nonforward
Compton amplitude also scale according to Bjor-
ken's suggestion. Unfortunately, the prospect of
verifying this conclusion in the foreseeable fu-
ture is dim. In this note we show that nonforward
scaling, when supplemented by a number of cur-
rently acceptable assumptions, implies the ex-
istence of a Kronecker 5 term 6« in the analytic
J-plane continuation of T, .

Our assumptions are the following:

(a) The Bjorken-Johnson-Low limit' lim»~Q02T, .

exists.
(b) The behavior of the current commutator near

the light cone is relevant for the deep-inelastic
region. '
Assumption (b} actually implies nonforward scal-
ing.

We now demonstrate our assertion. The target
spin-averaged nonforward Compton amplitude may
be decomposed as4

T„(0 q p p)= g~T(v Q f ~)

+ " T2(v, Q, t, 8)+ ~ ~ ~, (I)
P P„

where

2(p+p'), Q= k(e+v'), & =p p' =e' -q-

We now let Q, -i keeping t and 5 fixed:

' den'
T,(v, Q, t, 5}~2 lim W (~' Q2 f g}

0

Assumption (a) then implies that'

lim Q W(u, Q2, t, 5)= F,(u, t, -5).
Q2 ~ ao

(3)

(4)

[We exclude the possibility that limW, (u, Q', t, 8)
=F,(~, t) and that f Cku u& 'F,(~, t) =0 for all t(t, .]
Translated into the language of light-cone domi-
nance this means that the operator of lowest
twist' contributing has twist four. For t& t0, how-
ever, T, satisfies a once-subtracted dispersion
relation. As is well known, assumption (a) leads
to'

lim W, (&o, Q', t, (})=F,(&u, f, 5) (f» t& t, ) (5)
Q2~ ~oo

and the statement that the operator of lowest twist
contributing has twist two. [Actually, F,(&u, t, 8)
is independent of 5 as a consequence of locality. ']
Now the matrix element of the local operator of
twist two (p' ~O„...„(0)ip) involves form factors
which have standard analyticity properties in
t =(p -p'). 2 They cannot be nonzero for t& to and
identically zero for t& t, . Hence the dispersion
representation for T, cannot be unsubtracted and
our assertion is proved. We conclude with a num-
ber of remarks.

(1) It has been known8 for some time now that
general principles allow, but do not require, the
presence of a Kronecker 8 term, 5~0, in T, . (J
=0 is a sense point for T„ the amplitude propor-
tional to the t-channel helicity amplitude F00.
F~ is linked via conspiracy relations to F,' for
which J=0 is a nonsense point. Hence F,' may
have a fixed pole at J=0, poggQ)y leading to a
5« term in F' See Ref. 8.) T. he precise na-
ture of the fixed singularity does not concern us
here. Current algebra does require that the cross-
ing-odd I, = 1 amplitude has a fixed pole. ' No such
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lim + q W, (&o, q }= F~(+}. -
Q2w ~oo

We obtain the contribution of the deep-inelastic
region

(6)

argument exists previously for the Compton ampli-
tudes.

(2) Our conclusion may be avoided if (i) the Pom-
eranchukon is a fixed singularity, (ii) op(t) is nev-

er negative, or (iii) the cuts generated by the Pom-
eranchukon pile up in such a way that o.~""""'(t)
is never negative. We assume that these cases
do not occur. This caveat need not be posted if
one considers the difference between the Compton
amplitudes for proton and for neutron. T~p""" and
2;"'""'"cannot be both free from fixed singularities.

(3) Indeed, there exists no twist-two and isospin
I=2 operator in the quark-gluon model. This fact
is consistent with the expectation that the Compton
amplitudes with I= 2 in the t channel satisfy an un-
subtracted dispersion representation. Conversely,
if one is able to construct twist-two operators in
any given model which satisfies our assumption,
then the corresponding Compton amplitude cannot
satisfy an unsubtrac ted dispersion representation.
It is usually, and correctly, stated that what hap-
pens near the light cone is irrelevant for the Reg-
ge region. Here, assumption (a) and analyticity
link these two regions together. Otherwise one
may always add a real function constant in v to T,
without affecting the light-cone commutator.

Also, it has been stated erroneously in the lit-
erature that the scaling of W, and vW', follows
from dimensional arguments alone. The present
discussion shows this to be false.

(4) Our observation implies that the deep-in-
elastic region does not contribute to ~I=1 and
~I=2 mass differences in the same manner. In
particular T, (I, =2} satisfies an unsubtracted dis-
persion representation and hence

d(d
lim R(Q', t, 6) = —2 —E,(sr, t) .

q2 ~ 0
(10)

We note that as a result of locality l.im+&

R(Q', t, 5) is independent of 5. There have been
some speculations'2 on whether R(Q', t, 5) is in
fact a polynomial in Q'. It follows from (10) that
if R(Q', t, 5) is a polynomial in Q' it is a constant.

(6) The expression (10) for R(Q'= ~, t) is valid
for toto only. As (d —0,

E (u t} E"'~-'(&u t)—=Qy (t)sr
i

where the sum runs over i =P and R with o.p(G) =1
and o.~(0)= —,'. (It may be emphasized that this be-
havior is proven in Ref. 1 from the locality of the
light-cone operators. ) Hence the integral repre-
sentation (10}for R(Q = ~, t, 5) must be analytical-
ly continued in t past to to t =0, the point of in-
terest. We note that A(J, t) =—f' dv &u~ 'F,(~, t) is
(a) an analytic function in J for Re J& 1 and (b)
proportional to the single-particle matrix element
of a spin-J local operator appearing in the light-
cone commutator if J is equal to an integer.
A(J, t) is supposed to be analytic in t except for a
cut starting at t=4m„', as expressed by the rep-
resentation

A(J t) g r, (t)
J —n;(t)

culations of 5m, .
(5) The correct dispersive representation of T,

for t& to reads

T,(v, Q2, t, 5) =R(Q, t, 5)

dv'+,2 2 W, (v', Q, t, 5), (9)
I/0

rather than Eq. (2a). R(Q', t, 5) is the term coming
from the Kronecker 5. Assumption (a) then leads
to Eq. (5) and

This is to be contrasted with the more familiar ex-
pression"

Smear
=x = —,me'

"4q'
l qo I 2qE

+ d(u (u~ '[E,((o, t) Fa, 'Nv'(cu, t}].-(12)
0

Continuation of A(J, t) to J =0 gives the Kronecker
5 term at Q'=~ and t=O,

+-,R(Q'= ~, t= 0) =+
,. ~;(0)

x

x
~

q~'T, ( qs')+ . d-co[F2((o-)+2&uE, ((u)m']
~

.

(6)

In particular, there is a possibility that the loga-
rithmic divergences in 5m~ cancel, "which is
desirable in view of the success of theoretical cal-

[E (&) ERqg (&)]
CL(cP

0

If there exists a J=0 local operator such that its
single particle matrix element coincides with the
analytic continuation of A(J, t) to J'=0, then one
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may not have to continue in t past to. The reason
is that y(to) may vanish in order to avoid the pres-
ence of a ghost pole in A(J =0, t) T. his question
hinges on the inclusion of effects of higher order in

a (see Ref. 13).
It is interesting to note that the fixed pole in T,

is simply given by
d(d

R,(q'=~, i=0) = —,[F,((u) —F,"~'((u}]. (14)

[R (q, f =0) is defined by

q'R2(q, t = 0) = lim v 2( T, —T~'') . (15}

R,(q'=0, 1=0)= 1. (16)

Close and Gunion' in a constrained fit obtained

F,(~) —0.12+0.462&v" '+ 4.02~~'

T, 'gg'contains Regge poles with intercept &0 and

F,~'(u) = (I/v) lim vImT2R~'. ]
scaling

This may be traced to the fact that helicity flip
suppresses Regge behavior by two powers of v so
that T,- v ~. Thus an unsubtracted dispersion
representation exists for v(T~ —T2R'~'} and Eq. (14)
follows. In contrast, T,- v in the Regge region
and thus the extra term Qy,.n, ' appears in Eq.
(13).

(7) A reliable evaluation of Eq. (13) is not possi-
ble with the SLAC-MIT data at present. The eval-
uation depends sensitively on +e small-~ region
where data tend to be poor and q' tends to be
small. What follows is to be understood as a pre-
liminary attempt to evaluate R(Q'=~, t=0), an
attempt presumably to be modified when more ac-
curate data become available.

We exploit the fact that F,(~) =2urm'F, (~} is a
good approximation in the region explored in the
SLAC-MIT experiment. There exist reasonable
evidences" that

as e-0. They imPosed the constraint"

R,(q' = ~, t = 0) = 1, (18)

in addition to other constraints, such as various
quark charge sum rules involving the neutron
data. " Using these figures we tentatively obtain

m' R (Q' = ~, t = 0)=0.12+ 0.S24 —1 = 0 . (1S)

Thus, it is possible that the Kronecker 5 term van-
ishes for t =0 and q =.

Our result that a Kronecker 5 term is present
in T, is hardly surprising. In fact, it appears to
be difficult' to construct a model with mo fixed J-
plane singularity in T, and T,. What is surprising
is that it may turn out that no Kronecker 5 is pres-
ent in T, at 1=0.

(8) As q -0 the kinematical constraint v'T, +

q m2T, -O holds. (For f w0 the constraint holds as
qq' -0.) This implies the relation

R,(q' = 0, t = 0) = m' R(q' = 0, f = 0) .

If both R and R, are constants" in q' then

R,(q'=~, t=0) =m' R(q'=~, t=0),

(20)

(21)

—[F (~) -F"~ (~)].y,.(0) 1 '
d&o

(0) m2 ~2 2 2 (22)
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which is contradicted by our preliminary analysis.
Naturally, when better data become available the
question of whether R~(q', f = 0) is a constant in q'

may be settled by directly analyzing the data, rath-
er than by this convoluted reasoning. We note
that Eq. (21) may be rewritten as
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We evaluate in detail the differential cross sections for arbitrary processes ad —bpp and
ad —O'Pn in the impulse approximation, with spin and isospin effects and the deuteron D
state properly included. Approximations valid when a single term of the free-nucleon ampli-
tude dominates are given.

I. INTRODUCTION

The only way to study inelastic scattering from
neutrons is by observing the corresponding inelas-
tic processes on deuterium targets. A method of
relating the scattering from a nucleon bound in the
deuteron and that from a free nucleon is provided
by the impulse and closure approximations. The
form of the result depends crucially upon proper
evaluation of matrix elements between appropriate
states symmetrized in spin and isospin. This is a
formidable task, which heretofore has been car-
ried through only in a few special cases. ' In this
paper we shall evaluate the impulse approxima-
tion for arbitrary deuteron breakup reactions
ad —bpp and ad- b'pn with spin and isospin prop-
erly included.

II ~ CALCULATION OF DIFFERENTIAL
CROSS SECTION

We write the final-state wave function in the lab-
oratory system as the direct product of the scat-
tered particle state and a two-nucleon state decom-
posed into spatial and spin-isospin parts,

14~&
= If) I v f& IXf&.

Neglecting final-state interactions, ' we shall take
the spatial state as simple plane waves,

I y~, &
=2 '"(lp ) lp & + lp. & lp &) (2)

describing the symmetrized combinations of states
with three-momenta p, and p, . The spin-isospin
wave function IXf) is correspondingly symmetrized
so that

I cpz) IX&& is antisymmetric. The initial state
is

14;& =
In& I v~& I x~&,

le &
=& "' I&'&'vs&li&&1-5&,

where qr(p) is the momentum-space deuteron wave
function and IX,) is the S =1, I =0 SU(4) wave func-
tion. '

The impulse approximation relates the transi-
tion matrix T for the deuteron process to free-
nucleon scattering via

&yg I T I q;) =&)»14+ ta I &I;& (4)

where t, describes the corresponding free process
taking place on the ith nucleon. A similar equality
holds between the scattering amplitudes F and f
obtained from T and t. Carrying out the spatial
integration, we find that the amplitude for scatter-


