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We present a simple method to unitarize the pion electromagnetic form factor by smoothing
the Veneziano-type model. The weight function is chosen so as to satisfy the unitarity in the
elastic region. Two typical types of the Veneziano form factors are unitarized and compared
with the experimental data.

I. INTRODUCTION

Within the framework of dual models several
representations for the pion electromagnetic form
factor F(t) have been proposed. ' '

Among the var-
ious forms are

F (t) , 1'(1 —n(t))' I'(li —o (t))

and

(2)

where u(t) denotes the p trajectory and c,' and c,'
are normalization constants. Equation (1) with
A. =2.5 was obtained by Oyanagi' by means of cur-
rent commutation relations with the assumption
that the axial-vector current was coupled to n and
A, only. Although there is ambiguity in this meth-

od coming from the so-called subtraction con-
stants, (1) may be regarded as the simplest form
in the framework of dual models. The present
authors' obtained A = 2.46 in Eq. (1) by using uni-
tarity at threshold. Equation (2) was obtained by
Suura' by making use of the similarity between a
pair of chirally conjugate currents. In this meth-
od it is essential that F(t) has poles alternately on
the trajectory.

Neither Eq. (1) nor Eq. (2) is unitary. Steps
toward unitarization have been taken recently.
One approach is to take a complex trajectory for
o(t) and impose the elastic unitarity condition on
F(t).' Another method is to solve a Muskhelish-
vili-Omnes type equation with (1) and (2) as start-
ing points. ~ The former method has, however,
complex poles on the first sheet of the t plane in-
stead of on the second sheet as required by ana-
lyticity. In the latter case there is in principle
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the difficulty of treating the integration of phase
shift up to infinity and the well-known ambiguity
of an arbitrary entire function multiplying the
solution.

In this paper we propose a simple method for
unitarizing a form factor. First of all, a contin-
uous spectrum is achieved for F(t) by smoothing
out the original forms (1)and (2). This method is
similar to the work of Bali et al.' and Huang' for
smoothing out the scattering amplitude in the
Veneziano model. We use a simple and reason-
able weight function with one parameter. This is,
of course, not unique. Secondly, we determine
the parameter so as to satisfy the unitarity re-
quirement that in the elastic region the phase of
F(t) is equal to the phase of the P-wave amplitude of
mm scattering. For the latter phase shift we use
the experimental data' "obtained from the
zN - wmN reaction. This reaction has also been
studied by Roberts and Wagner" in terms of the
Veneziano model with Lovelace's prescription
for interpreting the amplitude.

The resulting form factor has the correct analy-
ticity with poles on the second sheet of the com-
plex t plane and satisfies the unitarity inthe elastic
region. It reduces to the original form when the
width of the resonance goes to zero. For the
higher-t region we cannot say anything about uni-
tarity although our form factor has an infinite
number of thresholds. One might, however, hope-
fully expect that this form factor would work well
for higher t, in view of the fact that the dual scat-
tering model seems to satisfy unitarity in the av-
erage sense. "

The unitarizations for (1) and (2) are shown in
Sec. II. In Sec. III comparison with experimental
data" "and discussion are given. Recently,
Antoniou et al."have also presented a smoothed
Veneziano-type form factor by using a different
smoothing method. They do not, however, take
unitarity into account. In Sec. III we have also
tested the unitarity requirement for their model.

II. FORMULATION

The smoothed-out form for (1) is given by

reduces to (1) in the limit of zero width. We use
a simple p, (x) which satisfies the above require-
ments:

Here c = n'mI', m and I' are the mass and the
width of the p meson, respectively, and q is de-
termined by the unitarity requirement,

ImF(t)
R F(t) =tan6(t) (6)

in the elastic region. 6(t) is the p-wave phase
shift of wn scattering. In this region the imagi-
nary part of F, (t) is given by

C~ E

r(x -1) [n(t) —1]'+~'

~4~)"*,-.r.& &- i
1 - o (t,)

and the real part is
""r(1 —o.(t)+ x)ReF, (t) =c, P

x, = —,
' [1—o, (t,)],

X- X 3/2

X+—g -X

(10)

In the elastic region

With (t) and (8), we calculate the left-hand side of
(6) and adjust q to give the best fit to the experi-
mental data of 6(t). The results are not very sen-
sitive to q. This means that the form (5) for p, (x)
is quite reasonable.

A similar procedure is used to unitarize (2},
I'" r(-; —,'~(t)+x)—F,(t) =c,

(~
',

( ) ) p, (x)dx.

In this case x, and p, (x) are given by

t
" r(1 —o(t)+x)F,(t}= c, Jl r( (t) ) p, (x)dx. (3)

x, is so determined that (3) has the threshold at
t=4p.'=- t„where p. is the pion mass,

and

(12)

x, = a(t, ) —1. (4) „r(,-' —,'(z(t) +x)—
c, is given by the normalization F(0) = 1. We re-
tain the value A. =2.46 as before. ' The weight
function p, (x) should be chosen in such a way that
(i}F(t) has poles on the second sheet, (ii) it has
the correct threshold behavior, and (iii) Eq. (3)

3/2
x ~, , ' e ~dx. (13)

X +4& —X2

It is noted that the unitarized form factors have
the same asymptotic behaviors as the original
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FIG. 4. F&(t) and E&(t) in the spacelike region with data from Ref. 15.

ones, namely,

F,(t),~ [-n(t)]' c,jt p, (x)dx
Xy

for (3) and

,(t) [——,
' (t)]"',J p, (*')d*

x2

for (9).

III. NUMERICAL RESULTS AND DISCUSSIONS

First we calculate the phase shift 6(t) by using
(6), ( I), (8), (9), (11), (12), and (13) and find that
q = 2.5 for E,(t) and q= 5.5 for F,(t) give the best
fit to the experimental data. This is shown in
Fig. 1 and Fig. 2. We have not used a g' test,
since the calculated 6(t) is not so sensitive to q
and (E(t)p even less so. (E,(t)p and (F,(t)p are
plotted in Fig. 3 for the timelike region and Fig.
4 shows E,(t) and E,(t) for the spacelike region.
The value of the width used for E,(t) is I' = 140
MeV and for E,(t) it is r =110 MeV. The mass of
the p meson is taken to be 762 MeV and the p
trajectory used is (].(t) =0.86t+0.5.

The above unitarization scheme leaves the form
factor in the spacelike region almost unchanged,
but the peak near t = m~' becomes higher if the
same width is used as in the original model. Thus
we have used a larger value for I' than in Ref. 3.
The charge radii of the pion are

(x')'" =0.72 x10 "cm for E,(t)

(14)

with

If(~BI ) I 3/2( ) —
( IP ( / )P

+g (X~ X) y (15)

(y' ) = 0.64 x 10 cm for F (t)

which are also only slightly changed.
It has been pointed out by Acharya et al.' and

also by Drago and Grillo' that E,(t) gives a better
fit to the experimental data than E,(t) near t = m~'.
In our opinion, we think both F,(t) and F,(t) can
give a good fit to the data near t = m~' provided
that a different width I' is used. In fact, analysis
of nN-wwNby Lovelace's unitarized form of the
Veneziano model" favors the larger width I' = 140
MeV. Thus E,(t) may seem to be preferred. A
true test will be in the neighborhood of t= 1.7
(GeV/c)' where E,(t) has a second peak whereas
E,(t) does not. In addition, E,(t) and E,(t) of
course have quite different asymptotic behavior
in the spacelike region.

Finally we have also calculated the phase shifts
from the form factor proposed by Antoniou et al."
Their smoothed-out form factor is
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and

= m~'/4m, ', m~= 760 MeV,

Pp 112 MeV, p

g=1.42 x10 ', g'=1.20x10 '.
Thus basically their smoothing is achieved by in-
tegrating with respect to the slope of the trajecto-
ry, whereas ours is done with respect to the in-
tercept. The calculated phase from (14) is shown

in Fig. 2. It is seen that although the result lies
within the rather large experimental error bars,
in the low energy region (up to v t =400 MeV) it
is about three times as large as the Lovelace-
Roberts-Wagner" (L-R-W) phase shift with
I'= 110 MeV. The phase shifts of F,(t}and F,(t}
agree with the L-R-W" phase shift in the elastic
region. Improvements can be achieved for Anto-
niou's form factor if a larger width (I'= 135 MeV)
and a smaller g' (=0.2 x10 ') are used.
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The pion-pion scattering amplitude on the mass shell is constructed for low energy in
terms of the cr term. A couple of models are discussed in connection with this approach
and the pion-pion S-wave scattering lengths are estimated to be compared with Weinberg's
prediction in the 0 model. It is found that the ratio of the scattering lengths generally de-
pends only on the ratio of the isospin components in the a commutator.

I. INTRODUCTION

The subject of pion scattering lengths has been
carefully studied in the soft-pion limit by Wein-
berg. ' With the hypothesis of partially conserved
axial-vector current (PCAC) the scattering am-
plitude can be approximated by the amplitude with
two pions off their mass shells as derived from

current algebra. Two of the terms in the ampli-
tude ensue from the use of standard commutation
relations. The third term which contains the
time-ordered product of two axial-vector currents
may include possible pole contributions. As in
most current-algebra calculations our knowledge
in this term (except possibly for the pole contri-
bution) is very limited. It was pointed out in Ref.


