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We use a Faddeev formalism and two-body, S-wave, central separable potentials to
calculate Z d' quartet elastic and reaction cross sections for Z incident lab momentum
in the range 30-90 MeV/c. We use a three-channel isospin- —,

' hyperon-nucleon potential
with a An resonance below the Z n threshold, but in the three-body calculation the An
channel is only included implicitly. We find that Z d cross sections are sensitive to the
size of the Z p scattering length, but insensitive to the exact position and width of the
A n resonance.

I. INTRODUCTION

The purpose of this work is to construct a model
of Z d scattering below the threshold for deuteron
breakup and to use it to investigate the sensitivity
of the elastic and reaction cross sections to some
of the physical parameters of the two-body zero-
charge Z-nucleon (ZN} interactions.

Our philosophy is that this work is a first crude
step in the theoretical investigation of the attri-
butes of the ZN interaction (e.g. , its off-shell be-
havior} that may not be directly accessible from a
study of free Z p scattering. Ultimately we should
like to be able to test whether two different meson-
theoretic potentials which give the same results
for on-shell scattering parameters for free Z p
scattering can be distinguished by analysis of Z d
scattering. At this stage of the game when very
little Z p scattering data is available, ' we feel it
makes more sense to work with simple phenome-
nological potentials rather than full-blown rneson-
theoretic potentials. For the same reason we shall
use only a very crude model for the three-body
system. We emphasize that we do not expect the
absolute size of the cross sections we calculate to

be of any great significance, but rather it is the
variation (or the lack of variation) of these cross
sections as the two-body interactions are changed,
upon which we shall focus.

The only previous calculations of low-energy
Z d cross sections that we know of are those of
Day, Snow, and Sucher, ' Chen, ' and Neville, ' all
of whom calculated the ratio of the cross section
for Z production to the total reaction cross sec-
tion at zero incident Z energy. All three of these
works were basically impulse approximation cal-
culations, although Chen did include the '$0 neu-
tron-neutron final-state interaction. Because of
the low Z energy this is not a valid way to pro-
ceed with our problem.

We investigate Z d scattering in the quartet spin
state so that the nucleon-nucleon and hyperon-
nucleon interactions are all spin-triplet interac-
tions. We use central, S-wave, two-body poten-
tials to represent these interactions and we
do not include the Coulomb interaction. Our two-
body potentials are all 'S, potentials. They are
the np potential, the Z n potential, and the three-
channel (Z p, Zan, An) potential which we shall re-
fer to hereafter as the YN potential. ' Each of the
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first two potentials and each matrix element of the
YN potential we represent by a nonlocal separable
(MLS) potential. We concentrate on Z d scattering
below the threshold for deuteron breakup because
this region should be most sensitive to the reso-
nance structure of the YN interaction that lies
just below the Z n threshold and because our use
of S-wave potentials for the two-body interactions
is more justifiable here than at higher energies.
We use a Faddeev type of formalism' to calculate
the amplitude for elastic Z d scattering with inci-
dent Z laboratory momentum in the range 30-90
MeV/c, the threshold for deuteron breakup being
93.4 MeV/c. From this amplitude we calculate
directly the elastic scattering cross section and,
with the use of the optical theorem, the total cross
section. The reaction cross section (i.e., the
cross section for Z d Zo nn plus the cross sec-
tion for Z d —Ann) we obtain by subtracting the
first of these results from the second.

In order to reduce the number of coupled inte-
gral equations that must be solved to obtain the
Z d elastic scattering amplitude we introduce the
approximation of treating the An channel of the
three-channel hyperon-nucleon potential imPlicitly.
That is, we solve the two-body three-channel
(Z P, Eon, An) problem exactly, but then we use
only the (Z p, Zon) two-channel part of our result
in our Z d calculations. In the three-body prob-
lem, the An interaction appears only as an energy-
dependent, absorptive part of the Z-p- Z-p, Z n
and Z'n- Z'n, Z P amplitudes. The basis of this
approximation is that the An threshold is =80 MeV
below the Z p threshold. Qnce produced the rela-
tively high energy A is assumed to leave the in-
teraction volume so quickly that it does not inter-
act further with the two neutrons. If there is a
An resonance just below the Z n threshold —as
indeed we shall assume below —so that the above
assumption is not completely correct, not only
will the cross section for A production be signif-
icantly larger than we are accounting for, but the
Z' production cross section will also be large, so
that the error in our calculation of the combined
reaction cross section should again be small. Pre-
liminary results of an exact calculation indicate
that in treating the A implicitly our error in the
elastic scattering cross section is at most j.0%
while our error in the reaction cross section is
20% or less.

In Sec. II we describe in detail the separable
potentials used to represent the two-body inter-
actions. The input parameters for the np poten-
tial are the triplet scattering length and the deu-
teron binding energy. For the Z n potential we
choose the intrinsic range and adjust the well-
depth parameter to its maximum value consistent

with some early Z'P elastic scattering data. ' For
the three-channel potential we initially have six
strength parameters and three range parameters
to be determined. Qn the basis of the small
Z -Z and n-p mass differences we reduce these
to three strength parameters, a ZN range param-
eter 1/Pz, and a An range parameter 1/P~. The
input parameters are the Ap scattering length a~
and effective range r,~ and the position Eo and
width I' of the A channel resonance which is as-
sumed to exist somewhat below the Z' channel
threshold. Alternatively we also use as input the
real and imaginary parts of the Z P scattering
length A instead of the resonance parameters.
We determine all of the potential parameters by
assuming a given value for P~/Pz.

In Sec. IG we present and discuss the results of
our calculations of the Z d elastic and reaction
cross sections. For fixed a~, r, p Eo and I' we
find that these cross sections are quite sensitive
to the value of Pz/P~, i.e., to the value of A . On
the other hand for fixed a~, ro~, and A. the Z d
cross sections are not sensitive to changes of the
order of 3-5 MeV in the position or width of the
A channel resonance.

II. TWO-BODY POTENTIALS

For the np potential we use the form of NLS
potential first given by Yamaguchi. In a relative
momentum-space representation we have for the
matrix element of the np potential-energy opera-
tor'

(k'
i V„p ~k) = A.»v»(k') v„(k),

with

v„(k) = 1/(k 2+ P»2) . (2)

We use the values M„=939.5527 MeV and M~ =

938.256 MeV, respectively, for the neutron and
proton masses. We determine the strength param-
eter X» and range parameter 1/P» by the require-
ments that our potential yield the deuteron bind-
ing energy e =2.226 MeV and the triplet scattering
length a„=5.39 F. By standard methods we ob-
tain the values

&»= —84.3966&(2m/10)' F 2,

1/P» = 0.698 339 F.
(3)

(4)

For the Z n potential we choose the same basic
form as we use for the np potential, i.e.,

(k'
i V „ ik) = A v (k')v (k),

where

v (k) = 1/(k z+ P 2), (6)

and k (k') is the Z n relative wave vector with
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magnitude k (k'). We determine the parameters
and 1/P by following the treatment of Tang

and Herndon. ' We first fix the intrinsic range b

of our potential at 1.5 F, one of the values used in
Ref. 10. Thus' 1/P = 2b =0.5 F. We next assume
that the Z n scattering cross section is the same
as the Z'p cross section. To maximize the size
of the Z n 'S, interaction (so that its presence is
sure to show up in the Z d problem) we assume
that the experimental value of the Z'p cross sec-
tion is due purely to 'S, scattering. We then
choose the value of the well-depth parameter s
of our potential so that at a Z momentum of 135
MeV/c with a Z mass of 1197.32 MeV we obtain
a cross section in agreement with the Z'p exper-
imental value of 185 +55 mb. " With s =0.6 we
obtain a cross section of 185.7 mb so we stick
with this value of s . With these values of p
and s, we then obtain by standard methods

91.1485 x (2~/10)' F-'

The three-channel YN potentail-energy oper-
ator we write as a 3X3 matrix whose ij element
in a relative momentum-space representation is

2X22 = —v 2 A&2 = 3k' (13a}

(13b)

~33 = ~A ~

We use Eq. (13) in our three-channel YN potential
so that knowledge of five parameters —A.A, A.z, A, ,

PA, and Pz —completely determines our YN inter-
action.

To determine the five YN potential parameters
we proceed as follows. First we solve in a
straightforward manner the three-channel YN cou-
pled Lippmann-Schwinger equation for the YN t
matrix using the YN NLS potential described
above. From the results we obtain for 5A, 5,
and 50 the phase shifts for An —An, Z p —Z p,
and Z'n -Z'n scattering, respectively, the ex-
pressions

2a(-g2+ 1/y, )
k cotbA —— (14)

calculation using the potential of Eqs. (8), (9), and

(10) in a three-channel Lippmann-Schwinger equa-
tion without the nucleon and Z mass splittings. We
obtain

«'; I &;;Ik;& = ~„v,(k,')v, (k,), (8)

where

v,. (k,.) = 1/(k, .'+ p~2), (9)

and k, is the hyperon-nucleon relative wave vector
in the i'" channel with magnitude k, . We choose
channels 1, 2, and 3 tobe, respectively, the
Z p, Z n, and An channels. To reduce the num-
ber of free parameters we first set the range pa-
rameters in the first two channels equal:

2a(-g22 —0.5g, + 1.5/yz)
P, 2' (kz)

2&( g2 2'+ 3/yz)

(15)

(18)

Here, for j =1, 2, 3, p, is the hyperon-nucleon re-
duced mass in channel j, yz

——Az+ A„2g2/(1 —AAg2),

y, = &„+&,'gz/(1 —& g ), g = (2g, +g, )/3

Pg-=P2=-Pz. (10)
" q'v, '(q)dq

I zN) —(2)z/2,
1
2 p) (1/~3) I

z2n) . (12)

We calculate the ZN- ZN scattering amplitude
using the potential of Eq. (11) and the state of
Eq. (12) in a two-channel Lippmann-Schwinger
equation and compare the results with a similar

We then choose the strength parameters A.„. to be
related to each other in the same way as they
would be if there were no n-p and Z -Z' mass dif-
ferences and if our YN potential were a pure iso-
spin- —,

' interaction. If these conditions were in
fact true our YN potential could be reduced to the
two-channel potential

)L AVAvA A vAvz

Vgvg A. gvgvg

where v~-=v, = v„vA=- v, . The isospin--, ' state of a
Z and a nucleon with third component of isospin--, '
would be related to the two charge-zero states of
a Z and a nucleon by

and g~ is the principal-value part of g, Note that
below the channel j threshold k~- ik» k~& 0, so
that the 2q in Eq. (1't) may be dropped. For j
= 1, 2, the k&'s are related to k, by

k~ ——(P~/P2)(k2 —kq2 )., (18a)

k&o
——

I 2P, 2(M; —M2)] (18b)

aA = -1.6523 F, ro~ = 3.1717 F. (19)

and M~ is the total mass in channel j for all values
of j. In all our YN potentials in addition to the
masses given above we used for the values of the
Z and A masses, respectively, M, =1192.46 MeV
and MA=1115.6 MeV, so that M, —M, =80.42 MeV
and M2 —M, =76.86 MeV.

Next we assume that the An scattering length aA
and effective range rpQ are known. We used the
values for these parameters given by Satoh and
Nogami" for the Ap interaction:
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TABLE I. An resonance energy and width, range ratio, Z p scattering length and Z n scat-
tering length for 12 different YN potentials. For all potentials a& ———1.6523 F and r =3.1717 F.

Potential
No.

Eo
(MeV)

r
(MeV)

A

(F)
0

(F)

9
10
11
12

70.85
70.85
70.85
70.85

73 ~ 85
73.85
73.85
73.85

73.69
73.72
75.10
75.32

10.00
10.00
10.00
5.00

10.00
10.00
10.00
5.00

4.54
2.12
5.52
2.58

0.5
1.0
1.5
1.0
0.5
1.0
1.5
1.0
1.5
1.5
1.5
1.5

3.0069-i1.7324
1.9344-i1.0528
1.6547-i0.8714
2.0573-i0.9160

2.8188-i2.1500
1.8463-i1.4046
1.6015-i1.2064
2.1707-i1.3150

1.9345-i1.0528
2 .0573-i 0 .9160
1.8464-i1.4045
2.1707-i1.3150

3.0821-i0.8215
1.9852-i0.7118
1.6543-t0.6641
2.1633-i0.3988

3.0337-i1.6215
1.9086-i1.4038
1.5693-i1.3082
2.7264-i1.1464

2.3995-i0.9412
2.6244-i 0.4687
2.1426-i1.9545
3.4449-i 1.6882

1
k, cot5~= ——+~&«k, +

A

(20)

to obtain two relations among the YN potential pa-
rameters.

We next obtain two more relations among the
YN potential parameters in two different ways. In
the first we use the position Ep and width I' of the
resonance in the An channel. From Eqs. (14) and
(18) we obtain the resonance energy E, = k, '/2p, ,
by finding the value of k, for which

1 —g3 y3=0. (21)

We emphasize that for our purposes these num-
bers need only have the right approximate size.
Any of the other sets of values for low-energy AN
scattering parameters appearing in the recent lit-
erature" could have been used with equal effect. '4

We expand the right-hand side of Eq. (14) in a
power series in k,' and compare the result to

At the resonance we let k, =- kp. Following Ref. 12
we obtain the width of the resonance from

r = -(u,/i,),(u, cot5, ) (22)
dk3 A3= kp

In the second way, we take the Z p scattering
length A, which is of course complex —as
known —and use Eq. (15) a,t k, =0. In both cases
we then fix the ratio Pz/P~ to give us five rela-
tions among the five YN potential parameters.

In Tables I and II we give the results of our de-
termination of the YN potential for 12 different
cases. For the first three cases of Table I we
chose the value of E, to be that used in case A of
Ref. 12,"we chose the value of I to be the maxi-
mum consistent with that value of Ep and we var-
ied the ratio Pz/p~ over the values 0.5, 1.0, and
1.5. The value 0.5 is consistent with a one-pion ex-
change mechanism in the ZN interaction and a two-
pion exchange mechanism in the An interaction,

TABLE II. YN potential parameters for the 12 potentials of Table I.

Potential
No.

-A~/( —'m') 3

(F2)

9
10
11
12

1.32835
1.32200
1.31945
1.39360

1.31515
1.30690
1.30365
1.38625

1.39300
1.43185
1.36615
1.41790

0.5
1.0
1.5
1.0
0.5
1.0
1.5
1.0
1.5
1.5
1.5
1.5

14.6861
13.2566
12.5227
22.6187

12.5164
10.6786
9.7401

21.1065

21.8380
27.9608
17.5553
25.4782

16.3412
81.1913

226.842
91.9795

13.4593
70.9973

203.638
81.5307

242.055
260.329
219.463
240.267

19.5271
34.3604
48.9749
26.7714

21.3853
37.9374
54.2967
29.9332

41.0782
29.5899
48.3158
36.1839
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the value 1.0 is the simplest value from a phenome-
nological point of view, and the value 1.5 gives a
third value for this parameter which eventually
yields a value of 1/Pz that is not unreasonably
small. Potential 4 of Table I was chosen to have
the same input as potential 2 but with a resonance
width half as wide. For these four potentials the
resonance is 6 MeV below the Z n threshold. Po-
tentials 5 through 8 were chosen in the same way
as 1-4, but with ED= 73.85 MeV, i.e. , with the
resonance 3 MeV below the Z'n threshold. After
determining the potential parameters we calcu-
lated the values of A for each of these potentials.
Potentials 9, 10, 11, and 12 were chosen to have
Pz//~=1. 5 and the same values of & as potentials
2, 4, 6, and 8, respectively. (We were unable
to obtain a similar match to the Pz/PA = 1.00 val-
ues of A when we used 0.5 for the ratio of the
P's. ) After determining the potential parameters
for potentials 9—12 we calculated the values of
E, and I' for these potentials. For completeness
we also list in Table I the values we calculated for
the Z n scattering length A.o. In Table II we give
the values of the potential strength and range pa-
rameters for each of the 12 potentials listed in
Table II.

III. Z d CALCULATIONS

The application of the Faddeev formalism used
here parallels that used by Hetherington and
Schick" in their treatment of K d elastic scatter-
ing, the main difference being that instead of a
two-channel RV interaction we have a three-
channel YN interaction. However, since we treat
the An channel implicitly we too finally reduce
the problem to solving a set of four coupled one-di-
mensional integral equations for each partial-wave
amplitude. Details of such a calculation have
appeared many times in the literature. " We see

no need to go into further detail here, other than

to say we included the first four partial waves in

the single-scattering terms and the first two par-
tial waves in all the multiple-scattering terms,
we used the contour-rotation method" to smooth
the integrals, and we used a mesh of 96X96 points
in our numerical integration. " For a given set of
two-body input parameters we obtained a value for
f „(8) the Z d elastic scattering amplitude as a
function of the c.m. scattering angle g. We then
found the elastic cross section o„ from

o„= dQ „8
where the angular integration was done numerical-
ly. We found the total cross section o„, from

c,„,=(4v/k)Im[f „(0)],
where k is the Z d relative momentum. We found
the reaction cross section from

r tot el '

We confined our work to energies below the deu-
teron breakup threshold so that only the two pro-
cesses Z d-Z'nn and Z d-Ann are included in

o,, In particular we have calculated o„and o„
for incident Z lab momenta of 30, 50, 70, and
90 MeV/c for which the relative Z d momenta are
18.31, 30.52, 42. t3, and 54.93 MeV/c, respective
ly, and the energies available in the Z d and Z'nn
c.m. systems are -2.00 and 1,56 MeV, -1.59 and
1.97 MeV, -0.98 and 2.58 MeV, and -0.16 and
3.40 MeV, respectively. We would have liked to g(
to even lower momenta but our numerical work be
comes unreliable at very low momenta. The re-
sults of our Z d calculations are given in Tables
ID, IV, and V.

The first question we asked was whether the low
energy Z d cross sections are sensitive to the
Z p scattering lengths. We asked this question be

TABLE III. & d elastic and reaction cross sections with Z d lab momentum
of 30-90 MeV/c for YN potentials 1-4.

Potential
No.

Type of
cross section

30
MeV/c

Cross section in mb at
50 70

MeV/c MeV/c
90

MeV/c

Elastic
Reaction

Elastic
Reaction

Elastic
Reaction

Elastic
Reaction

1584
933

950
666

758
619

990
443

1343
706

842
466

678
416

894
354

1108
616

731
390

594
337

787
326

899
553

625
344

514
293

682
305
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TABLE IV. Z d elastic and reaction cross sections with Z lab momentum

of 30-90 MeV/c for YN potentials 5-8.

Potential
No.

Type of
cross section

30
MeV/c

Cross section in mb at
50 70

MeV/c Me V/c
90

MeV/c

Elastic
Reaction

Elastic
Reaction

Elastic
Reaction

Elastic
Reaction

1631
1255

1037
966

854
906

1156
685

1337
870

890
622

740
567

1012
508

1071
714

749
488

630
434

864
441

848
611

625
412

532
361

728
395

cause it is possible that the An resonance, being
just below the Z n threshold and hence in the mid-
dle of the integration region of the internal-mo-
mentum variable in the Z d problem, might con-
tribute the dominant part of o„and o„. Further,
we concentrated on the sensitivity of v„and o„
to A rather than Ao since the former is much
more likely to become available through two-body
scattering experiments.

To answer the above question we used potentials
1, 2, and 3 to obtain the values of o„and o„
shown in Table III. We emphasize that potentials
1, 2, 3 not only all have the same values of aA, r«,
EA, I —so that the An on-shell amplitude between
the An and Z n thresholds is for all practical pur-
poses the same for all three potentials —but the
values of PA are so close for these potentials that
between the An and Z'n thresholds they all have
the same An half-off-shell amplitude. On the
other hand A for potential 1 is about twice the
size of A. for potential 3, which is reflected in the
values for o„and cr„ listed in Table III. The ratio
of o„ for potential 1 to o„ for potential 3 lies with-

in 1.8-2.1 for the energy range shown, while the
analogous ratio for o„ lies within 1.5-1.6.

To make sure these results were not particular
to the value of Eoused in potentials 1, 2, and 3
we repeated the above calculation for potentials 5,
6, and 7. As shown in Table DT we obtained sim-
ilar results. These results, along with those ob-
tained above, indicate that the Z p scattering
length must be fairly well known —at least to with-
in (say) a 50% error —from, for example, Z p
scattering experiments, before we can hope to ob-
tain from low-energy Z d scattering further infor-
mation on the YN interaction.

The next question we asked was, given that we

knew A approximately, say to within 25%, were
o„and o„sensitive to the position of the An reso-
nance? We may look at Tables III and IV for the
answer. We see from comparing o„ for potentials
1, 2, 2 (Table III) with v„ for potentials 5, 6, 7 (Ta-
ble IV), respectively, that for the momentum
range shown there is little difference (612%) in

having the resonance 6 MeV or 3 MeV below the
Z n threshold. This difference is larger for the

TABLE V. Z d elastic and reaction cross sections with Z lab momentum
of 30-90 MeV/c for YN potentials 9-12.

Potential
No.

Type of
cross section

30
MeV/c

Cross section in mb at
50 70

MeV/c Me V/c
90

MeV/c

10

12

Elastic
Reaction

Elastic
Reaction

Elastic
Reaction

Elastic
Reaction

950
569

982
391

1023
821

1114
581

844
418

885
335

884
541

980
445

732
362

777
319

748
433

840
394

627
324

671
300

627
370

709
356
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lower momentum values since there the Z d c.m.
energy is, relative to its distance from the lower
value of the resonance energy, much closer to
the higher value of the resonance energy. For the
same reason the increase of c„with decreasing
energy is more marked in Table IV than it is in
Table III. The reaction cross section appears to
be more strongly affected by the change in posi-
tion of Eo From Table I, however, this effect
can be attributed in large measure to the fact that
for potentials 5, 6, and 7 A is much more ab-
sorptive than it is for potentials 1, 2, and 3,
respectively.

Again assuming a minor variation in A is not
ruled out, we asked about the variation of o„and
o„with I given that Eo is fixed. To answer this
question we compare the results for potentials 2
and 4 (whose A 's differ by &10%) in Table III and
we also compare the results for potentials 6 and
8 (whose A 's differ by &16%}in Table IV. We
see that the values obtained for o„are insensitive
to the change in I' throughout the momentum
range covered. The values obtained for a„are
very strongly I' dependent (=50% variation in o„)
at the lowest momentum and almost I' independent
(F10% variation in o„) at the higher moments, .
This is just the sort of behavior we would expect
in that as the Z d energy moves away from the An
resonance energy —and hence outside the width of
the resonance —the width becomes unimportant,
whereas close to the resonance the width (which of
course determines how close is close} becomes
very important, with the larger value I' producing
the larger values of o„.

Finally we asked, given that A is known ex-
actly —say on the basis of experimental results
plus a meson-theoretic model —what is the sensi-
tivity of a„and 0„ to the values of Eo and I'? For
the answer to this question we compare the re-
sults of Table V for potentials 9 through 12 with
the results obtained for potentials 2, 4, 6, and 8,
respectively, given in Tables III and IV. For ex-
ample, from Table I we see that potential 9 has a
width about half that of potential 2 and its reso-
nance is about 3 MeV closer to the Z n threshold
(i.e., for the An channel parameters potential 9
looks much like potential 8). However, potential
9 has the same A as potential 2. From Tables
II and V we see the differences in the Z d cross
sections obtained using potential 9 instead of po-
tential 2 is in all cases &16% and in most cases

the difference is 10% or less. Similar close re-
sults hold for comparisons of the Z d cross sec-
tions from potentials 4 and 10, 6 and 11, and 8
and 12. We note that the variation of o„with
changes in E, and I together is much smaller than
it was with a change in either of these parameters
alone. This is not unexpected since in going from
potential 2 to potential 4 (i.e., decreasing I' with

E, fixed) o„decreases —as the effect of the reso-
nance is spread over a narrower energy range—
while in going from potential 2 to potential 6 (i.e.,
increasing E, with I fixed) o,, increases —as the
resonance is closer to the Z d physical scattering
region. The variations in a„are still a good deal
larger than the variations in 0„ for corresponding
cases. This could merely be a reflection of the
fact that the error we make in treating the An
channel implicitly is not only relatively larger for
v„but it also depends on the values of Eo and I'.
Whether this sort of error accounts for most of
this difference, or whether this difference is
real, is now under study.

In summation then, we calculated Z d quartet
cross sections below the threshold for deuteron
breakup. We used a three-channel (Z P, Z'n, An)
S-wave central potential in this calculation, but
treated the An channel implicitly. We fixed the
An scattering length and effective range and in-
vestigated the variation of the Z d cross sections
as the An resonance energy Eo and width I' were
varied as well as when the Z P scattering length
A was varied. We found that for fixed E, and I
varying A by a factor of two caused about a fac-
tor 2 variation in the Z d elastic cross section
and about a factor 1.5 variation in the Z d reac-
tion cross section. We found that for fixed A,
within the errors introduced by our implicit A
channel approximation, the variation of the Z d
cross sections was negligibly small. These re-
sults indicate that measurement of low-energy
Z d cross sections may help in determining the
Z p scattering length, but not in determining the
position and width of a An resonance that lies
3-6 MeV below the Z n threshold.

Two further questions are now under study with-
in the same general framework used here. First,
how badly has the implicit An channel approxima-
tion used here distorted the three-body scattering
results? Second, are the cross sections calcu-
lated here sensitive to the parameters of the Z n
potential?
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Hadronic two-body amplitudes involve two components. The imaginary part of the non-
diffractive component R is dominated by the most peripheral impact parameters (b - r).
The imaginary part of the diffractive component P has substantial contributions from all
impact parameters b&r. We study the energy dependence of the b representations of both
components as well as various possible forms for the corresponding real parts. We show
that the following three assumptions are mutually inconsistent: (i) ImR (s, t) is always dom-
inated by b- r terms; (ii) ImR (s, t) shrinks indefinitely as s —~; (iii) r approaches a con-
stant as s-~. We define three classes of models obtained by abandoning, one at a time,
these three assumptions. We discuss the complex-J-plane structure as well as the asymp-
totic phase of the R amplitude for each of these classes and propose various experimental
ways of distinguishing between the models. A detailed analysis of ReR indicates that, while
in certain cases it reaches its asymptotic phase at relatively low energies, in other cases
the asymptotic phase is approached very slowly and it has no resemblance to the observed
phase at present energies.

I. INTRODUCTION

The phenomenological description of hadronic
scattering amplitudes for two-particle final states
involves two components. ' The first component,
R(s, t}, contributes to both elastic and inelastic
processes. According to the usual duality ideas'
it can be viewed either as a sum of s-channel res-
onances or as a combination of "ordinary" t-chan-
nel exchanges (poles and cuts). The second com-

ponent, P(s, t), is the diffractive "Pomeranchukon-
exchange" part and it contributes only to elastic
(or quasielastic} processes.

Both the t-channel and the s-channel points of
view seem to be crucial for the description of vari-
ous systematic features of elastic and inelastic
amplitudes. In general, the t-channel picture has
been more successful in explaining the s depen-
dence of hadronic amplitudes while the s-channel
picture has been very useful in understanding the


