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Finite-energy sum rules (FESR) with logarithmic terms are formulated in a way amenable
to simple and accurate approximation, thus allowing their convenient use in data fitting with
Regge cuts. It is observed that a typical cut FESR contribution is similar to that of a pole
lying perhaps half a unit lower in the J plane. Therefore p +p’ fits to 7°p — 7% seem to imply
decoupling of the p® P Regge cut from the nonflip amplitude at ¢ =0. This is investigated in

more detail, and its implications are pointed out.

I. INTRODUCTION

Finite-energy sum rules (FESR) are usually
written for amplitudes with assumed power (Regge
pole) asymptotic behavior.! However, now it is
believed that at high energy there are also signifi-
cant Regge-cut (i.e., logarithmic) contributions,?
and so to help in the construction of realistic
phenomenological models it is desirable to gener-
alize the sum rules to include such terms.

Unfortunately this is impossible in closed
form®~® (except in special models®), and the re-
peated numerical evaluations necessary in typical
parameter-search calculations are often prohibi-
tively time consuming.

In this paper we first examine the structure of
FESR’s with logarithmic terms and put them into
a form where a simple approximation can be made
to overcome the time problem, so giving a prac-
tical way to include FESR constraints in data fit-
ting with general types of Regge cuts.

We then observe that in a FESR the simplest
kind of Regge cut behaves like a pole with inter-
cept lower in the J plane by about ; to 3 a unit.
Consequently, for example, some p+p’ models of
7”p—~ 1% may be good approximations to the phys-
ics of a p pole plus a p ® P cut and imply that the
cut essentially decouples at t=0. (We use the
notation A ® B to denote the cut resulting from the
simultaneous exchange of Regge poles A and B in
the ¢ channel.)

The situation is explored in more detail, and
quantitative results are given. We point out the
major implications of a small cut amplitude at

t=0, regarding especially the crossover mecha-
nism and the difference of total cross sections at
high energy, and note the similarity of the situa-
tion in charged-pion photoproduction.

II. SUM RULES

A standard FESR derivation® deals with an am-
plitude F(v) [v=(s—u)/4m] at fixed ¢ or u (sup-
pressed) with the usual analytic properties and
an assumed asymptotic (|v|= N) model form.
Cauchy’s theorem [fc F(v)dv=0] is used, where
the contour C lies along the real axis above the
physical cuts from —N to N and closes with a
semicircle [v|=N in the upper half-plane. Thus
the low-energy amplitude is integrated from - N
to N, and the asymptotic model round the semi-
circle (not to threshold, nor to ). For an ampli-
tude of definite crossing symmetry [F(-v)=+F*(v)]
the left- and right-hand parts of the low-energy
integral can be combined.

A crossing-odd amplitude with Regge-pole
(power) behavior,

F(v) =iy(-iv)®
=iye”im2y%  |y|= N (1)
is then found to obey the FESR

o

1 N
I—Vf ImF(v)dy="y N cosEma . 2)

a+1

A Regge-cut amplitude contains powers of Iny,

and a simple crossing-odd term of the type sug-
gested by current models®~? is
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F(v) = iy(=iv)%[c+1n(-iv)]®
=iye~i™2¢(y)p%, |v|=N (3)
where

q(v) = [(c+1nv)* + 172172,

N 28 m
a(v) =a,+ - arctan[—————-z(c+lny)] .

Here «, is the branch-point trajectory, g is re-
lated to the nature of the J-plane cut discontinuity
at its tip [ see Eq. (14) below], and c is included
to account for a possible difference in the scale of
the logarithmic and power energy-dependences
(as the absorptive/eikonal prescriptions would
suggest®~®). Note that @ (v) controls the phase of
the cut, and we emphasize that there is no as-
sumption about ¢ dependence .

Values of these parameters may either be in-
serted into (3) according to theoretical knowledge
(or prejudice), or else left as phenomenological
parameters to be determined by data (just like pole
parameters).

Following the derivation outlined above, the
Regge-cut FESR can be put into the form

4)

N —
711,[ ImF(v)dv=y l"('c'q(N) Refe ™ W2 g (g, %)},

a.+1
(5)

where
x=(a,+1)[c+1n(=iN)].

This equation is similar in structure to the pole
sum rule (2) except for the appearance of the
“phase function” g(B, x), which comes essentially
from the semicircle integral and which cannot be
expressed in simple closed form. Its numerical
evaluation is the key to the practical use of (5).

The continuous-moment generalizations of (2)
and (5) have F(v) replaced by (y,2 - v2)~<"V/2F(y)
on the left-hand side (v,=threshold), and the sub-
stitution ¢ - - €-1or a, - a,~ €-1 as appro-
priate on the right-hand side. It is easy to prove
that the error committed is less than (v,/N),
which is usually negligible, except perhaps for
large positive €, which emphasizes the threshold
region (“negative moment” sum rules). In any
case negative-moment FESR’s with logarithmic
terms tend to be unreliable because the amplitude
itself does not have logarithmic singularities,
either at v=0 or v=y,.

11I. PHASE FUNCTION
The phase function g (B, x) is related to the in-

complete gamma function. It is defined by

g(B,x)=e"x~ ﬂfx (x")e*'ax’, (6)

and is subject to the boundary conditions appro-
priate to the pole limit

B=0: g(0,x)=1, (7a)
N=w: g(B,©)=1. (7b)

The lower integration limit in (6) is independent of
Band x, and is otherwise arbitrary because its
contribution cancels from (5) when the real part
is taken. Note that the denominator factor a+1 is
compensated at o =—-1 by the vanishing of the
whole Re{ } term.

a. Exact Evaluation. Exact evaluation of g in-
volves summing the convergent series obtained by
expanding the inner exponential in (6) and termwise
integration. (For f=-1,-2,...,etc. this picks up
logarithmic terms). Numerical experience shows
that g (8, x) is accurate to within one percent if
more than about 2 |x| terms are retained, subject
to 2 minimum of 4 or 5.

With typical values a=0.5 (e.g., p® P trajecto-
ry), c=4 (absorption model, Refs. 3-8), N=2 GeV
(Barger and Phillips, Ref. 9), we have |x|=~7.5.
Therefore for reasonable accuracy during a pa-
rameter search it is necessary to use perhaps 10—
15 terms in the expansion of g, which can be ex-
cessively time consuming. A simpler, accurate,

FIG. 1. Comparison of exact (full line, g) and several
approximate cut contributions to a continuous-moment
FESR, plotted as a function of moment parameter € (Ref.
9). The long-dash line is g=~ 1 [Eq. (8)], the short-dash
and dotted lines are g~ g; [Eq. (9)] and g~ g, [Eq. (10)],
respectively. The FESR is cut off at N =2 GeV (Ref. 9)
and the cut parameters are o,=0.55, B=—1, ¢=1.25
[see Eq. (3)]. Note that the example with g= g, is indis-
tinguishable from that with g=~ g, for e =—1.
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approximation to g is useful for the main part of
such a calculation.

b. Approximations. The simplest approximation
is

gBx)=1. (8)

This obeys (7), but on the right-hand side of (5)
the Re{ } no longer vanishes to cancel the denom-
inator zero.

The approximation (8) is tested in Fig. 1, where
approximate and exact cut contributions to a typi-
cal 7N continuous-moment FESR are compared.
Away from the pole at e=a Eq. (8) is quite satis-
factory, and it is especially accurate for higher
moments, as expected from the asymptotic condi-
tion (7b).

Also included in Fig. 1 are the results of the
simplest of a class of rational approximations

tog:
g, x)=x/(x+p) (=g,) 9)
and

g(B, x)=xlx+p)/[B+ (x+BF] (=g,). (10)

These too satisfy (7), and have the advantage of
effecting the cancellation required in (5) when a+1
=0.

They are derived as Padé approximants to the
asymptotic series for g, which is obtained from
(6) by the usual repeated integrations by parts.
[The finite-order Padé approximants to the con-
vergent expansion do not obey condition (7a)].

Figure 1 shows that both g, and g, are reason-
ably accurate, again especially for higher mo -
ments, as expected. For € <0 in this example
there is no clear reason for preferring them to
the simplest expression (8).

IV. POLES AND CUTS

It is well known in at least one specific example®
that FESR’s alone are not sufficient to distinguish
between possible alternative models. They cannot
determine unaided whether (for example) a model
of pole plus cut is better physics than one of pole
plus pole; they only help to fix the parameters of
the model chosen.

Figure 2 compares some pole and cut FESR con-
tributions, and confirms that this is likely to be a
quite general result. The sum rules cannot dis-
criminate on the basis of phase between a typical
cut and an effective pole. The € dependence of the
cut term is always to a good approximation the
same as that of a pole, displaced in the J plane.

In the examples shown, the position a . of the
“phase-equivalent pole” is about ; to 1 unit lower
than the actual branch-point trajectory, a

c

Comparing (2) and (5) the reason is clear: To the
extent that g (B8, x) =1, we have

gy = a(N), 11)

where @(v) is given by (4). That is, if (8) holds,
we have an explicit expression for the position of
the phase-equivalent pole:

Q= Qefr = —%;@ arctan[m] (=6). (12)

From (12) it follows that the typically negative
sign of B (B <-1 usually; 8=-1 in Figs. 1 and 2)
determines a.s<a, and the size of the difference
6 is roughly inversely proportional to the size of
the scale constant c.

The energy dependence of the cut amplitude (3)
is different from v % by the logarithmic factor ¢(v)
[see (4)], which means that also from this view-
point it appears to be effectively a lower-lying pole
(if B<0).

Thus for data fitting over a restricted finite
range of v and ¢, including FESR constraints, it
may be a reasonable approximation to make the
following replacement in (3):

PRILLIOR g(V)v%~ o= imOeff /2, Ceff , (13)
where aq s ~a,-6and 6=7 to 3.

In this context it is worth examining the J-plane

4

FIG. 2. Comparison of pole and cut FESR contributions
for coincident trajectory values, and the same sign of
over-all coupling. The cut contribution (CUT) is as in
Fig. 1, and the pole contribution (POLE) has @=0.55
(=a;). Shown as a dashed line is a cut contribution with
c=4, a typical absorption-model value (Ref. 3—8). Note
that the cuts look like poles lying lower in the J plane by
about § unit (c=1.25) or } unit (c=4).
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discontinuity function A(a) of the cut amplitude.
The interest at this stage is theoretical rather
than directly phenomenological, for the models
most usually used to generate Regge cuts (absorp-
tive, eikonal®?) do not operate in such terms.

The cut amplitude (3) can alternatively be writ-
ten

Uc
i [ a@(-in‘aa, (37)
and correspondingly the right-hand side of (5) be-
comes

Cc N°‘ L ,
f A(a)mcos(gm)da R (57)

where @, is the position of the branch point.
Part of the connection between (3), (5) and (3’),
(5) is

Ala) af:l%const(a -a,)"'"8, (14)

and evidently from the preceding discussion of an
equivalent pole the main contribution of A(a) is
bunched approximately at a=a,- 6. That is, the
form of energy dependence assumed in (3), which
is perhaps the simplest, and certainly typical of
current models, is essentially a very simple as-

sumption about A(a), the cut J-plane discontinuity.

Possibly, future models will be able to give more
detailed structure to A(a) and lead to an energy
variation which is a superposition of terms like

(3).

V. AN IMPLICATION

The discussion in Sec. IV has one (at least) very
interesting phenomenological implication.

The process 7”p—~ 1°2 has been extensively in-
vestigated with various p+ p’ Regge-pole models,
and some of the fits have included FESR con-
straints.®~!! The authors’ conclusions concur:

If the p’-pole intercept is about 3 unit lower than
that of the p, then to a good approximation the
secondary pole decouples entirely from the non-
flip amplitude at ¢=0.2""!

We have shown that the p ® P Regge cut can be
regarded effectively as such a p’ pole, and there-
fore this result seems to have the implication that
the cut vanishes in the forward direction.

We have investigated this remarkable situation
in more detail, using continuous-moment FESR
evaluations for the forward nonflip 7™p - 7% am-
plitude made by Olsson'! (N=5 GeV, 0.6> € >-2)
and by Barger and Phillips® (N~2 GeV, 0> ¢
>-3). The latter were checked against new eval-
uations'® using the latest CERN phase shifts'?;
the agreement is satisfactory.

We assumed the following form of p+p®P

model:
Tw)”“”"’(”*ﬁ?i)) : (15)

where E is the pion lab energy and T(E) is the for-
ward nonflip amplitude normalized as in Ref. 11.
The procedure was to seek a least-squares fit to
the two sets of FESR’s with the different cutoff
energies by adjusting the four parameters a, v, A,
and ¢, and check that the resulting amplitude gives
total cross-section differences Ao, and forward
differential cross sections in agreement with high-
energy measurements.

Note that the use of FESR’s with different cut-
offs provides an extra lever on the model, being
in principle equivalent to a simultaneous fit to Ao,
and (do/dt), -, at separated energies, which should
be sufficient to determine four parameters.

The results are summarized in Fig. 3, where
the predicted ratios of cut to pole contributions to
the real and imaginary parts of T(E) are plotted
as functions of E.

Reasonable fits are possible in fact with both «
=0.483 (Lovelace-Veneziano, Ref. 14) and o =0.55
(from an effective-pole fit to the energy depen-
dence of do/dt, which is dominated by the presum-
ably pure Regge-pole spin-flip amplitude?), but if
a is allowed to vary, the value a=0.53 is strongly
preferred.

In the fits shown in Fig. 3 which are for the two
bracketing a values, the parameters y, A, and ¢
were varied from a large number of starting val-
ues.

1 1
2 5 10 102 103
E (Gev)

FIG. 3. Predicted ratios of cut to pole contributions
to the imaginary (full lines) and real (dashed line) parts
of T(E) as functions of E, for o =0.483 and a =0.55.
The ReT ratio for a =0.55 is omitted — it is very much
smaller than for a =0.483. The parameters of the fits as
described in the text are
(i) ®=0.483, y=2.04 GeV™%, A=—=0.57 GeV~?%, ¢=0.43.
(i) @=0.55, y=1.8 GeV™%, A=—=0.19 GeV"2, ¢=0.00.
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Fixing c at 4 or 5 (typical absorptive/eikonal
model values®-?) gives a distinctly poor fit to the
FESR’s. Values of ¢ between 0 and 1 are pre-
ferred, corresponding to a phase-effective p’ pole
with intercept around zero (i.e., |ReT.,|
<|ImTy |)-

In all cases the cut amplitude turns out to be de-
structive in sign (i.e., y >0 and x <0) as predicted
by the physical picture of absorption,?~® but small
in magnitude compared to the pole.

Attempted fits using larger constrained cut am-
plitudes give very inferior results, and alterna-
tively replacing [c +1n(-ZE)]~! in (15) by
[c +In(-iE)]® and varying g gives preferred values
|8]<0.01. The sum rules insist on almost pure
Regge-pole amplitudes.

The results presented in Fig. 3 can be converted
to an upper limit at (say) 6 GeV of

[Im T, [<0.15 [Im Ty | (16)

corresponding to « > 0.483, and a much smaller
limit if @ is larger. Note that the smaller « is,

the larger the destructive cut contribution required
to maintain the observed energy dependence, which

gives for a single pole @ =0.57."!

Accepting therefore that the strength of the de-
structive (absorptive) p ® P cut is rather small at
t=0, we are necessarily forced to the conclusion
that in order to achieve cancellation of the p pole
and the production of a crossover zero near ¢
=-0.2 (GeV/c)? the cut amplitude must increase
considerably in strength at first as —¢ increases.
This must be true regardless of dip mechanism,
although of course the effect is far more dramatic
in a purely geometric® (as opposed to nonsense—
wrong-signature zero’) picture.

A cut almost decoupling at ¢=0 and rising sharp-
ly for ¢ <0 is completely different from the large
contribution (|ImT,,, [~0.8 [ImT ,|) at ¢=0, fol-
lowed by a rather featureless exponential falloff
in ¢, predicted by the popular models,®~® and this
situation is currently under further investigation.

It is worth remarking that this cut decoupling at
t=0 contradicts the natural expectation? that strong
absorptive cut contributions are responsible for
the apparently anomalous energy dependence of
o7(17p) = o 4(n*p) in the Serpukhov energy range.'
In fact, we are inclined to dismiss the “anomaly”
because the energy dependence of ¢ ,(n*%n) - o5(7*p)
at similar energies’® is in no way anomalous, and
disagrees with the other data by a large margin.

The amplitudes resulting from the sum-rule anal-
ysis agree very well with all the nonanomalous
Ao, measurements, and the forward do/dt, as
they should.

It is also worth pointing out a similar result
reached by Worden® in a Regge-pole and -cut anal-
ysis of photoproduction. The conclusion is that in
charged-pion photoproduction (yp—~7*n, yn-u"p)
the p ® P cut must be small at =0 and stronger
for ¢ <O.

The main point of the argument is simple. The
ratio of differential cross sections (7~/n*) differs
from unity at =0 only to the extent that the inter-
ference between the p® P and 7 ® P Regge cuts is
nonzero. Experimentally the 7~/7* ratio is con-
sistent with unity at £=0. Since the amplitudes
are not orthogonal and the 7.® P cut (responsible
for the forward spike) is certainly not zero, the
p® P cut amplitude must be small. The evidence
of FESR’s agrees with this reasoning.

VI. CONCLUSIONS

Our results are as follows:

(i) FESR’s can be fitted with Regge-cut ampli-
tudes as conveniently and routinely as with the
usual poles. For the main part of the parameter
search use an approximation to the phase function
[e.g., Egs. (8)-(10)]; use the accurate function
only for the final approach to the x 2 minimum.

(ii) FESR’s cannot be expected to distinguish
poles from cuts just on the basis of phase. A typi-
cal cut with energy dependence of the sort gener-
ated by absorptive models looks like a pole lower
in the J plane by perhaps } to 3 a unit (its J-plane
discontinuity is approximately bunched).

(iii) The p®P cut appears almost to decouple
from nonflip 7”p~ 7%z at +=0. This is remarkable,
contradicting completely expectation based on
models for the angular dependence. It is extreme-
ly interesting, however, to note that the p® P cut
also seems to decouple at =0 in charged-pion
photoproduction, and the questions arise concern-
ing other cuts, other processes.
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We use a Faddeev formalism and two-body, S-wave, central separable potentials to
calculate =7d quartet elastic and reaction cross sections for =~ incident lab momentum
in the range 30—90 MeV/c. We use a three-channel isospin-1 hyperon-nucleon potential
with a Az resonance below the =% threshold, but in the three-body calculation the Az
channel is only included implicitly. We find that Z~d cross sections are sensitive to the
size of the Z7p scattering length, but insensitive to the exact position and width of the

An resonance.

I. INTRODUCTION

The purpose of this work is to construct a model
of Z-d scattering below the threshold for deuteron
breakup and to use it to investigate the sensitivity
of the elastic and reaction cross sections to some
of the physical parameters of the two-body zero-
charge Z-nucleon (ZN) interactions.

Our philosophy is that this work is a first crude
step in the theoretical investigation of the attri-
butes of the ZN interaction (e.g., its off-shell be-
havior) that may not be directly accessible from a
study of free Z~p scattering. Ultimately we should
like to be able to test whether two different meson-
theoretic potentials which give the same results
for on-shell scattering parameters for free Z-p
scattering can be distinguished by analysis of = ~d
scattering. At this stage of the game when very
little Z~p scattering data is available,* we feel it
makes more sense to work with simple phenome-
nological potentials rather than full-blown meson-
theoretic potentials. For the same reason we shall
use only a very crude model for the three-body
system. We emphasize that we do not expect the
absolute size of the cross sections we calculate to

be of any great significance, but rather it is the
variation (or the lack of variation) of these cross
sections as the two-body interactions are changed,
upon which we shall focus.

The only previous calculations of low-energy
Z7d cross sections that we know of are those of
Day, Snow, and Sucher,? Chen,® and Neville,* all
of whom calculated the ratio of the cross section
for =° production to the total reaction cross sec-
tion at zero incident =~ energy. All three of these
works were basically impulse approximation cal-
culations, although Chen did include the 1S, neu-
tron-neutron final-state interaction. Because of
the low Z~ energy this is not a valid way to pro-
ceed with our problem.

We investigate X ~d scattering in the quartet spin
state so that the nucleon-nucleon and hyperon-
nucleon interactions are all spin-triplet interac-
tions. We use central, S-wave, two-body poten-
tials to represent these interactions and we
do not include the Coulomb interaction. Our two-
body potentials are all 35, potentials. They are
the np potential, the -« potential, and the three-
channel (2-p, =%, An) potential which we shall re-
fer to hereafter as the YN potential.5 Each of the



