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A numerical evaluation of the complex-scaling sum rules is given. The results indicate
that the concept of precocious complex scaling is in agreement with the present data on

Wy(v,q%).

It is also shown that these sum rules can discriminate between different Regge

fits to the electroproduction data and place restrictions that go beyond those imposed by the

finite-energy sum rules.

I. INTRODUCTION

In a recent paper’ one of us derived a set of new
sum rules for off-shell Compton scattering. These
sum rules follow essentially from analyticity in
two variables and “precocious” complex scaling
inside the analyticity domain. They also contain
contributions from the nonscaling Regge region.

The sum rules in I are generally of two classes.
The first are relatively insensitive to the contri-
butions from the Regge region. These, as stressed
in I, provide a test of the concept of complex scal-
ing and its “precocious” nature. The second class
of sum rules is sensitive to the Regge contribution
and, if complex scaling is valid, they are expected
to differentiate between different Regge fits to the
SLAC-MIT electroproduction data.

This brief paper is mainly devoted to the evalua-
tion of the above-mentioned sum rules using the
data on W,(v,4?%) from the SLAC-MIT collabora-
tion.2

Our main results are the following: First, com-
plex scaling is consistent with the data on W,(v,q?),
and the sum rules testing complex scaling are sat-
isfied to within 10%. This is the same accuracy to
which real scaling has been verified. The preco-
cious nature of complex scaling also turns out to
be consistent with the data. Second, after verify-
ing complex scaling, the second type of sum rule
was used to differentiate between different Regge
fits to vW,. The main result here is to show that
the complex-scaling sum rules provide restric-
tions on the Regge fits which go beyond the restric-
tions imposed by the finite-energy sum rules
(FESR). Some Regge fits which satisfy the FESR
turn out not to satisfy the sum rules of I. It is in-
teresting to note that these fits are mainly the
ones that do not have a fixed J =0 pole in T,(v, ¢%).

II. REVIEW OF SUM RULES

The main result of I was to find special analytic
closed contours in the four-dimensional v,¢% com-
plex space such that

f v(T)T,(v(7),4%(7))dT =0.
C

The contours C remained inside the analyticity do-
main, in this case the forward tube. Here T, is
the invariant off-shell Compton amplitude and is
related to W,, the inelastic structure function, by
ImT,=7W,. The contours C consisted of two parts.
Along the first part both v and g2 are real and ¢
is spacelike. Thus, along this segment T, is
determined by the data on W, through the standard
fixed-g2 forward dispersion relation. Along the
second part of the contour both v and ¢2 are com-
plex. In this region T,(v,¢?) is determined by
complex scaling when both |v| and |¢?| are large,
and by the Regge fits when |v| is large but |¢?| is
not.

The integration above leads to essentially two
classes of sum rules. The first is given by

VIV, 4%(x))

2] dx v(x) Ut(x)du )
~_2 . d¢>e"bw(e””.[ dw’ ——-a,—F[i)aze) T
—i [ a6 R (o), w0, (2.1)

Here the functions ¢%(z), v(z), and w(z) are given
by

z-1

*@)=-mg® 5> (2.2)

u(z)=m0|:(%ﬁ)5—_l;+;‘;31] , (2.3)
2

w(z)= qu’%? (2.4)

The parameters b and m, are chosen such that
both are real and positive and vary in the ranges

2<b<3 (2.5)
and

my>3m,, (2.6)
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where m, is the proton mass.

The left-hand side of (2.1) is completely deter-
mined by the SLAC-MIT data on W,, with ¢%(x)
varying in the range

2

- 2 mg? <4%(x) <0, 2.7)

as x varies in -1 sx<+1.
On the right-hand side F,(w’) is the usual Bjor-
ken scaling function defined as lim,_, ., vW,(v, ¢%)
= F,(w), where w=-2m,v/q* is kept fixed as the
limit is taken. The right-hand side is obtained by
integrating v(z)T,(v(z),4%(z)) over the unit semi-
circle in the z plane, z=¢'® and 0<¢<7. The
parameter ¢, defines the transition point between
the Regge nonscaling region, 0<¢ <¢,, and the
scaling region, ¢,<¢<m. We shall let ¢, vary in
our evaluations of (2.1); however, we always keep
it in the neighborhood of O(m?/m?).
In the Regge region |g?(¢)| varies in the range
m2
0<|q2(¢’)|< b 1 2’ ¢1z2m ’ (2-8)
0
and in the complex scaling region ¢, < ¢ <7 we have
the bounds

2 2 2 2 o m?
5 <1 ()< g e q>1~2m02. (2.9)

The Regge fit R(q*(¢), v(¢)) has the standard
form

V'Wo(v', 4%(x))

° ’ ! 2 I,
(—1>Lt(x)dy v’ — v3(x)

o1 el
.—_-szz dcpe (

0 &)

Note that in Eq. (2.11) m,? should actually read
my?/1BeV?, so that both sides of the equation will
be dimensionless.

Finally, we should point out that there is a small
difference in the normalization of amplitudes given
in this note and in I; the relevant factor is 2/m,>.
Here a m,™ factor is absorbed into the definition
of W, such that vW, is dimensionless. Note also
that in this paper we have defined v=g - p/m,.

III. EVALUATION OF THE SUM RULES

We will now discuss the numerical evaluation of
the sum rules (2.1) and (2.11). We denote the sum
rule (2.1) by “A” and (2.11) by “B”. For conve-
nience we define the following three integrals:

> w(e! d’)f dw’

|on

R(@?, v)=iB,(@®) + (i - 1)B,(g*)(v) ™2
+ (i +1)By(q%)(v) ™32 —Brp (@®)v7Y,

where FP means fixed pole.

These fits are usually determined for real space-
like ¢2 and large values of v/q2. In R we shall use
the same functional form for complex ¢? as long as
lg?| = m,?.

The amplitude T,(v,q?) vanishes as ¢?~0. This
of course is also true in the Regge fits one uses
in (2.1) for R(q?(¢), v(¢)). One then expects that
the low-¢? region makes a small contribution to
the Regge term in (2.1). This fact turns out to be
true for the whole Regge region, 0<¢ <¢,, when
one considers the imaginary parts of both sides in
(2.1). In this region the Pomeranchukon contrib-
utes mainly to ImR and in taking the imaginary
part of the sum rule ImR is multiplied with a factor
of sing, which is small in the range 0<¢ < ¢,.
This will be borne out by the results in the next
section.

The sum rule obtained by taking the real part of
(2.1) turns out to be sensitive to different Regge
fits and will help to exclude some of them as seen
below.

The second class of sum rules given in I was
obtained by dividing T, by ¢2/1BeV? and thus re-
moving the zero at ¢2=0. This sum rule should be
even more sensitive to the low-¢? data. It is given
by

(2.10)

! i®
Fj(;”_a()ei¢) -1 L i d¢ <e'¢‘ 1) R(q%(¢), v(¢9)).

my?

(2.11)

+1 o , ;s
=2 f " avptn) [ av YHULEQ)
-1 vy (x) v'% —v3(x)
(3.1)
C=-2iJw id (i mfm ,  F(o)
5= =2 ] do et ople e [ aw
) (3.2)
1 . . ) .
CR=-iJ; d(Z)e”bp(e'Q’)R(qz(e’d’), V(eub)), (3.3)
with
in sum rule A

1
p(z)=; 1 /z-0\. (3.4)
“W(Z_l)msumrule B,

and ¢%(z), v(z), and w(z) given by (2.2), (2.3), and
(2.4), respectively.



5 TESTS OF COMPLEX SCALING AND...

The sum rules can be written as

L=Cs+Cgr=C. (3.5)

In evaluating L we effectively have to integrate
W,(v,q?) over a path in the v-g® real plane shown
schematically in Fig. 1. We note that this path is
by no means a fixed-g2 path as in the usual FESR.
The path of integration passes from the lower edge
of the Regge region at x=1, through the resonance
region, and up into the Johnson-Low-Bjorken re-
gion at x=-1.

To evaluate L, we divided the data into four re-
gions: (a) In the resonance region (W=vs <2BeV)
we used a linear interpolation of the 6° and 10°
data? along lines of fixed W. (b) In the scaling re-
gion (W>2BeV and |¢%|>1BeV?) we used the follow-
ing fit to the data for w<12 (see Ref. 2):

1\3 1\* 1\°
qu=2.33< ——> - 2.67 (1— —> +0.91< - —) ,
w w w
1sws 4,
VW,=0.35, 45 w=6 (3.6)
v, =0.369 -0.0033w, 6sw=s12.
(c) In the region W>2BeV, |¢?|<1 BeV?, w<12, we
used the fit?

1\? 1\*
VW, = 0.557 <1 _—;> +2.1978 (1_—,>
w w

1 5
—2.5954 (1 _—,> , 3.7)
w

where

2
m
w'=w- qu

(d) For w>12 and W>2BeV we used the various

(3.8)
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FIG. 1. Path of integration of W, in the v-¢° real
plane.
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Regge fits which are being tested below.

In taking the imaginary part of L the integration
over v’ becomes trivial and we end up with a single
integral over vW, along the path shown in Fig. 1.
The real part of L, however, involves a principal-
value integration over v’. This integral we cut off
at v/, —v,(x) =20 BeV. Increasing this cutoff to
40 BeV produced no change in ReL at the 1% level.

Both the real and imaginary parts of C; were
determined from (3.2) with F,(w’) given by (b) for
w’ <12 and by

lgm 1 ImR(¢?, w’') for w’>12.
@
The integral over w’ was cut off at whax =20 and
did not vary more than 1% as whax was varied from
20 to 40.
The Regge fits we tested were all of the form
given in (2.10) with Regge residues of the form

—mg?
B,(@?) = W a,
. —1g? —q% +m? \\/2
B e ( m, ) P (3.9)
o =M% [(—q2+m? )%/
Bg(q)‘_q2+uz< o, 12

Brp(q?) = -mg%5.

Note that the residue of the fixed pole, Bgp, is
assumed to be linear in g2. The constants «, 8,
¥, 8, m?, and u® for various fits are listed in
Table I.

Fits 1-4 (see Table I) are the “preferred” fits
of Close and Gunion.* They are not exactly fits
but solutions to a certain set of restrictions.
These restrictions are the following:

(i) F?(w) is dominated by three Regge trajec-
tories for w>12. These are the Pomeranchukon
(a=1), the f,~A, (@=13), and an effective back-
ground trajectory with o= -3.

(ii) F#(w) satisfies a finite-energy sum rule
with a J=0 fixed pole having a residue linear in
q?. The coefficient of g2 in the residue of the fixed

TABLE I. Parameters of Regge fits tested.

Fit [ B ¥ [ m m

1 0.12 0.462 4.02 1 0.37 0.22
2 0.06 0.618 4.64 1 0.37 0.22
3 0.05 0.645 4.75 1 0.37 0.22
4 0.07 0.663 3.67 0 0.37 0.22
5 0.17 0.113 3.42 1 0.44 0.44
6a 0.28 0.18 0.0 -0.2 0.5 0.5
6b 0.28 0.18 0.0 -0.2 0.447  0.447
7 0.11  0.68 0.0 -0.42 0.316 0.316
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TABLE II. Results of evaluation of sum rule A with m2=10 BeV?, b=2.5, q,2=1.0 BeV2.
Fit 1 2 3 4 5 6a 6b 7

ImL 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
ImC 0.18 0.17 0.17 0.16 0.14 0.15 0.14 0.17
ImCg -0.01 -0.01 -0.01 -0.02 -0.05 -0.04 -0.04 -0.02
ReL 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
ReC 0.15 0.14 0.14 0.07 0.16 0.15 0.14 0.18
ReCp 0.10 0.09 0.09 0.02 0.10 0.10 0.09 0.13

pole is IV. DISCUSSION AND CONCLUSIONS

R,=6= {(1) (ffts41_3) (3.10) The first point to note from the numbers in the
(fit 4). tables is that all the results for the integrals ReL,

(iii) F?(w) -Fj(w) obeys the quark-charge sum
rule.’

(iv) The neutron fixed pole is also linear in g2
with coefficient

( 0 (fits 1,4)
R,= 2 (fit 2)
? 1 (fit 3).
Fit 5 is the one Close and Gunion find by using a
modified quark charge sum rule® with R,=1 and
R, =0 and the other constraints unchanged.

Fits 6 and 7 are those obtained by Pagels® with
fixed-pole residues as calculated by Elitzur’ using
the FESR. Pagels and Elitzur had fits only for
large ¢®. To get low-¢2 fits from theirs we used
the forms (3.9) and chose p?=m? to give a good fit
to the low-g® Regge region. In both these fits
Bs(@*)=0. Fit 6 corresponds to o,/0,=0.18 and fit
7 to 0,/0,=0.

Table II contains the results for sum rule A
evaluated with m,2=10 BeV?, b=3, and q,2
=|q%(e'®)|=1 BeV?. Table III contains the results
of sum rule B with the same m,?, b, and ¢.2. In
Table IV we show how the evaluation of sum rule
A varies when g2 varies but m,2=10 BeV?, 5=2.5
are kept fixed. Only Regge fit 1 is used in Table
IV. In Table V we give the results of sum rule A
with ¢.2=1 BeV? and m % and b variable, again us-
ing Regge fit 1.

ImL, ReC, and ImC are roughly of the same order
of magnitude as the average value of VW, itself.
We therefore cannot expect them to be correct to
less than 10%, the combined statistical, syste-
matic, and interpolation uncertainty of the scaling
data themselves.

From Table II we see that along the real axis
the integrations over vW, lead to values of ReL and
ImL that are practically independent of the Regge
fit used.

We noted in Sec. II that we expected in sum rule
A that the Regge contribution to the imaginary part
of the integral along the circle will be small. This
is clearly supported by the numbers in Table II.
Note that ImCg, the Regge contribution, is about
10% of the total value of ImC for fits 1-4 and 7.
Further, we see from Table II that for all the fits
ImL=ImC to within 10-20%. The errors are
given as a percentage of the magnitude of L. This
gives us a test of complex scaling alone, and it is
evident that the agreement is as good as can be
expected. The best results are for the cases where
the Regge region makes a small contribution.
Thus, as far as can be learned from sum rule A,
complex scaling, as defined in I for values of | ¢2|
between 1 and 10 BeV?, seems to be as good as
real scaling. Further tests of this concept with
sum rules of the same general type, but which are
independent of the Regge input, are being carried

TABLE III. Results of evaluation of sum rule B with m?=10 BeV?, b =2.5, ¢,2=1.0 BeVZ,

Fit 1 2 3 4 5 6a 6b 7
ImL 0.43 0.42 0.42 0.42 0.43 0.43 0.43 0.44
ImC 0.43 0.41 0.41 0.25 0.41 0.32 0.35 0.48
ImCp 0.31 0.29 0.29 0.13 0.29 0.20 0.23 0.36
ReL 0.09 0.07 0.07 0.09 0.10 0.10 0.11 0.11
ReC 0.08 0.06 0.06 0.08 0.17 0.15 0.16 0.12
ReCp 0.12 0.10 0.10 0.12 0.22 0.19 0.20 0.16
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TABLE IV. Results of evaluation of sum rule A with
my>=10 BeV?, b=2.5, ¢, variable, and using fit 1 only.
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TABLE V. Results of evaluation of sum rule A with
4.*=1.0 BeV?, my? and b variable, and using fit 1 only.

2
q.
(Bev?)  0.25 0.50 0.75 1.00 1.25

ImL 0.20 0.20 0.20 0.20 0.20
ImC 0.18 0.17 0.17 0.18 0.17
ImC, -0.01 -0.01 -0.01 -0.01 -0.01
ReL 0.17 0.17 0.17 0.17 0.17
ReC 0.14 0.14 0.15 0.15 0.11

ReCy 0.03 0.05 0.09 0.10 0.10

my® (Bev?) 10 10 10 20 30

b 2.0 2.5 3.0 2.5 2.5
ImL 019 020 0.19 0.15 0.13
ImC 0.16 018 018 0.13  0.11
ImC, -0.01 -0.01 -0.01 -0.01 -0.00
ReL 0.17 0.17 0.18 0.16 0.14
ReC 0.15 015 013 0.4  0.13

ReCp 0.09 0.10 0.11 0.06 0.04

out.® The preliminary results are positive.

The real part of the integral along the semi-
circle, ReC, receives approximately equal con-
tributions from the Regge part and from the scaling
region (with the exception of fit 4). Again we see
from Table II that for sum rule A, ReL=Re(C to
within about 10% for all fits except fit 4. For fit
4, ReL is more than twice ReC.

Sum rule B is more sensitive to the precise
Regge fit used. As shown in Table III, both ReL
=~ ReC and ImL = ImC are satisfied to within 10%
for Regge fits 1, 2, 3, and 7. For Regge fits 5
and 6b the agreement is only slightly less good.
Regge fit 6a produces a discrepancy of 25%, so the
choice of masses used in fit 6b is preferable. Fit
4 again fails badly.

On the basis of these two sum rules and with the
accuracy of the present data only fit 4 can be con-
clusively ruled out. It is interesting to note here
that this is the only one of the fits above that does
not have a fixed pole. But the important point to
remember is that fit 4, like all the other fits used
here, is a solution of the usual finite-energy sum
rules. The fact that it fails to satisfy the sum
rules A and B of I shows that analyticity in the two
variables v and ¢? can lead to restrictions on Regge
fits that go beyond those obtained from the FESR.

Since complex scaling appears to be a reasonable
hypothesis for 1<|g¢?| <10 BeV?, we varied ¢, to
see if complex scaling can be extended (in some
average sense) to even lower values of |¢2|. From
Table IV we see that as ¢ .2 decreased from 1 BeV?
to 0.25 BeV?, the agreement between the two inte-
grals gradually becomes worse. However, even

for ¢,2=0.25 BeV?, both real and imaginary parts
agree to better that 20% using fit 1. Increasing ¢q.*
to 1.25 BeV? shows that the Regge fit cannot be ex-
pected to work for |g2| >1 and small values of |v|.
(For ¢, in the range studied, |v|=2 BeV when

| 42| =¢,% and it is surprising that the Regge fits
work as well as they do for 0.5<|g%| < 1.0 BeV?2.)

Table V displays the results of varying m? and
b, with ¢.2=1 BeV? and using only Regge fit 1.
With one exception these sum rules all work equal-
ly well. The exception is the case m,?=10 BeV?,
b=3, and there is a clear reason why this case
cannot be expected to work, namely, for these
values of m,? and b the point z=1 falls in the mid-
dle of the resonance region. Consequently, for z
on the unit circle near the point z=1 we cannot ex-
pect the Regge fit for T, to work, and the sum rule
cannot be expected to hold.

In conclusion we would like to emphasize the
following two points. First, it is clear that several
different sum rules of the general type discussed
here should be derived and compared with the data,
in order to make certain that the apparent validity
of complex scaling is not due to the specific forms
of ¥(z) and ¢%(z) chosen in I. This analysis is being
carried out.® Second, a class of sum rules more
sensitive to the Regge region could also be devel-
oped. Such sum rules would not only limit further
the class of allowable Regge fits but also, hope-
fully, would discriminate between fits in which the
sign of the fixed-pole residues are different. This
last point might have to await the availability of
more accurate data.

*Work supported in part by the U. S. Atomic Energy
Commission under Contract No. AT(11-1)-3505.
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Finite-energy sum rules (FESR) with logarithmic terms are formulated in a way amenable
to simple and accurate approximation, thus allowing their convenient use in data fitting with
Regge cuts. It is observed that a typical cut FESR contribution is similar to that of a pole
lying perhaps half a unit lower in the J plane. Therefore p +p’ fits to 7°p — 7% seem to imply
decoupling of the p® P Regge cut from the nonflip amplitude at ¢ =0. This is investigated in

more detail, and its implications are pointed out.

I. INTRODUCTION

Finite-energy sum rules (FESR) are usually
written for amplitudes with assumed power (Regge
pole) asymptotic behavior.! However, now it is
believed that at high energy there are also signifi-
cant Regge-cut (i.e., logarithmic) contributions,?
and so to help in the construction of realistic
phenomenological models it is desirable to gener-
alize the sum rules to include such terms.

Unfortunately this is impossible in closed
form®~® (except in special models®), and the re-
peated numerical evaluations necessary in typical
parameter-search calculations are often prohibi-
tively time consuming.

In this paper we first examine the structure of
FESR’s with logarithmic terms and put them into
a form where a simple approximation can be made
to overcome the time problem, so giving a prac-
tical way to include FESR constraints in data fit-
ting with general types of Regge cuts.

We then observe that in a FESR the simplest
kind of Regge cut behaves like a pole with inter-
cept lower in the J plane by about ; to 3 a unit.
Consequently, for example, some p+p’ models of
7”p—~ 1% may be good approximations to the phys-
ics of a p pole plus a p ® P cut and imply that the
cut essentially decouples at t=0. (We use the
notation A ® B to denote the cut resulting from the
simultaneous exchange of Regge poles A and B in
the ¢ channel.)

The situation is explored in more detail, and
quantitative results are given. We point out the
major implications of a small cut amplitude at

t=0, regarding especially the crossover mecha-
nism and the difference of total cross sections at
high energy, and note the similarity of the situa-
tion in charged-pion photoproduction.

II. SUM RULES

A standard FESR derivation® deals with an am-
plitude F(v) [v=(s—u)/4m] at fixed ¢ or u (sup-
pressed) with the usual analytic properties and
an assumed asymptotic (|v|= N) model form.
Cauchy’s theorem [fc F(v)dv=0] is used, where
the contour C lies along the real axis above the
physical cuts from —N to N and closes with a
semicircle [v|=N in the upper half-plane. Thus
the low-energy amplitude is integrated from - N
to N, and the asymptotic model round the semi-
circle (not to threshold, nor to ). For an ampli-
tude of definite crossing symmetry [F(-v)=+F*(v)]
the left- and right-hand parts of the low-energy
integral can be combined.

A crossing-odd amplitude with Regge-pole
(power) behavior,

F(v) =iy(-iv)®
=iye”im2y%  |y|= N (1)
is then found to obey the FESR

o

1 N
I—Vf ImF(v)dy="y N cosEma . 2)

a+1

A Regge-cut amplitude contains powers of Iny,

and a simple crossing-odd term of the type sug-
gested by current models®~? is



