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We present a systematic study of the problem of reconstructing the scattering matrix from
experimental data. Insufficient data lead to ambiguities; a general technique for finding am-
biguities is given. The cases of isospinless spin-0-spin-2 scattering (two amplitudes) and
pion-nucleon scattering (four amplitudes) are treated in detail. The ambiguities present in
both cases when the R and A parameters are unknown have a profound effect on partial-wave
analysis, leading to confusion and misidentification of resonances. It is shown that only
eight measurements are needed to reconstruct the pion-nucleon amplitudes, rather than nine
as averred by Bilenkii and Ryndin.

I. INTRODUCTION

Because experimental data have been insufficient
to allow an actual measurement of scattering am-
plitudes, physicists have relied on fitting theoret-
ical models to the available data. It is well known

that ambiguities may arise when data are lacking,
but the effects of such ambiguities on model fitting
have been largely ignored. In this paper we at-
tempt a systematic study of how ambiguities arise
and how they affect the reconstruction of the am-
plitude.

To our knowledge, the first description of an
ambiguity was that of Minami. ' Subsequent papers
by Wolfenstein' and by Puzikov, Ryndin, and
Smorodinsky' furthered the analysis of the scat-
tering matrix for processes involving spin, and
somewhat later Bilenkii and Ryndin showed that
the pion-nucleon scattering amplitudes could be
determined unambiguously from nine experimental
quantities. More recently, Daum, Michael, and
Schmid' studied the ambiguity in Regge analysis
of high-energy scattering.

In Sec. II we begin by giving a general treatment
of the question of ambiguities and suggest a tech-
nique for reconstructing the scattering amplitudes.
The specific case of spin-O-spin--, scattering is
treated in Sec. III. It is shown that knowing only
differential cross sections and polarizations
leaves an infinite set of transformations on the
amplitudes which do not alter these data. The gen-
eral effect of such transformations is to change
the partial-wave amplitudes completely, as we
show in some simple cases. The constraint of
unitarity is most easily applied in partial-wave
form; for purely elastic amplitudes, unitarity
rules out all but the Minami ambiguity. When
there is inelasticity, however, the constraint is
much weaker, and the ambiguities may survive.

The four-amplitude case of pion-nucleon scat-
tering is treated in Sec. IV. If only differential
cross sections and polarizations for three pro-
cesses m'p-m'p and w p-m'n are known, the
same ambiguities described in Sec. III are present
in each isospin channel. We show that a unique
solution can be obtained by measuring only two
additional quantities, rather than three as sug-
gested by Bilenkii and Ryndin.

II. GENERAL THEORY OF AMBIGUITIES

Let uh consider a two-body scattering process
described by N invariant amplitudes F . At an
arbitrary scattering angle away from the forward
direction, the available experimental data will
consist of a set of r real values d' for correspond-
ing real quadratic forms of the F,

d' =M'„SF~F8 .
The reality of the d' implies that the M'~ are
Her mitian.

An ambiguity in reconstructing the amplitudes
corresponds to the existence of a transformation
on the F under which ail of the equations (1) are
invariant. The simplest of these is an over-all
phase transformation F -e'~F, showing that we
can measure only the- relative phases of the am-
plitudes. We shall investigate other less trivial
linear and antilinear transformations in this
paper. Clearly, if the data are sufficient to rule
out any such transformation, then a solution, if
one exists, must be unique. Unfortunately, there
are also nonlinear transformations, and because
of them our method cannot provide a general tech-
nique for solving Eq. (t). In many cases, however,
we feel that it may be useful in exposing ambigu-
ities corresponding to linear and antilinear trans-
formations.
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Suppose that one of the data always corresponds
to the differential cross section, and that we
choose the amplitudes in such a way that it corres-
ponds to M'8 =6 8, i.e.,

(2)d' = ~„,r*.r, =g~z. I'.
Requiring that a linear transformation F„-T SFB
conserves Eq. (2) does not imply that T is unitary,
since F is not an arbitrary vector. But any non-
unitary T maintaining (2) must be unitary in the
subspace into which it can map F, so we can con-
sider only unitary transformations. Then an am-
biguity will correspond to the existence of a uni-
tary U which commutes with all of the M, . If H
denotes a Hermitian matrix satisfying

[H, M'] =0

for all i, then it follows that U=e'~" also com-
mutes with the Mi for any y. Consequently the
data cannot distinguish F from

F' = e'~"F .

(3)

(4)

H =h~G~ .
Then Eq. (3) becomes

(6)

where g~„„are the structure constants of SU(N).
It then follows from the independence of the G„
that

(m 'j, g q „q )hq ——R'„q hq ——0, (8)

i.e., that h„ is an eigenvector of the matrix 8',„
=m'„g~„„with zero eigenvalue. [Since h =m' is
a nontrivial solution of Eq. (8), the determinant
of this matrix certainly vanishes. ] If there is a
common null eigenvector h' for all of the R', then
it follows that H =h' G generates a linear ambig-
uity group.

Next let us investigate briefly the antilinear
transformations obtained via F'=A BF8. Once
again we consider only those transformations for
which A is unitary, so that F'*F'=F*F . Then
the effect of such a transformation is given by
M" =A~M'A, where the tilde denotes transposi-
tion. Consequently any A for which

We shall call the group of transformations (4) a
linear ambiguity group.

To determine whether such a group exists, one
must search for an H satisfying Eq. (3). This
can be done systematically using the algebra of
SU(N). We know that since the M' are Hermitian,
they can be expanded as

M' =m) G~,

where G ~ are the generators of SU(N) and m'~ are
real. Similarly we may write

AMiA =M'

defines an antilinear ambiguity. A systematic
generation of such transformations does not ap-
pear possible, but it may be noted that if

ei fk(0~)-a(8)] Mi
&

—e o'8 &

then di is invariant under changing F to

(10)

III. CONSEQUENCES FOR MESON-NUCLEON

SCATTERING

We treat first the simplest case of the scattering
of a spin-0 meson by a spin-& nucleon. The tran-
sition matrix, in the usual form

T=F+iGA o,
is determined by measuring the differential cross
section, polarization, and spin-rotation parame-
ters,

d' = —= I+I'+
I
GI'dr

D CX W

i.e., A 8
= e"' '5 8. It is not possible to say gen-

erally whether such a symmetry will hold for all
M' (or to some set M" equivalent to the original
set) If.an appropriate set of k(n) does exist,
however, then Eq. (11) can be combined with any
available linear ambiguity group to generate an
antilinear ambiguity group.

These considerations prompt the following con-
jectures about solving simultaneous quadratic
equations. Since 2N —1 real numbers are to be
determined, at least 2N -1 measurements are
required. The manipulations involved in solving
the equations are equivalent to converting the data
matrices Mi into a "soluble" set. The latter
should contain N linearly independent diagonal
matrices, yielding solutions for the magnitudes
IF I, plus at least N-1 off-diagonal ones giving
the relative phases g z =g -q8. It is easily seen,
however, that a single measurement determines
only cosy 8 or sing 8, leaving in either case a
sign ambiguity in the phase. To resolve this am-
biguity at least one more measurement is re-
quired, determining some linear combination of
all g 8 and thereby fixing the signs. Consequently
the minimum number of measurements required
is 2N, and we conjecture correspondingly that the
smallest number of linearly independent matrices
Mi which can rule out all of the above transforma-
tions is also 2¹To solve the equations, one finds
N mutually commuting linear combinations of the
M', diagonalizes them, and solves for the magni-
tudes. The remaining N equations may then be
solved manually for the relative phases. '
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d =P—= —2ImF G,
d(x

(12)
d'=ll —=(IFI' —IGI') cos6+2Re(F G) sin6,

d'=A —= —((F(' —(G~') sin6+2Re(F G) cos6,

where 0 is the scattering angle. The matrices
corresponding to d' are clearly

M'=1, M =-cr,
M ' = (rr, cos 6+ rr„sin6),

M4 = (-o, sin 6+ o„cos 6),

where o,- are the Pauli matrices.
In the most common situation only d' and d are

experimentally measured. It follows that a linear
ambiguity group is generated by choosing H = 0„.
d' and d are invariant under

mials, we find that (13) is equivalent to replacing

fr. by

f„'=[2lf. . .+f„,,-]/(2l+I),

f, '=[2(l+l)f„, —f. . .]/(2l+1).
A similar procedure with cp = -6 leads instead to

f„"=[2(l+2)f„,, —f„, ]/(2l+3),
(16)

= [2(l —1)f, , +f. . .]/(2l —1) .
These results can be iterated n times to yield the
transformations corresponding to q =+n8. One
other possibility we have considered is y = ~ sin6,
for some small value of c. A similar procedure
here leads to new partial-wave amplitudes given,
to order ~, by

2l+1 l+2
r+ = r++ (21~1)(21+3)fr+r, - —

2l+3 fr+ .+
r

l
+ 2l+1

-sing coscp G (13)
l+1 l —1fr-(') =fr-+' 2l+ I fr+r —

2.l
—

1 fr-r. -

for any y.' To see the meaning of this ambiguity
it is convenient to transform to new amplitudes

/

1 e+F+ie G
ie@F+e-'eG

for which the data matrices become simply M'

=1,o„o„,0, . Thus

~'= Irf I'+ Igl',

d'= If I' —Igl',

(14)

and the recursion relations for Legendre polyno-

so we can solve for /f /
and /g/, but the phase be-

tween them is completely undetermined.
Furthermore, since Eq. (13) refers only to data

at a single fixed energy and scattering angle, q
can depend arbitrarily on those variables; the
only limitation we impose here (aside from such
trivial ones as continuity, etc. ) is that y(6=0) =0
in order to ensure that the spin-flip amplitude G

vanishes in the forward direction. Considering
cr (6) a,s an arbitrary function has far-reaching ef-
fects on the partial-wave analysis of F(6) and G(6).
For example, we take the simplest case fI() = 6.
Using the customary expansions

F(6)=g[(l+ I)f„+lf, ]P,(cos6),
l

G(6) =p(fr - f„)P'r(cos6),

2l
(2l+ 1)(2l —1)

In contrast to Eqs. (15) and (16), the transforma-
tions (17) allow the partial-wave amplitudes to be
varied continuously.

Equations (15), (16), and (1V) describe the ef-
fects on the partial-wave amplitudes of three
simple choices for the ambiguity q in (13). Be-
fore discussing the consequences of these trans-
formations, let us turn to the antilinear ambigu-
ities present when only differential cross sections
and polarizations are measured. It is easily ver-
ified that 1 and o, satisfy (10) with k(1) —k(2) = rr.

Consequently the data are invariant under F -F*,
G - -G*, which corresponds to the replacement
of fr~ by

f;, = —(f f, + 2 lf,* )/(2 l + 1),

f; = —[2(l+1)f,*, —f,*]/(2l+1).
(18)

In addition, this transformation may be combined
with any linear ambiguity. For example, if Eq.
(16) is applied to the results of Eq. (18), one ob-
tains the well-known Minami transformation

Nf), =-f)&&,,
The same result follows if (18) is applied to the
results of (15).

The constraint of unitarity can now be applied
to these transformations by considering the par-
tial-wave amplitudes. If the f„describe elastic
scattering below the inelastic threshold, they



2744 N. W. DEAN AND P. LE E

must satisfy Im f„=l f„l'. It is then easy to show

that the amplitudes obtained by any of the trans-
formations (15), (16), (17), and (18) violate unitar-
ity; only the Minami transformation (19) survives.
In most partial-wave analyses, however, elastic
unitarity does not hold. If the f„describe elastic
scattering above the inelastic threshold, the
weaker condition Im f„)lf„l' applies, while if
they describe an inelastic process one has only

l f„l(—,'. In either of these cases it is possible for
the transformations to change the amplitudes with-
out violating unitarity. In fact, one can show that
f„', f, ", andf;, are certainly well behaved;
while the unitarity of the others depends on the
inelasticities of the initial f„.

It is tempting to speculate on the relation be-
tween these ambiguities and the many solutions
usually found for the phase shifts at a given en-
ergy. One possibility is that many of these solu-
tions are related by transformations such as those
given above. At the other extreme, it is conceiv-
able that applying these transformations to those
solutions would lead to a plethora (perhaps even a
continuum) of possible solutions. In the latter
case it will be very hard to defend the traditional
"shortest path" techniques of joining phase-shift
analyses at different energies.

The identification of resonances via loops in the
Argand diagram will also be subject to confusion.
Let us suppose, for example, that the f„are the
true partial-wave amplitudes and that there is a
resonance in f~ . If the transformation (15) is
made at all energies, the resulting f„' show twin
resonances in f~, ,'. If (16) is used instead, we
find a resonance in f~„",while the loop appears
inverted in f~, ,", i.e., the resonant energy
would correspond to the bottom of the loop. The
latter behavior in an elastic amplitude would not
be called a resonance. Similar results hold for a
resonance in f~, . The antilinear transformation
(18), on the other hand, will always change a
counterclockwise loop into a clockwise one (and
vice versa), thereby eliminating the resonance

Data on the spin-rotation parameters are needed
in order to avoid these ambiguities. There is no
matrix which commutes with M' and I' or M',
so all of the linear ambiguity groups (except the
trivial one corresponding to the over-all phase)
are removed if d or d is known. To consider
the antilinear ambiguities, it is convenient to
transform to the amplitudes (14). If d' is mea-
sured, the fact that 0„ is symmetric implies that
(10) holds with k(n) -=0, i.e., the data do not dis-
tinguish (f, g) from (f*,g*). Similarly, a mea-
surement of d' only leaves an ambiguity under
(f, g) —(f*, —g*). Both of these transformations
simply reflect an unknown sign in the relative

phase of f and g.

(—v"p) = d'=I A+Cl'+ I&+Dl2,
dQ

P—(w'p) =d = —2Im[(A+C)*(B+D)],
dQ

~ (v p) =&'= IA-cl'+ I& -DI',

P—(v p) =d = —2Im[(A —C)*(B—D)],

(20)

~ (v-p —v'n) =d'=2(lcl'+ IDI'),

P —(v p —v n) =d = —4Im(C*D) .
dQ

The corresponding data matrices are conveniently
written in direct product form, taking F
=(A, B, C, D), as'

M' =(1+r„)31, M' = —(1+ r,)8 v„
M'=(l-r„)~1, M'=-(l-r, )e e„
M'=(1 —r,)S 1, M = —(l-r, )3 e, .

(21)

Since six data d' are insufficient to determine
seven real numbers (four moduli and three
phases), one expects to find an ambiguity group.
Because only 1 and a, occur in the latter part of
the direct products (which corresponds to having
only differential erose sections and polarizations),
it is easily shown that

(o-;o o}
i 0 0 0H=ie
0 0 i 0

(22)

satisfies [H, M'] = 0 for all i. Consequently
exp(i&H) generates a linear ambiguity group By.
explicit expansion, we find

ei(PH

cosy siny 0 0
-siny cosy 0 0

0 0 cosy siny
0 0 -siny cosy

(23)

IV. EXTENSION TO PION-NUCLEON

SCATTERING

Finally we shall consider here the ambiguities
in analyzing the elastic pion-nucleon scattering
amplitudes. Here there are four scalar ampli-
tudes, corresponding to spin flip and nonf lip in
each isospin channel. If we write the transition
operator in the form

f=A+iBA o+Cm 7+iDA. om 7,
where —,'~ =I is the nucleon isospin and m is the
pion isospin, then the available data take the form
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representing an ambiguity which mixes only (A, B)
and (C, D) separately. All of the analysis of Sec.
II is therefore applicable here also, provided that
the same ambiguity transformations are applied
simultaneously in both isospin channels.

Let us note the effect of the transformation (14)
in this case. In terms of

n) (A

et 1T(lQ ) /4 ie(1gg)/2 8

5) D

e eA+ie &e&

ie'A+e'B
e"C+ie ' D

ie~eg+ e teD

(24)

we have M', M', and M' unchanged while v, -a,
in M', M', and M'. (In addition, the explicit 8
dependence is removed from the spin-rotation
parameters. } By linear combination one can then
convert the M' into four diagonal matrices plus
two off-diagonal ones. The former can be solved
for four magnitudes, yielding

Io, I' = —,'(d'+ d' —d'+ d'+ d' —d')

IPI'=-'(d'+d' d5 d' d'+de),

ly I' = l(d'+ d'),

I6 I2 1(d5 dB)

(25)

2 lo I ly Icos@»= —,'(d' —d '- d '+ d'),
2 IP I I6 lcosg„= —,'(d' —d '+ d' -d') .

(26)

The ambiguity group represents the fact that the
phase g» between a and P is completely unknown.
In addition, of course, the antilinear ambiguity
described in Sec. III is present and may be com-
bined with any of the transformations (23). In
fact, none of the M' mix the (n, y) and (P, 6} sub-
spaces, so the antilinear transformations in those
subspaces may be applied independently. That is,
the data are invariant under (o.'py6)- (o.p*y6*) and
(npy6)-(a Py 6) as well as (nP y)-6(n P*y*5*).

The ambiguities present when only these six
data are known, then, may be summarized as
(a) the phase q» between o. and P is completely
free; (b) the signs of q» and qm„ the relative
phases of (a, y) and of (P, 6), are unknown. At
least two more measurements are therefore re-
quired in order to determine all four amplitudes
up to a common phase —one to determine the mag-

while the off-diagonal ones give the phases between
(n, y) and between (P, 6) a,s

nitude of q» (or some function of q»), the other to
fix an independent combination of the three phases.
These data must be chosen carefully, however, in
such a way as to remove the above ambiguities.
For example, two different R measurements,
Rdo/dQ(w'P), will yield two new matrices which
are both symmetric, and therefore the ambiguity
(&Py5) - (a*P*y*6*)will remain. Likewise mea-
suring R and A for a single reaction is insufficient,
since both determine a single phase, without re-
moving the other sign ambiguities. It can be
shown that the data are invariant in that case under
the transformation (aPy5}- (a*,p*e~'~, y*, 5*e2'~)
where g is the phase determined by R and A.

Thus one must choose a combination such as
Ado/dQ(v P) and either Rdo/dQ(v'P) or Ado/
dQ(v'p). The solution obtained by Bilenkii and
Ryndin used all three of these quantities, but it is
not difficult to see that only two are necessary.
Knowing Rdo/dQ(v'P), for example, determines
the magnitude of the phase between (n+y) and
(P+5). Since the magnitudes of q» and q,4 are
also known, this measurement reduces the number
of possible solutions to eight —one for each choice
of the three signs. Four of these solutions would
yield the same Ado/dQ(v'P), but only one will
yield a particular value for Ado/dQ(v p). Thus
the latter measurement will yield a unique solu-
tion.

V. CONCLUSIONS

We have shown how insufficient data —particu-
larly the lack of knowledge of spin-rotation pa-
rameters -produce ambiguity in the determination
of the scattering amplitudes. The consequences
of such ambiguities are particularly important in
partial-wave analysis. It is ordinarily true that
direct fitting of differential cross-section and
polarization data produces a large number of pos-
sible phase-shift solutions. Ambiguity transfor-
mations such as (15), (16), (17), (18), and (19)
seem likely to increase that large number still
significantly further. With such an abundance of
possible solutions, the need for additional theoret-
ical input to choose the correct one becomes acute.

For example, the use of dispersion relations for
the partial-wave amplitudes, the requirement that
high partial waves approach the Born approxima-
tion, and other similar ideas have frequently been
used to distinguish the true phase shifts. Energy-
independent theoretical constraints are clearly
preferable for this purpose, since they will actu-
ally remove some of the ambiguity, whereas
energy-dependent techniques will only relate solu-
tions at neighboring energies. In the pion-nucleon
phase-shift analysis of Bareyre et al. ,

' for one
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example among many, the data at each energy
were fitted with essentially no such assumptions.
"Shortest-path" techniques were then used to
choose the correct solution at each energy on the
basis of the smoothest energy variation. But sup-
pose that applying our ambiguity transformations
would, say, double the number of possible solu-
tions at each energy. There is no compelling rea-
son to believe that the increased flexibility could
not lead to a completely different shortest-path
solution.

In summary, these results indicate that phase-
shift analyses performed without spin-rotation
parameter data or fixed-energy theoretical con-
straints to eliminate ambiguities may not be

trustworthy. The use of energy-smoothness cri-
teria in this case is questionable unless all of the
ambiguity-related solutions are included at each
energy. Resonances found only in such an analy-
sis, without corroborating evidence in mass plots,
total cross sections, etc. , should therefore be
viewed with some suspicion.
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A simple method for constructing an absorptive (complex) separable potential directly
from the ~N phase shifts and absorption parameters is presented. This permits the transi-
tion matrix to be calculated both on and off the energy shell as required in the calculation of
the ~-nucleus optical potential. The solution of the inverse scattering problem presented
here is an extension of a previous solution to include absorption, when the phase shifts are
complex, and relativistic kinematics. The potentials for all S- and P-wave xN eigenchan-
nels are constructed and displayed. The construction of a complex separable potential is
also applicable to other systems such as NN, Jt N, and KN.

I. INTRODUCTION

Interest in pion-nucleus scattering is being
stimulated by the advent of meson factories. It
is hoped that the pion provides a useful, addition-
al probe of nuclei provided one can extract nuclear-
structure information with a reliable pion-nucleus
scattering theory. ' Various descriptions of pion-

nucleus scattering have been suggested and appli-
cations near the 3-3 resonance region have been
qualitatively successful. "A basic ingredient of
these theories is the underlying pion nucleon in-
teraction, which is, however, not completely
known.

In this paper, a simple phenomenological model
of the pion-nucleon interaction is presented. A


