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make about fluxes near the ends of phase space,
it should be a useful guide for estimating yields
at NAL and lSR. As data become available, our

hypotheses should provide a useful framework
within which to assess significance of results.

*Work performed under the auspices of the U. S.
Atomic Energy Commission.
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Linear combinations of 7' differential cross sections and polarizations are used to isolate
the I„=2 and I„=& exchange amplitudes directly from data. For I„=2 exchange the cross
section has a zero at u =- 0.15 (GeV/c)2 and the polarization becomes large and negative for
~u~& 0.25 (Gev/c)t. Our phenomenological analysis indicates that in the dip region the I„=z'
amplitude is inconsistent with appreciable secondary trajectories or absorptive corrections.
For I„=2 exchange we infer that the imaginary s-channel helicity-Qip amplitude has a zero
near u =- 0.15 (GeV/c), consistent with peripherality for ~ exchange. We also derive a
sum rule relating the m.N differential cross sections at 180 to the Regge-trajectory differ-
ence Q g —(x~.

I. INTRODUCTION

The experimental structure of high-energy mN

differential cross sections' and polarizations' near
the backward direction has resulted in a puzzling
phenomenological situation. ' When the fixed-u dip

was observed at u =-0.15 (GeV/c)' in s'p backward
scattering, it was first presumed to be due to an
amplitude zero of N exchange at the a = -2 wrong-
signature-nonsense point. Subsequent measure-
ments of m p —w'n exhibited a fixed-u dip at u
= -0.25 (GeV/c)'. This called into question the
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G—=G„l+G, m,

where l and m are orthogonal unit vectors. The
differential cross-section and polarization ex-
pressions are given by

o—= —=5* G,
dQ

(2)

Po = i(G*x5) n,
where

(3)

n=l xm.
The behavior of the helicity amplitudes near cos8
=-1 is

C„-(u, —u)'"

G, -1,
(4)

where

u, =- (M' —g ')'/s .
The xN amplitudes are decomposed according to
u -channel isospin as

dominance of the N trajectory, and models in-
volving an N„contribution were suggested. Fol-
lowing these developments absorptive and fixed-
cut models were suggested as alternative explana-
tions of the differential cross-section data. In
spite of this proliferation of suggested possibilities
none of the existing Regge-pole or -cut fits4 came
close to describing recent measurements of polar-
ization in m+p backward scattering. ' It is there-
fore imperative to determine the features of u-
channel exchange amplitudes needed for a success-
ful description of the scattering data in order to
make progress in understanding the nature of the
dynamics.

In this paper we show that a surprising amount
of information about the u -channel exchange ampli-
tudes can be deduced directly from the differential
cross-section and polarization data without the
need of specific model assumptions. The differen-
tial cross-section contribution due to I„=& ex-
change can be isolated from elastic and charge-
exchange cross sections. The polarization due to
interference of I„=& exchange with itself can be
bounded from triangular isospin inequalities.
Combinations of polarized and unpolarized differ-
ential. cross sections can be used to study inter-

1ference between I„= 2 and I„=-', exchanges. Fol-
lowing this model-independent approach we reach
several general conclusions about the baryon ex-
change amplitudes.

Our analysis is presented in terms of s-channel
helicity amplitudes Q+, and G, . We introduce a
vector G in helicity space,

(w-p —w-p),

(w p- w'n), G, =-', W2(N —&),

(w'p- w'p), G, =-,'(2N+&) .
From Eqs. (2} and (5) we can write

o =[ Zf'=cr~,

oo =
9 (o» —2D) + 9o

o, =-,'(a„+D}+',o-
where

D = 2(N* ~ 4+ 4* ~ N) .

For polarizations we can similarly write

P o =id, *xA n,

P,o, =-,'P o +'-, X,
where

X= 2i (7*xN+ N*x &) ~ n +P~„,
P&o& = iN~xN n.

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

The defined quantities v„, D, and X can be deter-
mined from experimental data by the inverse re-
lations

o„=—,'[3(o, +o,) —cr ],
D=-,'(o, —2cr, +—',o),
X= e(9P~o, -P o ) .

(15)

(16)

(17)

Equations (6)-(17) form the basis for our inter-
pretation of the data

II. N-EXCHANGE CROSS SECTION

The I = ~ contribution to the differential cross
sections at 6 GeV/c obtained from Eq. (15) is
shown in Fig. 1. The data indicate that a nearly
complete zero

~ NP occurs at u = -0.15 (GeV/c)'.
This means that the real and imaginary parts of
both helicity amplitudes vanish at u = -0.15
(GeV/c)'. A wrong-signature-nonsense zero of
the N amplitude is expected at this location if an
N Regge pole is the dominant exchange. A total
zero in

~ NP would not be anticipated in strong-
Regge-cut absorption models, fixed-cut models,
or geometric peripheral models. The extent to
which the zero appears in o„also places a severe
limit on any contributions from Ny exchange. '

The order of the zero in o„can be inferred from
simple fits to the data in the vicinity of u = -0.15 in
units of (GeV/c)' with a functional dependence o„
=(u + 0.15)'f(u). A quadratic zero (k =2) agrees
well with the structure in o„whereas a quartic
zero (k =4) is not compatible with the data.
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&N = —0 4+u (18)

Results for o» at 10 GeV/c look very similar to
the 6-GeV/c results in Fig. 1, showing the same
zero structure at u = -0.15 (GeV/c}'. An effective
Regge trajectory for INI2 can be calculated from
the data at these two energies. We find an effec-
tive trajectory

which agrees well with the usual N trajectory.

III. N-EXCHANGE POLARIZATION

The polarization P„ in Eq. (14) due to interfer-
ence of the I„=& exchange amplitude with itself
can be bounded from an isospin inequality written
for the combination N, + + iN+ .' We find the fol-
lowing restrictive bounds:

1 o, 1/2 1/2 2 1 1/2 1/2 2
—3 —'(1+P, ) — =(1+P ) —1&P»& 1-— 3 —'(1 P, )-—=(1 P)-

+N +N 4 +N
(19)
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For momentum transfers outside the vicinity of
the u = -0.15 (GeV/c)' dip, a «o» and o, = '-, o»
and we obtain the result

PN =P+ (20)

o. =a+ha+cpu . (21)

A v u term in the trajectory does not alter the ef-
fective energy dependence of the differential cross
section. " For a small coefficient c in Eq. (21}
the wrong-signature-nonsense dip in vN at u
= -0.15 (GeV/c)' will not be appreciably filled in.
The polarization for P„ from Eq. (21}is"

from Eq. (19). Since the measured v'p polariza. —

tion' is large and negative for IuI & 0.3 (GeV/c)'
(e.g. , atu =-0.48, P, =-0.65+0.09), the polariza-
tion from I„= 2 exchange is also large and negative.
In Fig. 2, experimental bounds on PN from the iso-
spin inequality of Eq. (19) are shown.

A plausible interpretation of the polarization
from the I„=& exchange is the existence of a Wu

term in the N„Regge trajectory
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In order to shift the odd parity partners of the N
trajectory to higher mass values, the coefficient c
must be positive. The corresponding polarization
PN is then negative. For c =0.25 the predicted po-
larization falls within the allowed corridor for PN,
as illustrated in Fig. 2.

The polarization PN enters in the quantity X of
Eqs. (13) and (17}. We can write X as

X=-Im(Z*xN) n+P»o». (23)

The structure of X in Fig. 1 is similar to ON, with
opposite sign. This reinforces our supposition that
P„ falls monotonically with increasing IuI to a
rather large negative value. The Im(Z*xN} term
in Eq. (23) is presumably a minor perturbation on
the contribution from PNvN. Assuming this is the
case, we expect P, =P, .

FIG. 1. Experimental data on ~N backward scattering
at 6 GeV/c. (a) Measured differential cross sections
0+ 0'p 0' . (b) I„=2 differential cross sections ON. (c)
Interference term D [cf. Eqs. (10) and (16) of text]. (d)
Interference term X [cf. Egs. (13) and (17) of textJ.

IV. REGGE PHASE RELATION AT 180

The quantity D in Eqs. (10}and (16) is a measure
of the projection of the b amplitude on the N am-
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due to (o& —2D) in oo is suppressed relative to that
arising from 4(crg+D) in o, . Consequently the
addition of the smoothly falling v terms causes
the "effective" dip location to be shifted farther
out in ~u[ for o, than for o, . The failure of con-
ventional N and b.~ Regge-pole fits to correctly
explain the separation of the o, and 0, dips can be
traced to the linear zero in D at u = -0.15 (GeV/c)'
in those parametrizations (corresponding to the
absence of a zero in Imn, ).

VI. 6-EXCHANGE POLARIZATION

The m p polarized differential cross section' re-
mains positive in the vicinity of u = -0.15 (GeV/c) .
Since Im A, vanishes at u = -0.15 (GeV/c)', Red,
must be nonzero there. The observed zero in P
at u = -0.4 (GeV/c)' can arise from either (i) a
180' phase difference of d „and 6, or (ii} a zero
of b „or 4, in both real and imaginary parts.
The zero of D at u = -0.7 (GeV/c}' seen in Fig. 1
is probably of the same origin as the zero in P
at u = -0.4 (GeV/c)'.

pendence of v~ agrees well with the N trajectory.
(iii) P„ is large and negative for )u[&0.25

(GeV/c)'. The data are suggestive of the predicted
polarization from a small v u term in the N tra-
jectory.

(iv} A relation among the o „o„and o cross
sections at 180' follows from b, z and N Regge
phases for the helicity-flip amplitude. For
e~- a.N

=
& the relation agrees with the data.

(v) Imh, has a linear zero at u = -0.15 (GeV/c)',
consistent with a peripheral character. Re4, 10
near this u value.

(vi) The separation of the fixed-u dip locations
in 0, and a, is easily understood in terms of the
linear zeros of ImN, and Imh, at u = -0.15
(GeV/c) and the smoothly falling o differential
cross section.

(vii) The failure of previous N and 6, Regge-
pole fits to the pN backward cross sections can be
attributed to an incorrect Im4, parametrization.

A quantitative study of the exchange amplitudes
following the approach of this paper is in progress.

VII. SUMMARY

From a direct analysis of the mN backward scat-
tering data we find the following conclusions about
the baryon exchange amplitudes":

(i) o„has a quadratic zero at u = -0.15 (GeV/c)',
consistent with the wrong-signature-nonsense zero'
of the N~ Regge pole at e=-z.

(ii) The effective trajectory from the energy de-
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