make about fluxes near the ends of phase space, it should be a useful guide for estimating yields at NAL and ISR. As data become available, our hypotheses should provide a useful framework within which to assess significance of results.

*Work performed under the auspices of the U. S. Atomic Energy Commission.

¹D. Gordon and G. Veneziano, Phys. Rev. D <u>3</u>, 2116 (1971); M. Virasoro, *ibid.* <u>3</u>, 2834 (1971); C. DeTar, K. Kang, C.-I Tan, and J. Weis, *ibid.* <u>4</u>, 425 (1971); K. Biebl, D. Bebel, and D. Ebert, Berlin University report, 1971 (unpublished).

²R. C. Arnold, Argonne Report No. ANL/HEP 7116 (unpublished).

³For a review, consult E. L. Berger in *Proceedings* of the Colloquium on Multiparticle Dynamics, University of Helsinki, 1971, edited by E. Byckling, K. Kajantie, H. Satz, and J. Tuonminiemi (Univ. of Helsinki Press, Helsinki, 1971).

⁴R. Hagedorn, Nucl. Phys. <u>B24</u>, 93 (1970).

⁵R. C. Arnold and S. Fenster, Argonne Report No. ANL/HEP 7122 (unpublished).

⁶L. van Hove, Phys. Reports <u>1C</u>, 347 (1971). This article contains a good discussion of kinematics and terminology. In our paper, E and p_L are energy and longitudinal momentum of the produced hadron; $x = 2p_L/\sqrt{s}$, if p_L is measured in the c.m. frame.

⁷A. H. Mueller, Phys. Rev. D <u>2</u>, 2963 (1970).

⁸H. D. I. Abarbanel, Phys. Rev. D <u>3</u>, 2227 (1971). ⁹I. Drummond, P. Landshoff, and W. Zakrzewski, Nucl. Phys. <u>B11</u>, 383 (1969). Analyticity arguments developed by Drummond *et al*. apply specifically to p_T^2 dependence of the two-Reggeon one-particle vertex. The discussion may be generalized and applied to p_T^2 dependence of the discontinuity of the two-Reggeon two-particle situation discussed in the present work. E.L.B. is grateful to P. Landshoff for a discussion of this point.

¹⁰For an exposition of this viewpoint, see E. L. Berger, in *Phenomenology in Particle Physics*, 1971, edited by C. B. Chiu, G. C. Fox, and A. J. G. Hey (Caltech Press, Pasadena, Calif., 1971).

¹¹W. R. Frazer, in *Phenomenology in Particle Physics*, 1971, Ref. 10.

¹²A. Pignotti, in Argonne Symposium on High Energy Interactions and Multiparticle Production, 1970, ANL Report No. ANL/HEP 7107 (unpublished).

¹³C. W. Akerlof et al., Phys. Rev. D 3, 645 (1971).

 $^{14}\mathrm{J.~V.}$ Allaby et al., CERN Report No. 70-12 (unpublished).

¹⁵L. G. Ratner *et al.*, Phys. Rev. Letters <u>27</u>, 68 (1971). ¹⁶E. Yen and E. L. Berger, Phys. Rev. Letters <u>24</u>, 695 (1970).

¹⁷M. Abolins *et al.*, Phys. Rev. Letters 25, 126 (1970).

PHYSICAL REVIEW D

VOLUME 5, NUMBER 11

1 JUNE 1972

Separation of N and Δ Exchanges in πN Scattering and Deduction of Amplitude Zeros*

V. Barger[†] and M. G. Olsson

Physics Department, University of Wisconsin, Madison, Wisconsin 53706 (Received 17 January 1972)

Linear combinations of πN differential cross sections and polarizations are used to isolate the $I_u = \frac{1}{2}$ and $I_u = \frac{3}{2}$ exchange amplitudes directly from data. For $I_u = \frac{1}{2}$ exchange the cross section has a zero at u = -0.15 (GeV/c)² and the polarization becomes large and negative for |u| > 0.25 (GeV/c)². Our phenomenological analysis indicates that in the dip region the $I_u = \frac{1}{2}$ amplitude is inconsistent with appreciable secondary trajectories or absorptive corrections. For $I_u = \frac{3}{2}$ exchange we infer that the imaginary s-channel helicity-flip amplitude has a zero near u = -0.15 (GeV/c)², consistent with peripherality for Δ exchange. We also derive a sum rule relating the πN differential cross sections at 180° to the Regge-trajectory difference $\alpha_{\Delta} - \alpha_N$.

I. INTRODUCTION

The experimental structure of high-energy πN differential cross sections¹ and polarizations² near the backward direction has resulted in a puzzling phenomenological situation.³ When the fixed-*u* dip was observed at u = -0.15 (GeV/c)² in $\pi^+ p$ backward scattering, it was first presumed to be due to an amplitude zero of N_{α} exchange at the $\alpha = -\frac{1}{2}$ wrongsignature-nonsense point. Subsequent measurements of $\pi^- p \to \pi^0 n$ exhibited a fixed-*u* dip at *u* = -0.25 (GeV/c)². This called into question the dominance of the N_{α} trajectory, and models involving an N_{γ} contribution were suggested. Following these developments absorptive and fixedcut models were suggested as alternative explanations of the differential cross-section data. In spite of this proliferation of suggested possibilities none of the existing Regge-pole or -cut fits⁴ came close to describing recent measurements of polarization in $\pi^{+}p$ backward scattering.² It is therefore imperative to determine the features of uchannel exchange amplitudes needed for a successful description of the scattering data in order to make progress in understanding the nature of the dynamics.

In this paper we show that a surprising amount of information about the *u*-channel exchange amplitudes can be deduced directly from the differential cross-section and polarization data without the need of specific model assumptions. The differential cross-section contribution due to $I_{u} = \frac{1}{2} \exp -\frac{1}{2} \exp -\frac{1}{2$ change can be isolated from elastic and chargeexchange cross sections. The polarization due to interference of $I_{\mu} = \frac{1}{2}$ exchange with itself can be bounded from triangular isospin inequalities. Combinations of polarized and unpolarized differential cross sections can be used to study interference between $I_{\mu} = \frac{1}{2}$ and $I_{\mu} = \frac{3}{2}$ exchanges. Following this model-independent approach we reach several general conclusions about the baryon exchange amplitudes.

Our analysis is presented in terms of s-channel helicity amplitudes G_{++} and G_{+-} . We introduce a vector \vec{G} in helicity space,

$$\vec{\mathbf{G}} \equiv \boldsymbol{G}_{++} \hat{\boldsymbol{l}} + \boldsymbol{G}_{+-} \hat{\boldsymbol{m}} , \qquad (1)$$

where \hat{l} and \hat{m} are orthogonal unit vectors. The differential cross-section and polarization expressions are given by

$$\sigma \equiv \frac{d\sigma}{du} = \vec{G} * \cdot \vec{G} , \qquad (2)$$

$$P\sigma = i(\vec{\mathbf{G}}^* \times \vec{\mathbf{G}}) \cdot \hat{n}, \qquad (3)$$

where

$$\hat{n} = \hat{l} \times \hat{m}$$
 .

The behavior of the helicity amplitudes near $\cos \theta = -1$ is

$$G_{++} \sim (u_0 - u)^{1/2},$$
 (4)
 $G_{+-} \sim 1,$

where

$$u_0 \equiv (M^2 - \mu^2)^2 / s$$

The πN amplitudes are decomposed according to u-channel isospin as

$$(\pi^- p \to \pi^- p), \quad \vec{\mathbf{G}}_- = \vec{\Delta},$$

$$(\pi^- p \to \pi^0 n), \quad \vec{\mathbf{G}}_0 = \frac{1}{3}\sqrt{2} (\vec{\mathbf{N}} - \vec{\Delta}),$$

$$(\pi^+ p \to \pi^+ p), \quad \vec{\mathbf{G}}_+ = \frac{1}{3}(2\vec{\mathbf{N}} + \vec{\Delta}).$$

$$(5)$$

From Eqs. (2) and (5) we can write

$$\sigma_{-} = |\vec{\Delta}|^2 = \sigma_{\Delta} , \qquad (6)$$

$$\sigma_{0} = \frac{2}{9} (\sigma_{N} - 2D) + \frac{2}{9} \sigma_{-} , \qquad (7)$$

$$\sigma_{+} = \frac{4}{9} (\sigma_{N} + D) + \frac{1}{9} \sigma_{-} , \qquad (8)$$

where

$$\sigma_N = |\vec{\mathbf{N}}|^2 \,, \tag{9}$$

$$D = \frac{1}{2} (\vec{\mathbf{N}}^* \cdot \vec{\Delta} + \vec{\Delta}^* \cdot \vec{\mathbf{N}}) .$$
 (10)

For polarizations we can similarly write

$$P_{\sigma} = i\vec{\Delta} * \times \vec{\Delta} \cdot \hat{n}, \qquad (11)$$

$$P_{+}\sigma_{+} = \frac{1}{9}P_{-}\sigma_{-} + \frac{4}{9}X, \qquad (12)$$

where

$$X = \frac{1}{2}i(\vec{\Delta}^* \times \vec{N} + \vec{N}^* \times \vec{\Delta}) \cdot \hat{n} + P_N \sigma_N, \qquad (13)$$

$$P_{\mathbf{N}}\sigma_{\mathbf{N}} = i\,\vec{\mathbf{N}}^{*}\times\vec{\mathbf{N}}\cdot\hat{n}\;. \tag{14}$$

The defined quantities σ_N , *D*, and *X* can be determined from experimental data by the inverse relations

$$\sigma_{N} = \frac{1}{2} [3(\sigma_{+} + \sigma_{0}) - \sigma_{-}], \qquad (15)$$

$$D = \frac{3}{4} (\sigma_{+} - 2\sigma_{0} + \frac{1}{3}\sigma), \qquad (16)$$

$$X = \frac{1}{4}(9P,\sigma, -P,\sigma). \tag{17}$$

Equations (6)-(17) form the basis for our interpretation of the data.

II. N-EXCHANGE CROSS SECTION

The $I_u = \frac{1}{2}$ contribution to the differential cross sections at 6 GeV/c obtained from Eq. (15) is shown in Fig. 1. The data indicate that a nearly complete zero $|\vec{\mathbf{N}}|^2$ occurs at u = -0.15 (GeV/c)². This means that the real and imaginary parts of both helicity amplitudes vanish at u = -0.15(GeV/c)². A wrong-signature-nonsense zero of the $\vec{\mathbf{N}}$ amplitude is expected at this location if an N_{α} Regge pole is the dominant exchange. A total zero in $|\vec{\mathbf{N}}|^2$ would not be anticipated in strong-Regge-cut absorption models, fixed-cut models, or geometric peripheral models. The extent to which the zero appears in σ_N also places a severe limit on any contributions from N_{γ} exchange.⁵

The order of the zero in σ_N can be inferred from simple fits to the data in the vicinity of u = -0.15 in units of $(\text{GeV}/c)^2$ with a functional dependence σ_N $= (u + 0.15)^k f(u)$. A quadratic zero (k=2) agrees well with the structure in σ_N whereas a quartic zero (k=4) is not compatible with the data. Results for σ_N at 10 GeV/c look very similar to the 6-GeV/c results in Fig. 1, showing the same zero structure at u = -0.15 (GeV/c)². An effective Regge trajectory for $|\vec{N}|^2$ can be calculated from the data at these two energies. We find an effective trajectory

$$\alpha_N = -0.4 + u \tag{18}$$

which agrees well with the usual N_{α} trajectory.

III. N-EXCHANGE POLARIZATION

The polarization P_N in Eq. (14) due to interference of the $I_u = \frac{1}{2}$ exchange amplitude with itself can be bounded from an isospin inequality written for the combination $N_{++} \pm iN_{+-}$.⁶ We find the following restrictive bounds:

$$\frac{1}{4} \left[3 \left(\frac{\sigma_{+}}{\sigma_{N}} (1+P_{+}) \right)^{1/2} - \left(\frac{\sigma_{-}}{\sigma_{N}} (1+P_{-}) \right)^{1/2} \right]^{2} - 1 \le P_{N} \le 1 - \frac{1}{4} \left[3 \left(\frac{\sigma_{+}}{\sigma_{N}} (1-P_{+}) \right)^{1/2} - \left(\frac{\sigma_{-}}{\sigma_{N}} (1-P_{-}) \right)^{1/2} \right]^{2} \right]^{2}$$
(19)

For momentum transfers outside the vicinity of the $u \simeq -0.15$ (GeV/c)² dip, $\sigma_{-} \ll \sigma_{N}$ and $\sigma_{+} \simeq \frac{4}{9} \sigma_{N}$ and we obtain the result

FIG. 1. Experimental data on πN backward scattering at 6 GeV/c. (a) Measured differential cross sections $\sigma_+, \sigma_0, \sigma_-$. (b) $I_u = \frac{1}{2}$ differential cross sections σ_N . (c) Interference term D [cf. Eqs. (10) and (16) of text]. (d) Interference term X [cf. Eqs. (13) and (17) of text].

$$P_N \simeq P_+ \tag{20}$$

from Eq. (19). Since the measured $\pi^+ p$ polarization² is large and negative for |u| > 0.3 (GeV/c)² (e.g., at u = -0.48, $P_+ = -0.65 \pm 0.09$), the polarization from $I_u = \frac{1}{2}$ exchange is also large and negative. In Fig. 2, experimental bounds on P_N from the isospin inequality of Eq. (19) are shown.

A plausible interpretation of the polarization from the $I_u = \frac{1}{2}$ exchange is the existence of a \sqrt{u} term in the N_{α} Regge trajectory

$$\alpha = a + b u + c \sqrt{u} \quad . \tag{21}$$

A \sqrt{u} term in the trajectory does not alter the effective energy dependence of the differential cross section.^{7,8} For a small coefficient *c* in Eq. (21) the wrong-signature-nonsense dip in σ_N at $u = -0.15 \, (\text{GeV}/c)^2$ will not be appreciably filled in. The polarization for P_N from Eq. (21) is^{7,8}

$$P_{N} = -\left(\frac{u - u_{0}}{u}\right)^{1/2} \tanh(c\pi\sqrt{-u}) .$$
 (22)

In order to shift the odd parity partners of the N_{α} trajectory to higher mass values, the coefficient c must be positive. The corresponding polarization P_N is then negative. For c=0.25 the predicted polarization falls within the allowed corridor for P_N , as illustrated in Fig. 2.

The polarization P_N enters in the quantity X of Eqs. (13) and (17). We can write X as

$$K = -\mathrm{Im}(\vec{\Delta}^* \times \vec{N}) \cdot \hat{n} + P_N \sigma_N .$$
⁽²³⁾

The structure of X in Fig. 1 is similar to σ_N , with opposite sign. This reinforces our supposition that P_N falls monotonically with increasing |u| to a rather large negative value. The $\text{Im}(\vec{\Delta}^* \times \vec{N})$ term in Eq. (23) is presumably a minor perturbation on the contribution from $P_N \sigma_N$. Assuming this is the case, we expect $P_0 \simeq P_+$.

IV. REGGE PHASE RELATION AT 180°

The quantity D in Eqs. (10) and (16) is a measure of the projection of the $\vec{\Delta}$ amplitude on the \vec{N} am-

FIG. 2. πN polarization for backward angles at 6 GeV/c. (a) Isospin bounds on the $I_u = \frac{1}{2}$ polarization P_N . (b) Predicted $I_u = \frac{1}{2}$ polarization with an N_α trajectory of the form $\alpha = a + bu + 0.25\sqrt{u}$.

plitude in helicity space. At the backward direction the helicity-nonflip amplitude vanishes according to Eq. (4) and D is given by

$$D(u_0) = \operatorname{Re}(N_{+-}^* \Delta_{+-}).$$
(24)

With a Regge phase representation

$$N_{+-} = -|N_{+-}| e^{-(i\pi/2)(\alpha_N - 1/2)},$$

$$\Delta_{+-} = i |\Delta_{+-}| e^{-(i\pi/2)(\alpha_\Delta - 1/2)}$$
(25)

the result in Eq. (24) can be expressed as

$$D(u_0) = (\sigma_N \sigma_-)^{1/2} \sin \frac{1}{2} \pi (\alpha_A - \alpha_N) .$$
 (26)

Combining Eqs. (16) and (26) we obtain the Regge phase sum rule

$$\sin\frac{1}{2}\pi(\alpha_{\Delta} - \alpha_{N}) = \frac{\frac{3}{4}(\sigma_{+} - 2\sigma_{0} + \frac{1}{3}\sigma_{-})}{(\sigma_{N}\sigma_{-})^{1/2}}$$
(27)

at $u = u_0$. In either Regge-pole or Regge-cut models we expect the phases in Eq. (27) to be correctly specified at $u = u_0$ by the Δ_{δ} and N_{α} trajectories, for which

$$\alpha_{\Delta} - \alpha_{N} \simeq \frac{1}{2},$$

$$\sin \frac{1}{2}\pi (\alpha_{\Delta} - \alpha_{N}) \simeq 0.7.$$
(28)

Calculations of the right-hand side of Eq. (27) from the differential cross-section data at 180° give

$$0.70 \pm 0.2$$
 at 6 GeV/c, (29)
 0.78 ± 0.3 at 10 GeV/c,

in good agreement with the value of the left-hand side of Eq. (27) in Eq. (28).

V. $N-\Delta$ INTERFERENCE

The experimental form of D obtained from Eq. (16) is shown in Fig. 1. At both 6 and 10 GeV/c this quantity also exhibits a quadratic zero at $u \simeq -0.15$ (GeV/c)² similar to σ_N . The dip location is sufficiently near to the backward direction that helicity-flip amplitudes should dominate there. Hence we can still approximate D by Eq. (24) in the vicinity of the dip,⁹

$$D \simeq \operatorname{Re}N_{+-}\operatorname{Re}\Delta_{+-} + \operatorname{Im}N_{+-}\operatorname{Im}\Delta_{+-}.$$
 (30)

Given that σ_N is explained by a N_{α} Regge-pole amplitude, the structure of *D* provides information on the behavior of the Δ helicity-flip contribution. For N_{α} exchange, $\text{Im} N_{+-}$ has a linear zero and $\text{Re}N_{+-}$ a quadratic zero at the dip. To produce the quadratic zero in *D*, $\text{Im} \Delta_{+-}$ must then have a linear zero. This structure in $\text{Im} \Delta_{+-}$ is similar to a Bessel function $J_0(R(u_0 - u)^{1/2})$ with $R \simeq 1$ F. Such peripheral behavior of the imaginary part of the Δ_{+-} exchange amplitude is a natural consequence of duality, due to the fact that the leading direct-channel resonances are peripheral.¹⁰

The displacement of the dip location from $u = -0.15 (\text{GeV}/c)^2$ in σ_+ to $u = -0.25 (\text{GeV}/c)^2$ in σ_0 is easily explained in terms of the similarity in structure of D and σ_N using Eqs. (7) and (8). Since D has the same sign and shape as σ_N , the structure

v.

due to $(\sigma_N - 2D)$ in σ_0 is suppressed relative to that arising from $4(\sigma_N + D)$ in σ_+ . Consequently the addition of the smoothly falling σ_- terms causes the "effective" dip location to be shifted farther out in |u| for σ_0 than for σ_+ . The failure of conventional N_{α} and Δ_{δ} Regge-pole fits to correctly explain the separation of the σ_+ and σ_0 dips can be traced to the linear zero in D at u = -0.15 (GeV/c)² in those parametrizations (corresponding to the absence of a zero in Im Δ_{+-}).

VI. Δ -EXCHANGE POLARIZATION

The $\pi^- p$ polarized differential cross section² remains positive in the vicinity of u = -0.15 (GeV/c)². Since Im Δ_{+-} vanishes at u = -0.15 (GeV/c)², Re Δ_{+-} must be nonzero there. The observed zero in $P_$ at $u \simeq -0.4$ (GeV/c)² can arise from either (i) a 180° phase difference of Δ_{++} and Δ_{+-} or (ii) a zero of Δ_{++} or Δ_{+-} in both real and imaginary parts. The zero of D at $u \simeq -0.7$ (GeV/c)² seen in Fig. 1 is probably of the same origin as the zero in $P_$ at $u \simeq -0.4$ (GeV/c)².

VII. SUMMARY

From a direct analysis of the πN backward scattering data we find the following conclusions about the baryon exchange amplitudes¹¹:

(i) σ_N has a quadratic zero at $u \simeq -0.15$ (GeV/c)², consistent with the wrong-signature-nonsense zero⁵ of the N_{α} Regge pole at $\alpha = -\frac{1}{2}$.

(ii) The effective trajectory from the energy de-

pendence of σ_N agrees well with the N_{α} trajectory. (iii) P_N is large and negative for |u| > 0.25

 $(\text{GeV}/c)^2$. The data are suggestive of the predicted polarization from a small \sqrt{u} term in the N_{α} trajectory.

(iv) A relation among the σ_+ , σ_0 , and σ_- cross sections at 180° follows from Δ_{δ} and N_{α} Regge phases for the helicity-flip amplitude. For $\alpha_{\Delta} - \alpha_N = \frac{1}{2}$ the relation agrees with the data.

(v) $\text{Im}\Delta_{+-}$ has a linear zero at $u = -0.15 \text{ (GeV}/c)^2$, consistent with a peripheral character. $\text{Re}\Delta_{+-} \neq 0$ near this u value.

(vi) The separation of the fixed-u dip locations in σ_+ and σ_0 is easily understood in terms of the linear zeros of Im N_{+-} and Im Δ_{+-} at u = -0.15(GeV/c)² and the smoothly falling σ_- differential cross section.

(vii) The failure of previous N_{α} and Δ_{δ} Reggepole fits to the πN backward cross sections can be attributed to an incorrect $Im\Delta_{+-}$ parametrization.

A quantitative study of the exchange amplitudes following the approach of this paper is in progress.

ACKNOWLEDGMENTS

We wish to thank Dr. M. Poulet for communication of $\pi^{\pm}p$ polarization data from the CERN-IPN (Orsay)-Oxford group prior to publication. We thank Dr. F. Halzen, Dr. J. Luthe, Fr. W. Massman, and Dr. G. Weller for helpful discussions and assistance.

*Supported in part by the University of Wisconsin Research Committee with funds granted by the Wisconsin Alumni Research Foundation, and in part by the U.S. Atomic Energy Commission under Contracts Nos. AT(11-1)-881, COO-881-326.

[†]John Simon Guggenheim Foundation Fellow.

¹J. Orear *et al.*, Phys. Rev. Letters <u>21</u>, 389 (1968); J. P. Boright *et al.*, *ibid.* <u>24</u>, 964 (1970); Cornell Laboratory of Nuclear Studies Report No. 120, 1970 (unpublished); D. P. Owen *et al.*, Phys. Rev. 181, 1794 (1969).

²For P_+ : CERN-IPN (Orsay)-Oxford Collaboration (unpublished). For P_- : CERN-IPN (Orsay)-Oxford Collaboration, preliminary results (unpublished).

³For reviews of phenomenological studies of πN backward scattering, see Refs. 4 and 7.

⁴E. Berger and G. Fox, Nucl. Phys. <u>B26</u>, 1 (1970). ⁵An independent confirmation that $\vec{N}=0$ at u = -0.15(GeV/c)² can be obtained from the polarization data. If $\vec{N}=0$, the $\vec{\Delta}$ amplitude alone is responsible for the π^+p polarization, and hence the π^+p and π^-p polarizations must be equal. The polarization data (Ref. 2) give $P_+ = P_-$ only in the dip region, providing additional evidence for a zero in the $I_{\mu} = \frac{1}{2}$ amplitude.

⁶G. V. Dass, J. Froyland, F. Halzen, A. Martin, C. Michael, and S. Roy, Phys. Letters <u>36B</u>, 339 (1971).

⁷V. Barger and D. Cline, *Phenomenological Theories* of *High Energy Scattering* (Benjamin, New York, 1969).

⁸J. D. Stack, Phys. Rev. Letters <u>16</u>, 286 (1966). ⁹From pole extrapolations we expect G_{++}/G_{+-}

 $\approx (u_0 - u)^{1/2}/M$ so that at the dip the nonflip contribution to D should be about 20% of the helicity-flip part.

¹⁰S. Chu and A. Hendry, Phys. Rev. Letters <u>25</u>, 313 (1970); H. Harari, in *Proceedings of the International Conference on Duality and Symmetry in Hadron Physics*, edited by E. Gotsman (Weizmann Science Press of Israel, Jerusalem, 1971).

¹¹The conclusions obtained here at 6 and 10 GeV/c are also found to be valid at momenta down to 3 GeV/c, indicating that the data we have used do not have large normalization errors.