Total Cross Sections for the Reactions $2\gamma \rightarrow 3\pi$ and $e^+e^- \rightarrow e^+e^- 3\pi^*$

M. Pratap, J. Smith, and Z. E. S. Uy

Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11790

(Received 8 October 1971)

Using the model-independent $2\gamma \rightarrow 3\pi$ amplitude recently given by Adler, Lee, Treiman, and Zee, we calculate the total cross section for $2\gamma \rightarrow \pi^+\pi^-\pi^0$, and the total cross section for $e^+e^- \rightarrow e^+e^-\pi^+\pi^-\pi^0$ in the Weizsäcker-Williams approximation. Some comments are also made on the cross section for $\mu^+\mu^- \rightarrow \pi^+\pi^-\pi^0$ and its relevance to the decay $K_L^0 \rightarrow \mu^+\mu^-$.

Recently there has been some discussion of lowenergy theorems for the amplitude $2\gamma - 3\pi$. A model-independent prediction has now been made by Adler, Lee, Treiman, and Zee¹ which generalizes and corrects the work of the other authors.² Both the matrix elements for $2\gamma - 3\pi^{\circ}$ and 2γ $-\pi^{+}\pi^{-}\pi^{0}$ have been given and we will concentrate here on the charged-pion case, as it is more interesting from the viewpoint of experiment. The matrix element is the sum of a π^0 pole term, bremsstrahlung radiation from the charged pions, and a contact term necessary to maintain gauge invariance. As the complete matrix element is explicitly given in Ref. 1, it is not necessary to write it here; we merely comment that the overall normalization is set by the $\gamma \rightarrow 3\pi$ coupling constant $F^{3\pi}$ and the charged-pion decay constant f^{π} . The parameter x which is proportional to the isotensor component of the "o term" is expected to be small, so we have taken it to be zero. $F^{3\pi}$ can be related to the π^{0} decay coupling constant F^{π} so all the parameters in the amplitude are known. Knowledge of this amplitude allows us to calculate the total cross sections for several interesting processes, such as $2\gamma \rightarrow 3\pi$, $e^+e^- \rightarrow e^+e^-3\pi$, and $\mu^+\mu^ \rightarrow 3\pi$.

The simplest process to discuss is $2\gamma - \pi^+ \pi^- \pi^0$. We used an algebraic computer program³ to square the matrix element and then calculated the total cross section by doing the four-dimensional integral numerically. The result is given in Fig. 1, where we have averaged over the photon polarizations. We then used this $2\gamma - \pi^+ \pi^- \pi^0$ cross section as input in the Weizsäcker-Williams approximation for the $e^+e^- + e^+e^-\pi^+\pi^-\pi^0$ cross section.⁴ Our answer for the latter cross section is given in Fig. 2, where we also plot for comparison 10^{-3} times the total cross section for $e^+e^- + e^+e^-\pi^+\pi^-$ taken from Ref. 4. It is obvious that the cross section for the three-pion production is significantly smaller than that for the two-pion production.

Since we believe quantum electrodynamics for muons, the cross section for $\mu^+\mu^- + 3\pi$ must be smaller than that for $2\gamma - 3\pi$ by at least a factor of $(\alpha/\pi)^2$. Although we have not explicitly calculated this cross section, a closer examination of the amplitude for $\mu^+\mu^- \rightarrow 3\pi$ reveals that there is a logarithmically divergent piece from the π^0 pole term and a finite contribution from the chargedpion bremsstrahlung. The π^0 pole term, however, must vanish when the muon mass vanishes, so this dangerous term is further suppressed. It is clearly impossible, therefore, to have any anomalously large $\mu^+\mu^- \rightarrow 3\pi$ cross section from such a matrix element. The main interest in such a cross section is its possible influence on the $K_L^0 \rightarrow \mu^+\mu^-$ decay rate.⁵ The question to ask in this context is

FIG. 1. $\sigma(\gamma\gamma \rightarrow \pi^+\pi^-\pi^0)$ in cm² versus \sqrt{s} , the total energy in GeV in the c.m. system. The straight line gives $\sqrt{s} = M_K$.

269

5

FIG. 2. $\sigma(e^+e^- \rightarrow e^+e^-\pi^+\pi^-\pi^0)$ (curve I) and $10^{-3} \times \sigma(e^+e^- \rightarrow e^+e^-\pi^+\pi^-)$ (curve II) versus \sqrt{s} in GeV. The latter curve is taken from Ref. 4. (Note that our values of \sqrt{s} are rather low, so we had to extrapolate the curve given in Ref. 4.) The straight line gives $\sqrt{s} = M_K$.

the following. How large a cross section for $\mu^+\mu^ \rightarrow 3\pi$ do we need in order to produce any significant interference in the $K_L^0 \rightarrow 2\mu$ problem?⁶ The answer to this question is available in Eq. (3.9) of the paper of Martin, de Rafael, and Smith.⁷ This equa-

tion gives the Schwarz inequality for the 3π contribution to the K_L^0 absorptive part, assuming CP invariance in the decay. This contribution, called $\Omega(3\pi)$, is bounded once we know the cross section for $(\mu^+\mu^-)_{1_{S_0}} \rightarrow 3\pi$ and the rate for $K_L^0 \rightarrow 3\pi$. As we know the magnitude of the 2γ contribution to the absorptive part we know the magnitude of $\Omega(3\pi)$ necessary to produce any significant interference between these two contributions. In the units of Ref. 7, $\Omega(3\pi)$ must be larger than 10^{-13} , so we can use Eq. (3.9) to find the necessary magnitude of the $(\mu^+\mu^-)_{1_{S_0}} \rightarrow \pi^+\pi^-\pi^0$ cross section. We find that this cross section at the squared c.m. energy $s = M_K^2$ must be larger than 0.6×10^{-34} cm². Hence, taking into account the factor of $(\alpha/\pi)^2$, we require the cross section for $2\gamma \rightarrow 3\pi$ to be roughly 10^{-29} cm^2 at this energy. Indeed, a slightly different argument⁸ has already yielded an even larger estimate for the required magnitude of this cross section, namely that it must be around 10^{-28} cm². If we now look at Fig. 1 we see that the $2\gamma - \pi^+\pi^-\pi^0$ cross section at $s = M_K^2$ is 2.0×10^{-34} cm², so we conclude that the $2\gamma - \pi^+ \pi^- \pi^0$ amplitude given in Ref. 1 is far too small to be of any importance in the $K_L^0 \rightarrow \mu^+ \mu^-$ puzzle. This was to be expected because the model used here is very similar to the models we investigated previously.8 Similar conclusions have also been made independently by Aviv and Sawyer.⁹

ACKNOWLEDGMENT

We would like to thank Professor B. W. Lee for giving us an advance copy of the paper by Adler, Lee, Treiman, and Zee.

*Supported in part by the U. S. Atomic Energy Commission under Contract No. AT(30-1)-3668B.

¹S. L. Adler, B. W. Lee, S. B. Treiman, and A. Zee, Phys. Rev. D 4, 3497 (1971).

²R. Aviv, N. D. Hari Dass, and R. F. Sawyer, Phys. Rev. Letters <u>26</u>, 591 (1971); T. Yao, Phys. Letters <u>35B</u>, 225 (1971); E. S. Abers and S. Fels, Phys. Rev. Letters <u>26</u>, 1512 (1971).

³M. Veltman, SCHOONSCHIP, CERN report, 1967 (unpublished).

⁴The relationship between the cross sections in the Weizsäcker-Williams limit is explicitly given in S. Brodsky, T. Kinoshita, and H. Terazawa, Phys. Rev. Letters 25, 972 (1971).

 25, 972 (1971).
⁵A. R. Clark, T. Elioff, R. C. Field, H. J. Frisch, R. P. Johnson, L. T. Kerth, and W. A. Wenzel, Phys. Rev. Letters <u>26</u>, 1667 (1971). ⁶We assume that the reader is aware of the so-called $K_L^0 \rightarrow \mu^+\mu^-$ puzzle. If not, the following references will be of some help: G. R. Farrar and S. B. Treiman, Phys. Rev. D 4, 257 (1971); N. Christ and T. D. Lee, *ibid.* 4, 209 (1971); M. K. Gaillard, Phys. Letters <u>35B</u>, 431 (1971); <u>36B</u>, 114 (1971); B. R. Martin, E. de Rafael, J. Smith, and Z. E. S. Uy, Phys. Rev. D 4, 913 (1971); H. H. Chen and S. Y. Lee, *ibid.* 4, 903 (1971); H. H. Chen, K. Kawarabayashi, and G. L. Shaw, Phys. Rev. D

 $\frac{4}{^{7}}$ B. R. Martin, E. de Rafael, and J. Smith, Phys. Rev. D

 $D \ge 1, 179 (1970); 4, 272(E) (1971).$

⁸B. R. Martin, E. de Rafael, J. Smith, and Z. E. S. Uy, Ref. 6.

⁹R. Aviv and R. F. Sawyer, Phys. Rev. D <u>4</u>, 2740 (1971).

270