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virtual photoabsorption do not scale. Our result
on the Drell-Yan-West relation is a more strin-
gent application of unitarity and analyticity. We
conclude that the proton's Dirac form factor E,(Q')
= E(nP, Q') is bounded by (lnQ')'Q t~"' if F(s, Q')
is a smooth but sufficiently varying function of s,
near s = m', as Q -~. This is true whether or

not the J"= 2' contributions scale.
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We study the relationship between the parton model and the analysis of light-cone singular-
ities for highly inelastic leptonic processes. For deep-inelastic lepton scattering the parton
model is found to be a momentum-space representation of any model in which free-field
singularities on the light cone are dom&~~~t. Scaling laws and sum rules derived in one ap-
proach are shown to obtain in the other with equivalent assumptions. For massive-muon-
pair production the two approaches are found to differ fundamentally. In the parton model
the lea~&~~ singularity is dominated in the high-mass limit by the. nonsingular»~&&&&ation
diagram. The scaling law which is obtained in the parton model is not obtained from a light-
cone ~~~&ysis without additional, see~&~f 1y arbitrary assumptions. Massive-muon-pair pro-
duction therefore tests the parton model in a region where it is not equivalent to the light-
cone approach. Several other processes are studied including one-particle inclusive e+e
&~~&&&Iation and photoproduction of muon pairs.

I. INTRODUCTION

The theoretical effort to understand the hi, ghly
inelastic interactions of leptons with hadrons has
been extensive in the past few years. Much of this
work comes in response to the SLAC-MIT inelas-

tic electron scattering experiments' and, in par-
ticular, to the observation of scale independence
at large energy and momentum transfer. Our ob-
ject is to explore the relationship between two of
the multitude' of theoretical models in which this
process has been studied: the parton model and
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the analysis of light-cone singularities.
Since originally being applied to highly inelastic

electroproduction, both of these approaches have
been developed extensively and applied to other
physical processes. Despite the similarity of their
predictions for inelastic lepton scattering, the
parton model and light-cone analysis (augmented
by additional dynamical assumptions) lead to strik-
ingly different predictions for several other pro-
cesses. We compare the two approaches in order
to understand how this comes about and in hopes
of gaining some insight into various problems
which arise in each model.

The parton model and the analysis of light-cone
singularities approach the problem of highly in-
elastic lepton scattering from different directions.
On the one hand, the parton model, as developed
by Feynman' and by Bjorken and Paschos, "as-
sumes the existence of pointlike constituents or
partons in the target nucleon. A simple intuitive
picture of highly inelastic electron scattering then
arises when the process is observed in an infinite-
momentum frame. There, it is argued, the par-
tons are scattered elastically and incoherently by
the incident electron. The large inelastic scatter-
ing cross section observed at SLAC derives from
the assumed pointlike nature of the partons: there
are no form factors to diminish the process at
large momentum transfer, while the scaling be-
havior arises from the kinematic restriction that
the partons be scattered elastically by the electro-
rnagnetic current. In the parton picture, the ex-
plicit shape of the highly inelastic scattering cross
section measures the as yet unspecified longitudi-
nal-momentum distribution of the target's partons
in an infinite-momentum frame.

In other applications, it is useful to distinguish
between "conservative" parton models in which
the longitudinal distribution of partons is left un-
specified and which are applied only where the as-
sumptions of elasticity and incoherence can be mo-
tivated by appeal to some type of cutoff field theo-
ry, and more speculative parton applications" in
which specific distributions are assumed or in
which elasticity and incoherence are not directly
supported by recourse to field theory. Among
"conservative" applications of parton ideas are
the extensive calculations of Drell, Levy, and
Yan' and those calculations of Landshoff, Polking-
horne, and their collaborators which do not involve
duality constraints on the parton distributions. '
Except where specifically noted, we adopt the
spirit of "conservative" models.

The light-cone analysis, ' on the other hand, pro-
ceeds primarily in coordinate space without refer-
ence to any decomposition of the target into con-
stituent states characteristic of parton models.

First the inelastic scattering cross section is re-
lated to the imaginary part of the forward virtual
Compton-scattering amplitude. It is then argued
that, barring pathologies, the leading contribution
to highly inelastic electron scattering arises when

the two currents are separated by a nearly light-
like distance. The current product is then expand-
ed in a series of terms with differing singularities
on the light cone and the inelastic scattering cross
section appropriate to each term is calculated. It
is found that the observed scale independence ob-
tains only if the dominant light-cone singularities
are those appropriate to free-field theory, i.e.,
calculated as if the local electromagnetic currents
were built up out of some noninteracting fields.
Once again, the explicit shape of the highly inelas-
tic scattering cross section is unspecified: Here
it is linked to the variation along the light cone of
the leading singularity. As with the parton model,
we will distinguish between the "conservative" ap-
proach out1.ined above and one in which additional
assumptions are required (e.g. , Regge bounds on
multiparticle matrix elements or specific forms
for matrix elements near the light cone).

Despite the superficial differences outlined
above, we find that there are intimate connechons
between the parton and light-cone approaches. It
is often noted that both analyses achieve scaling
predictions for inelastic electron scattering by as-
surning certain free-field behavior: for the scat-
tering amplitude in particular regions of momen-
tum space in the one instance, and for current
products near the light cone in the other This.
complementary relationship between coordinate
and momentum space is borne out in our analysis.
In fact, as far as inelastic Ieptonic scattering is
concerned, the parton model is simply a momen-
tum-space realization of a light-cone operator-
product expansion with free-field singularities
dominant. When reformulated in coordinate space
a conservative parton model displays dominant
free-field singularities on the light cone and
enough smoothness off the light cone to admit the
usual arguments for light-cone dominance.

This connection provides considerable insight
into the formal manipulations of the light-cone
analysis. In particular, we are led to identify the
free-field singularity on the light cone with the
propagator of an elastically scattered parton. Al-
so, the variation of the leading singularity along
the light cone is linked with the parton longitudi-
nal-momentum distribution in a straightforward
way. These correspondences will be elaborated
upon in the following sections.

The identification of the parton and light-cone
analyses of electroproduction is perhaps not unex-
pected. More surprising, however, is our conclu-
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sion that the identification cannot be extended to
other important hi ghly inelastic lePtonic Processes.
In particular, we study in detail the attempts to
apply the two approaches to the production of mas-
sive muon-antimuon pairs in high-energy hadron-
hadron collisions (P+P- p. '+ y, + "anything"}.
This process has been analyzed in parton models
by Drell and Yan" and Landshoff and Polking-
horne, " and in h, light-cone analysis augmented
with assumptions of Regge behavior by Altarelli,
Brandt, and Preparata" with very different re-
sults. We find that the parton-model cross section
for this process is not light-cone-dominated in the
conventional sense, nor does the dominant piece
possess the free-field singularities assumed on
Ref. 12. This dissimilarity arises in as natural a
way from the parton model as does the similarity
for electroproduction.

This situation enhances the experimental impor-
tance of P+P- p, '+ p + anything" and related
processes. At the same time, it provides a con-
venient postponement of an old problem for parton
theorists. The problem is the existence of real
physical partons. It is hard to envision a parton
model without at least occasionally producing a
parton in the final state (see Ref. 13 for a discus-
sion of this point and Refs. 14 and 15 for possible
ways of avoiding the prediction}. Currently popu-
lar models, such as the quark parton model, are
thereby trapped with the embarrassing prediction
of production of quarks or some other unusual par-
ticles at SLY energies. This problem is avoided
by viewing the partons, not as the quanta of some
underlying field theory, but merely as a convenient
and intuitive representation of the underlying light-
cone singularity structure, circumventing the
whole question of physical partons. If, however,
it could be shown that the free-field singularities
on the light cone necessarily imply the existence
of corresponding physical eigenstates, the problem
would reappear. " As yet, no one has been able to
establish this.

The importance of muon-pair production is now
evident: unlike highly inelastic electron scattering,
the parton model scaling l-aw for this process can
not be directly attributed to light-cone behavior
atone If it is .verified experimentally, the notion
of pointlike constitutents in the nucleon will be
much more compelling.

The above results are derived in the following
sections. Our procedure is as follows: For a
given process, we first display explicitly the co-
ordinate-space structure in the perturbation-theo-
retic parton model of Drell, Levy, and Yan (DLY).'
With this intuitive picture in mind, we then rede-
rive the coordinate-space structure directly from
the scaling laws which obtain in a wider class of

parton models. Finally, we examine this result
and compare and contrast it with light-cone-singu-
larity analyses. In Sec. II we consider highly in-
elastic electron scattering, in Sec. III the muon-
pair production process. Section IV combines sev-
eral less extensive analyses, including e'+e- P+anything and y+P- p, '+ p, +anything. Appen-
dices A, B, and C treat some peripheral aspects
of the electron scattering problem. A brief sum-
mary of this work may be found in Ref. 17.

II. HIGHLY INELASTIC ELECTRON SCATTERING

A. Kinematics

x (2v) b (q+ p —P„), (2 1)

where single-particle states are normalized to
(P'

~
P) = b'(P' —P). Translating and performing

the sum over states,

~„,—= 4m~ — d ye" "P J„y „0 P . 2.2

For positive-frequency photons, the current prod-
uct may be converted to a commutator:

&„,=4&'~ d ye" "P J& y, J, O P .
(2.3)

P
q~-=-Q~

Pn F'q= M

FIG. 1. (a) Kinematics of inelastic electroproduction.
(b) Discontinuity in forward virtual Compton scattering
for spaceiike q2.

To begin, we briefly review the kinematics and
our conventions for highly inelastic electron scat-
tering. Assuming single-photon exchange as shown
in Fig. 1(a), all hadronic information is summa-
rized in the usual tensor W„„,"
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For spacelike virtual photons, Eq. (2.1) is the
imaginary part of the forward virtual Compton-
scattering amplitude shown in Fig. 1(b).

The mell-known structure functions W, and W,
are defined by the invariant decomposition of W„,:

Wpv= — gpv —
2 W1 q p v

+ 2 P„— 2 q„P„—,q, W2 q', V,

(2.4)

where P ~ q —=M v and q =- -Q' & 0. With these defini-
tions, Bjorken's scaling hypothesis" takes the
form

FIG. 2. Parton-model diagram for deep-inelastic
electroproduction (in an infinite-momentum frame of
P}.

plitude,

lim MW, (q', v) = F,(x),
Bj

lim vW, (q', v)= F2(x),
Bj

(2.6)

W„.(q', -v) = —W„.(q', v),

which imply

W, (q', -v) = —W, (q', v) .

where the Bjorken limit (Iims, ) is v- ~, Q'- ~,
with x—= Q'/2Mv fixed. Equation (2.3) has the
crossing properties of the physical Compton am-

The structure functions F, (x) are defined for 0& @
& 1 if W„„ is defined by Eq. (2.2) or for -1 & x & 1
if W„, is defined by Eq. (2.3).

B. Coordinate-Space Structure in a Perturbative Parton Model

The assumptions of elasticity and incoherence at the heart of the parton model for highly inelastic elec-
tron scattering are summarized in a single formula from the work of DLY:

)'. ))',.=4"~'I Io. I' f&')' "'"( l),())(.(0)l )
Bj

(2.6)

valid in the Bjorken limit for x0.
Elasticity and incoherence allow the replacement of the fully interacting Heisenberg current operator,

J„(y), by the "bare" current operator, j„(y), constructed from free fields. Interactions appear only in the
coefficients ~a„~ which weight the importance of various parton configurations ~n). The appearance of ~a„~
rather than off-diagonal terms a*a„with men is also a consequence of incoherence.

Equation (2.6) is derived only in an infinite-momentum frame of the target. This restriction reveals a
basic limitation of perturbative parton models and their associated physical picture (see Fig. 2) of the in-
coming hadron developing into some constituent state

~
n} with amplitude a„, followed by the elastic, inco-

herent scattering of individual partons by the bare current j„(0).
Justification of Eq. (2.6) is a substantial task. DLY accomplish it order-by-order in a y, perturbation

theory of pions and nucleons with a transverse-momentum cutoff. For a more thorough discussion of their
work, we refer the reader to Ref. 20.

To display the coordinate-space structure of Eq. (2.6), we write out explicitly the current matrix ele-
ment for a constituent state

~
n) containing spin-0 partons with charges A., and spin- —,-partons with charges

21
f)

d'P'
(n~j„(y)j„( )~s) =

( „pa,', e' ( ""(P,+P')„(P;+P')„
/

d3

P„' is the momentum of the scattered parton. Because the currents j„are devoid of strong interactions,
the sum over a complete set of final states reduces to the phase-space integral for the elastically scat-
tered parton. Some elementary algebra yields

(n( j„(y)j„(0)[n)= „, gX (2P, +is)„(2P, +is),n, (y, m')e'
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(4Pa Pp ~ 2'( Paa +P aaa) a(e alla, (y, ')e' a'"I,
2E f jf fv

where 4, is the singular function defined by

n (y m ):— d lt e(y )6(y —m )ey(1
(2s)s 0

and m is the parton mass which for convenience is taken to be the same for all partons. Since all partons
are assumed to have a positive fraction of the target's infinite momentum and limited transverse momenta,
we may replace PI' by q, P" up to terms of order 1jP where 0&q; &1. If q, &M/P, this is not a valid sub-
stitution. The problem of "wee" (@=0)partons is discussed in Appendix B, where it is shown that errors
incurred by replacing Pj' by q; P are limited to the region x& v'M/P where Eq. (2.6}is not valid in the
first place. Making this replacement in Eq. (2.6),

m' e'~~'
IimII'„. =

4 g Ia„I' td'ye"' g&, '[4q, 'P„P,+2', (P„s„+P„s„)—s„s„]
Bj 4gl J p j" j' j' v

n i gg

+Q Xg [4)7g Pq P, +2frl)(PqSP+PPSq) —g„PCl]
&,(y, m')e'~i'2

'If

This equation may be simplified considerably by separating the sum over longitudinal momentum from the
rest of the constituent sum, i.e.,

1

g-~t dq6(q-q, )g.
0

We may now use the parton-model expressions for the scaling functions E, and E, which may be read off
as the coefficients of P„P„and g„, in the previous equation:

F.(n) = n Q I a. I' Q & '6(n —)7 ) + Q &g'6(n —ng),
n

F,(~) =!g Ia. I'g~, '6(n- ~,).
n

As a result, we obtain

~l F )7limW„„= dg d'ye"'" 2(-g„„O+s„s„}n,(y, m') ' e'f~n'

(2.7)

~ 42 4p p„~ —(a„p,+„a,p„) ——a„a, (4,(y, m')p, (a)e' '"lI. (2.2)
2i 1

0

~ (42 p„p ~ 22((a„p„~„a„p„)—a„a„)4,(y, m') ' " e'

Finally, we compare Eqs. (2.7) and (2.2) and conclude that up to terms whose Fourier transforms vanish
in the scaling limit, the matrix element of the current product is given by

4~'Z 1 ' d(PIP„(y)JP(0)IP)=' ( gqPcl+-sos„) n, (y, m') It 2F,(q)e' —n

We have introduced the notation =' to indicate equality up to terms whose Fourier transforms vanish in
the scaling limit. Even in the parton model, a complete expression for the matrix element on the left of
Eq. (2.8) contains other terms. For example, Eq. (2.8} cannot adequately describe virtual Compton scat-
tering for q' 0 since its Fourier transform vanishes in that region (the mass-shell 5 function in n, re-
quires 2Mv)7=-q' with 0 &q &1, while the spectral condition requires I2M)PI~ q'or q& 1}. Also, there are
presumably other terms (e.g., terms everywhere smooth in coordinate space) whose Fourier transform
vanishes as the Bjorken limit is approache8. Equation (2.8) does contain those pieces of the current prod-
uct matrix element which dominate the Bjorken limit.

Several other remarks should be made at this point. First, Eq. (2.8) has been obtained only in the infi-
nite-momentum frame of IP). This restriction is peculiar to the perturbative parton model and will be re-
moved in the following section. Second, the transverse momentum in the vector P&„was ignored in the
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steps preceding Eq. (2.7). Since transverse momenta are bounded in the parton model, this does not mat-
ter to leading order. And third, the corresponding expression for the current commutator may be obtained
in a similar manner:

(P ~[ J&(y), J,(0)]~P) =' . (-g&, + 8&8,)6(y, m ) —2F,(q)cosP~ ~ y

~ dq 4P„P ~ („P—8~„Pe„)—,—,B„a, F,(q)s(ym')c, osP, yI,
2i 1

(2.9)

where n(y, m') -=I[ n(y, m') —n (y, m')]. The changes reflect the locality [n(y, m') = 0 for y'&0] and
crossing symmetry [cosP, ~ y = cosP„~ (-y)] of the commutator.

The last step is to write Eq. (2.9) in a form in which current conservation is manifest. The mathemati-
cal details of this step are contained in Appendix A. The result is as follows:

4m 2E 1 'd
(P ~[ J„(y),J,(0)]~P) =' . (g„„CI—8„8„) n(y, m') —,[F,(q}—2qF, (q)]cosP„y

+ 4[ P„P„Q—(P ~ 8)(P„8„+P„B„)+g„,(P ~ 8)~]

1

x n'(y, m') " sinP„y F,(q)P„y (2.10)

where n. '(y, m') = -d n(y, m')/—dm'.
This equation contains the results of the light-cone analyses of Jackiw, Van Royen, and West. " We de-

fer, however, a detailed discussion of the light-cone behavior of Eq. (2.10) until we have rederived it
from a more general standpoint.

C. More General Parton Models

In this section Eq. (2.10}is rederived from the following two assumptions:
I MWy and v W, scale in the Bjorken limit.
II. The singularities of the current commutator, if any, are on the light cone rather than somewhere

else in coordinate space.
Assumption I is, of course, the motivation for constructing a parton model in the first place. Assump-

tion II is valid in all parton models which are known to us. In the previous section we saw it to be true in
the perturbative model of DLY. In the nonperturbative model of Landshoff, Polkinghorne, and their co-
workers'" the singularities are associated with the propagation of a parton between current vertices and
therefore lie on the light cone. Many other models (and perhaps the real world) may satisfy these as-
sumptions: The analysis of this section applies equally well to them.

Inserting Assumption I into Eq. (2.4) and rearranging terms,

limM W»= (g»q' —q„q-„) — ' + ', + P„P„+ (P„q„+P„—q„)+,g»
F,(x) F,(x) 1 q' F,(x) (2.11}

where W„„ is defined in terms of the commutator
[Eq. (2.3)] for -1 &x &1. The combinations of
structure functions in parentheses are odd under
crossing (v —-v, q 'fixed}, which implies

1

V, (x, q') = dq 3:,(q, q')[5(q —x) —5(-q —x)]
0

(2.12)

for any of the combinations of structure functions.
Now observe the following identities:

J "C![n (y, m 2)cosP „~y]d'y

= vfq[8(q-x) —8(-q- x)],

=- '"'" iv[8(~-x)-8(-&-x)],
12M v I

l e" ' 'n. (y, m')cosP„y d'y (2.13

1
Iv[8(q —x) —8(-q- x)],12M v1

r e"'"8„[a(y,m') csoP„]yd' y

—? tg~" iv[8(q —x) —8(-q-x)]12M v1

for -1 & x & 1 and q & 0. These are identities only
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if P„q= gM v and P„=m, where m is an arbi-
trary but fixed parameter. It is not possible to
find a P„which satisfies both restrictions for ar-
bitrary m'. However, our representation for the
current commutator need only be valid up to terms
whose Fourier transform vanishes in the scaling
limit, so we may choose P„ to satisfy the restric-
tion to leading order in the scaling limit. As an
example, consider the infinite-momentum frame
where

2Mv —Q ~ 2Mv+Qq=, 0, 4-q', —

and choose P„=((q'P'+m')"', 0, 0, qP). For finite
qy P„q= qM v+0(2Mvm'/qP') and P„'= m', so
in this case corrections to Eq. (2.13) are controlled
by the large parameter P. The restriction to finite
g has been noted before. It is discussed further in
Appendix B where several c-xplicit representations
for P„(not necessarily in an infinite-momentum
frame) are given.

With these identities, the derivation is easily
completed: substitution of Eqs. (2.12) and (2.13)
into Eq. (2.11) yields Eq. (2.9) of the previous sec-
tion. This derivation avoids two of the difficulties
which arose in the previous section. First, it is
not limited to an infinite-momentum frame. Sec-
ond, it was not necessary to assume P"„-qP" to
leading order. These limitations are replaced by
the single problem of choosing P"„ to satisfy
P„q= qMv and P„'=m', which receives attention
in Appendix B.

Since W, and W, are known only over a limited
region of momentum space (in particular for Q'

0), it is not, in general, possible to invert the
Fourier transform and (uniquely) display them in
coordinate space. However, by means of Eq.
(2.13), the scaling functions are "mapped" onto a
particular set of singular functions in coordinate
space. This particular choice of singular functions
was made on the basis of Assumption II. Assump-
tion II fixes uniquely the coordinate-space behav-
ior from which the dominant term arises because
scaling cannot be obtained from a current matrix
element which is smooth everywhere in coordinate
space. This assertion is proved in Appendix C.
There must be singularities and Assumption II
places them on the light coneiwhere a singularity
of a given order is linked uniquely to scaling with
a particular power of v. ' This, therefore, deter-
mines the particular choice of identities in Eq.

(2.13). Given Assumptions I and II, the current
commutator must be given by Eq. (2.10) (up to
terms whose Fourier transform vanishes in the
scaling limit).

Having derived Eq. (2.10) under more general
assumptions, we proceed to investigate its light-
cone structure.

D. Light-Cone Dominance and the Parton Model

In the Bjorken limit, the Fourier transform of
the parton-model current commutator [cf. Eq.
(2.10}]is light-cone dominated. Light-cone domi-
nance may be interpreted to mean that the leading
term in W„, must come from the leading light-cone
singularity in the current product matrix element.
On the other hand, it may be interpreted to require
that W„, receive contributions primarily from a
region of coordinate space restricted to y'& 1/Q'.
Whether or not these are identical criteria need
not concern us here in this process, since both
are satisfied by the matrix element of Eq. (2.10).

Considering the first criterion, note that the
singular functions 6 and 6' may be written"

s(y, m') =
2

~(y')e(y, )

(.) (y'

&'(y, m') =
&, &(y')~(y. )
1 (2.14)

m'y'
( ) (,)

1 —J,(m)(y )

where the term in brackets goes to —,
' as y'- 0.

When substituted in Eq. (2.10) and Fourier trans-
formed, the first terms in Eqs. (2.14) give the
usual scaling law for W„„[see, e.g. , Eq. (2.11)]
while the less singular second terms vanish in the
scaling limit as m'/Q' or m' /M v. This satisfies
the first criterion for light-cone dominance.

Concerning the second criterion, it is obviously
fulfilled for terms in W„„arising from A(y, m').
These are dominated by the singularity 5(y') in
the Bjorken limit so only the light cone itself con-
tributes. Terms in W„„proportional to A'(y, m')
are given by integrals over e(y') in the Bjorken
limit. It is not obvious that these integrals receive
contributions only from y'& 1/Q'. That this is so
may be proved in the manner of Appendix C.

Since only the leading light-cone singularity con-
tributes in the Bjorken limit, Eq. (2.10}may be
rewritten

4m'E 'd(I'l(y, (y) y.(o))ly')=
s .. -(y„. —s„s.) Illy') (y, ) f —s'(c) ——y', (s) cosa,, y2~'sM

0 I I

1
+ —[p„p, Q -(p 8)(p„a„+p„s„)+g„,( p ~ s)'] 8(y ')e(y, ) dq F,()I)

0

(2.15)
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This differs from the results of conventional
light-cone analyses (cf. Ref. 22) only in having P~
everywhere instead of qP. Up to this point, we
have not assumed P"„=qP" (see previous section).
In an infinite-momentum frame we could replace
P"„by qP" to leading order but we do not want to
be limited to an infinite-momentum frame. In Ap-
pendix B it is shown that regardless of whether
P„"=qP", Eq. (2.15) gives the same expression for
W„„when either is used. With this, we obtain
agreement with the results of Ref. 22.

Notice that the integrals in Eq. (2.15) are diver-
gent at g =0 unless the structure functions were to
vanish sufficiently rapidly there. Experimentally
they do not. Problems near q=0 have occurred
before in our analysis, in choosing the vector P„
and in making the substitution P„-qP. In Appen-
dix B it is shown that all these problems are re-
lated and only affect the x- 0 limit of the scaling
region. We conclude that Eq. (2.15), with the in-
tegrals regulated near q = 0, is valid up to terms
which vanish in the scaling limit for xc 0.

This establishes the correspondence between
light-cone dominance and free-field singularities
on the one hand and incoherent and elastic scatter-
ing of partons on the other. Had we begun with the
light-cone analysis [as summarized, for example,
in Eq. (2.15)] and attempted to derive the parton
model, it would be necessary at some point to as-
sume that partons exist, i.e., that it makes sense

in an infinite-momentum frame to write
~
P)

= g„a„~n). For this reason the parton model is
not formally equivalent to the light-cone analysis
but is instead a particular realization of the light-
cone analysis in momentum space.

To complete this discussion, it is necessary to
investigate how symmetry properties and other
constraints in one approach transform to the other.
Our discussion parallels that of Fritzsch and Gell-
Mann. " If various properties are attributed to the
current operators or their matrix elements on the
light cone [e.g. , SU(3) x SU(3) symmetry, spin--,'

transformation laws], sum rules and other rela-
tions emerge among the structure functions for
highly inelastic electroproduction and the corre-
sponding weak processes. "'" Likewise, if sym-
metry properties are ascribed to the partons or if
assumptions are made about the momentum distri-
bution of partons, another set of relations among
structure functions emerges. The equivalence is
straightforward: An algebra of operators on the
light cone corresponds to a symmetry among par-
tons. To see this, assume some symmetry among
partons; rederive Eq. (2.15); the symmetry
emerges as the corresponding algebra of opera-
tors. Notice that in neither approach are assump-
tions made about the symmetries of physical
states. Assumptions about the distribution or
types of partons constituting a physical particle
transform into statements about the coordinate

TABLE $. Transformation between parton-model and light-cone-analysis assumptions and their physical consequences.

Parton-model as sumption Light-cone-analysis assumption Physical consequence

Elasticity, incoherence—

Properties of partons =

(e.g., symmetries, spins)

- Light-cone dominance, free-field
singularities

= Operator properties on the
light cone
(e.g., algebra, spin structure)

Scaling in Bjorken limit

Suxn rules: e.g.,

Adler sum rule:

(Fvfl FvP)dx
0

x

Gross-Llewellyn Smith sum rule:

d» (Fvp +Fun) 6
0

1Callan-Gross relation: F (x) =—F (x)i 2x 2

Parton composition of =

physical states
= Matrix elements of operators

on the light cone
Various relations, e4, ,
Bjorken-Paschos sum rule:

dxF2(x) = ~
Dual-quark-model sum rule:

dx—(F2 -F2 ) =~
~0 x

See Refs. 2 and 24 for references.
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space or algebraic structure of the matrix ele-
ments of operators near the light cone. Any rela-
tion derived in one approach from such an assump-
tion may be derived from the other approach with

an equivalent (though perhaps less intuitively com-
pelling} assumption. Table I summarizes the
transformation from partons to the light cone and

vice versa.
In deriving Eq. (2.15), some physical under-

standing of the light-cone singularities has been
obtained. First, the free-field singularity on the
light cone arises from the phase-space integral
for the elastically scattered parton, i.e., from its
free propagation into the final state. Pictorially,
we associate a, (y, m'} with the scattered parton
in Fig. 2. This association will help us to inter-
pret the results of the analysis of muon-pair pro-

duction in the next section. Second, the P y de-

pendence is given by
iP y iP

P(P y)-=I, (ld. (l'(I 2*
2E '1,2*

2E )
n

2E,

Noticing that g;(y)=e ' '2/2v'2E; is a parton's
"wave function, " we may rewrite the above equa-
tion as

P(P y) = (P I
y'(y)A'0(0) I», (2.16)

where A is a charge operator. F(P y) measures
the average correlation of a parton at y with one
at zero weighted by the squared charge. The asso-
ciation of the P y dependence of the singularity
with longitudinal coherence, as discussed by Ioffe
and others, ""is borne out in the parton model.

III. PRODUCTION OF MASSIVE MUON PAIRS IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES

A. Kinematics

Figure 3 shows the reaction which concerns us in this section. We define Q'=- (p, + p )' to be the
squared mass of the muon pair and s -=(P+P')' We res. trict ourselves to the limit s, Q'- ~ with Q'/s =—~

fixed (Q'& s). Only the total cross section for a given squared mass Q' will be discussed here. Other ex-
perimentally useful cross sections have been discussed elsewhere. "" When Q' and s are much greater
than the squared masses of the muon and the incident particles, the cross section is

dg 4&a2
W(Q'2 s),

where

W(Q', s) = 16&'EE' -(f'q 5(q' —Q') g(2&)d5'(P+P' —q —P„)(PP'
I J„(0)In)(n I

J"(0) I
PP' ) .

R n

R is the phase-space region defined by

)tQQ &q &
s+Q2

2 s

W(Q', s) may be rewritten as

)P((P, 2)= EE'(2 )'Ef -d'yd", (y, Q')(PP' ld„b)) (O)(PP ), '

(3.I)

(3 2)

(3.3)

where td, , is the singular function defined earlier with the momentum constrained by Eq. (3.2). As Q and
s become infinite b.", reduces to b, ."

B. Coordinate-Space Structure in a Perturbative Parton Model

Application of parton-model ideas to massive-muon-pair production rests on the observation that parton-
antiparton annihilation is a more efficient way of producing a massive photon than is an exchange process.
Drell and Yan' have used this observation to obtain a scaling law for this process. Their analysis may be
summarized as follows. As s becomes large, the center of mass approaches an infinite-momentum frame.
The colliding hadrons may be viewed as collections of colliding partons which can produce a massive pho-
ton either by annihilation [shown in Fig. 4(a)] or by bremsstrahlung [shown in Fig. 4(b)]. To conserve en-
ergy and momentum, the bremsstrahlung of Fig. 4(b) must be accompanied by an exchange of momentum.
In order to produce a system of mass greater than Q from an incoming particle of mass M„and energy
s/2M„, a squared momentum transfer of I t

I
~ M„'(Q'/s ') = M„'T ' is required. In the limit of interest t

remains finite and of the order of 0.5 GeV'. From high-energy scattering experiments, we know that had-



COMPARISON OF THE PARTON AND LIGHT-CONE ANALYSES. . . 2631

1

=
Jl di), dr), Q d'b(i), )d'-b(q, )x 5((p„,+p'„,)' —Q')[o(Q')] .. „

0 +0

where P„=([(l)P)' +m']"', O, r), P) and P'„=([( lip}'+m']"', 0, r), p}-, s=4P', ignoring transverse mo-
menta which are assumed to be limited. The point cross section is o(Q') =(4''/3Q'))lb' and the probabili-
ties are found in Sec. II:

5'b(r)) = F,b (n)/n) b',

where E2b is the contribution to the highly inelastic structure function from partons of type b. Using
(P„+P'„)'=—7),i),s, we have finally

, lim W(Q', s)= W(r)= —
ll

' '5(q, q, -r)QF„( i,)lF,';( l, )l-, .

The second structure function is allowed to differ from the first in case the incident particles are not
identical.

The coordinate-space version of this model may be extracted directly from Eq. (3.4) by substituting the
identity (to leading order as s, Q'- ~)

(3.4)

Jtd ytb (y Q )exp[i(P +P ).y] — 5(i) q 7)
2r

Some elementary algebra yields

ronic cross sections are dominated by Pomeranchukon exchange which decreases exponentially with mo-
mentum transfer. Even for fairly small values of ~ the bremsstrahlung diagram will be reduced by a sub-
stantial factor. Since the annihilation diagram of Fig. 4(a) experiences no such damping, it will dominate
at large s and Q'. We refer the reader to the work of Drell and Yan" for a more detailed derivation of
this result. In their work a transverse-momentum cutoff replaces the Regge asymptotics as the origin of
the damping.

The parton-model prediction for W(Q, s) may be obtained from inspection of Fig. 4(a}. The cross sec-
tion is proportional to the probability of finding a parton of type b moving to the right, convoluted with the
probability of finding an antiparton b moving to the left, times the total annihilation cross section for point
particles summed over all types of partons. The annihilating partons' momenta are constrained to form a
photon of mass Q':

W(r)=2, d'y&+(y, Q')g ~, l

'
~ 'exp[i(p„, +p', ,) y]F»(n, )F0;(n, )

b
b 0 1 0 2

Comparing this with the definition of W ln Eq. (3.3),

'd "'d(PP'
l Jq(y) J"(0) l

PP' ) = — 0+ —, ' exp(ip0 ~ y}F» (rh) 0 exp(ip'„y)F» (r)b) .
b 0 )l ~0 2

"2 (3.5)

We emphasize that there are terms in the current product other than the one displayed in Eq. (3.5) [for
example, the bremsstrahlung diagram of Fig. 4(b}]. These terms, when integrated against 4, (y, Q') (as
we have argued for the bremsstrahlung diagram), are lowe~ order in the s, Q'- ~ limit. Equation (3.5)
displays the coordinate-space dependence of the DLY parton model. We postpone a discussion- of its light-
cone behavior until we note how specific our result is to the model of Drell and Yan.

C. More General Parton Models

A result similar to Eq. (3.5} may be obtained
under somewhat more general assumptions. In
deriving Eq. (3.5), it was assumed that the distri-
bution of partons in each incident hadron is unaf-
fected by the presence of the other. Drell and Yan
note that this assumption need not be made, in
which case one still obtains scaling [do/dQ'
~ 1/Q'f(r)] but f(r) is no longer explicitly given in
terms of the electroproduction structure functions

F2(ii). Likewise Landshoff and Polkinghorne ob-
tain scaling but not factorization in their nonper-
turbative model. " Scaling alone is enough to ob-
tain a form similar to Eq. (3.5}. To see this,
write

lim W(Qb, s) = W(r)
02, s~~; Q2/sfixed

da W(a)5(a —r)
Jp
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FIG. 3. Kinematics of massive muon-pair production
in hadron-hadron collisions, s = (P +P')2.

S 1
d yh, (y, Q') «W(n)e'~~',

0

where P '= ns to leading order as s, Q'-~. Then
up to terms whose integrals against n+(y, Q ) van-
ish in the limit,

(3.6)

P'

pl

In this expression, just as in Eq. (3.5), scaling is
linked with high-frequency oscillations. Of
course, there is no experimental evidence as yet
that W(Q', s) scales so Eq. (3.6) is at best a form
shared by models which predict scaling (cf. Refs.
10, 11, 27} and may or may not describe the data.

A correspondence between scaling and high os-
cillations is not unique. Any attempt to extract
the matrix element uniquely by inverting the
Fourier transform of Eq. (3.3) fails because of the
restriction to positive-energy photons. For elec-
troproduction, assuming the singularities (if any)
to be on the light cone (Assumption II) was suffi-
cient, together with scaling, to determine the
leading term in the current product uniquely. For
muon-pair production scaling can arise from a
matrix element smooth everywhere in coordinate
space [see Eq. (3.6}]so a restriction analogous to
Assumption II is not sufficient to "map" scaling
behavior onto the light cone.

If scaling is not uniquely connected to high oscil-
lations, it should be possible to find other forms
for the current product matrix element which
scale. One such form, singular on the light cone
and not highly oscillatory away from it, is dis-
cussed in the next section [cf. Eqs. (3.7) and

(3.8)]. The problem with this example and others
like it is their arbitrariness: There is as yet no
convincing theoretical reason to choose such a
form. If scaling is observed experimentally, it is
explained simply and unambiguously in the parton
model. It could be accounted for by a matrix ele-
ment singular on the light cone and not highly os-
cillating away from it, but not without additional
assumptions to single out the behavior desired.

Before discussing the light-cone behavior of the
parton model, it is necessary to relate W(a) ap-
pearing in Eq. (3.6) to the various structure func-
tions appearing in Eq. (3.5). As Drell and Yan
note, "factoring obtains only if one rules out par-
ton annihilation accompanied by exchange of wee
partons. Wee-parton exchanges are called upon to
build up high-energy diffractive scattering (Pom-
eranchukon} in Feynman's original parton work. '

(b}

FIG. 4. Parton-model diagrams for {a) parton-pair
annihilation into a massive muon pair; (b) parton brems-
strahlung of a massive muon pair.

FIG. 5. Parton-pair annihilation into a massive muon
pair accompanied by the exchange of wee partons.
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If, as shown in Fig. 5, wee-parton exchanges take

place, the parton distribution in one hadron is
modified by the presence of the other. This effect
also prevents factoring in the nonperturbative
model of Landshoff and Polkinghorne. "

Nevertheless wee-parton (Pomeranchukon) ex-
changes should not modify substantially the orig-
inal parton distributions of the incident particles.
Wee-parton exchanges carry asymptotically small
longitudinal momentum (of order 1/v s) and are in-
dependent of s as s -~. Because the exchanges
are s -independent, the scaling law is not affected.
Because they carry vanishingly small momentum,
we expect that W(n) is approximately what it is in
the Drell-Yan model, i.e. , that Eq. (3.4) is approx-
imately correct.

D. Light-Cone Dominance and the Parton Model

The role of the light cone in massive-muon-pair
production is more complex than in electropro-
duction. We show, on the one hand, that with the
parton-model matrix element of Eq. (3.6), W(Q', s)
is dominated by the region of y' & n/Q' for some
dimensionless constant n. On the other hand, we
show that terms in the matrix element are not
ordered in relative imPortance as Q,s -~ by the
strength of their singularities alone (as was the
case in electroproduction). Rather, their impor-
tance is determined by the singularity and other
dynamical information such as the s dependence
of the matrix element and the frequency of its os-
cillations away from the light cone.

In the parton model itself, we find that the lead-
ing light-cone singularity (bremsstrahlung dia-
gram) is dominated in the s, Q' ~ limit by the non-
singular annihilation diagram, just the opposite of
what would be expected on the basis of light-cone
considerations alone.

The primary advantage of the light-cone analysis
in electroproduction has been to relieve the theo-
rist of having to study the whole two-current ma-
trix element in favor of looking only at its leading
light-cone singularity. This advantage is lost in
muon-pair production where terms less singular
on the light cone are not a priori less important
than the leading singularity. In light of this, it is
somewhat academic what region of coordinate
space contributes to W(Q', s } in the parton model.
Nevertheless, let us show that W(Q', s) receives
important contributions only when y c n/Q, when
the matrix element is given by Eq. (3.6).

To do this, rewrite the definition of W(Q', s) in
terms of the dimensionless variable $" =-Wsy" in
the rest system of P+P':

a
(2w)' ' ' s(a'+[(P+P') y]']

'

(3.7)
The power of s is dictated by the dimension of

the matrix element [(PP' ~J„(y)Z"(0)~PP' ) is di-
mensionless and n. , - 1/(length)'].

Multiplying Eq. (3.7) by t)s(y, Q') and integrating
over all space, we recover W(Q', s):

W(Q, s) = dnf(n) 2ads ' (3.8)

where f(n) is the Fourier transform of
a'/(a'+[(P+P') y]'), f(n)= ', ae "', and ~q~-
= (n s —Q )/2nWs. This final integral is bounded
as follows:

By choosing the dimensionless parameter a
as reasonably large, this contribution to W(Q', s)
may be made as small as desired. This term,
more singular on the light cone than the parton
annihilation contribution, is less important in the
scaling region by a fixed (for fixed v} exponential
factor.

Of course, one can write down expressions simi-

This expression involves no dimensional parame-
ters and remains unchanged as Q', s -~ with fixed

Moreover, since the integral over $ converges,
there must be some N such that the region $'& N

gives as small a contribution to the integral as
desired. The dominant contribution comes, there-
fore, from $' ~ N or y' & NT/Q'

We now turn to the central question: whether
terms more singular than Eq. (3.6) necessarily
give larger contributions to W(Q', s) as Q', s -~.
This is not the case in the parton model. Note,
first, that Eq. (3.6) has no light cone -singularity
at alt." The h, (y, m ) found in electroproduction
is not present. As was noted, such singularities
arise from the free propagation of elastically scat-
tered partons. In the annihilation diagram for
muon-pair production there is no scattered parton,
therefore no singularity. Notice, however, that
there is an elastically scattered parton and an
associated free-field singularity in the brems-
strahlung diagram of Fig. 4(b). We have argued
that this mechanism is damped relative to parton
annihilation as Q',s -~. The diagram more sin-
gular on the light cone is less imPw. tant at large
Q and s.

To understand better how this behavior might
arise, consider a specific example chosen to sim-
ulate the bremsstrahlung diagram:

(PP ' ~Z„(y}d"(0)~PP ™)
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lar to Eq. (3.7) which do dominate the annihilation
diagram [just replace I/s by 1/M„' in Eq. (3.7)].
The point is that the light cone does not dominate
a Priori, additional assumptions are needed.

Altarelli, Brandt, and Preparata achieve light-
cone dominance by bounding terms in their opera-
tor-product expansion with Regge asymptotics.
It is, therefore, not possible to build up large-
phase oscillations, so a term analogous to parton
annihilation is excluded from their analysis. Their
conclusions rest heavily on the assumption that
Regge asymptotics can be applied to the creation
of a particle of asymptotically infinite mass and
are presumably valid in the limit s» Q' where
appeal to Regge theory is well supported. Our
analysis relies heavily on taking T = Q'/s finite. If
7 is very small the parton bremsstrahlung diagram
discussed in Sec. III B is no longer negligible and

may in fact dominate the scaling, annihilation dia-
gram. It is not surprising that the results quoted
in Ref. 12 disagree with the parton model since the
analyses apply to different kinematic regions.

Massive-muon-pair production distinguishes
clearly between the light-cone approach and the
parton model. The parton-model scaling law
arises from a piece of the two-current matrix
element which is nonsingular on the light cone and

highly oscillatory away from it. As noted earlier,
it is possible to find some model for the matrix
element which both is light-cone dominated and
produces scaling, but only by making what appear
to be arbitrary assumptions about the nonsingular
part of the matrix element. If the scaling law is
verified, it will strongly enhance the attractive-
ness of the parton model for highly inelastic pro-
cesses.

IV. OTHER INELASTIC LEPTONIC PROCESSES
A. e'+e ~P+ anything

Drell, Levy, and Yan' have studied the annihilation of an electron-positron pair to an arbitrary hadronic
state from which a single hadron is detected. The squared amplitude is shown in Fig. 6. A11 hadronic in-
formation is contained in the tensor T„,:

(4.1)

with invariant decomposition analogous to Eq. (2 4). (v, q'-~; x=q'/2Mv fixed; 1 &x&~) In the Bjorken
limit and in their cutoff field theory of pions and nucleons, DLY find that the structure functions (-)MW,
and vW, scale as functions of x and, moreover, that the resulting F, and I', are continuations of the elec-
troproduction structure functions F,(x) and F,(x} to the region x &1:

F,&x) = F,(x) .
Repeating the analysis of Sec. II B, we obtain (for simplicity we consider the trace W"„):

4 OO

g&OiJ„(y)iPn&&Pn(J"(0)iO&= CI n, (y, nP) —"-3F,(rl)+—F,(q) e ' &'",
N 7T

which should be compared with the trace of Eq. (2.3):

4 2E ~ ld
&P~ J„(y)J"(0)(P&=

2
2 n, (y, re) —"-3F,(q)+—F,(q) e' &'" .

2mM „0 q
' 2q

(4 2)

(4.3)

As in electroproduction, it is easy to show that only the leading singularity of 6, [i.e., i/4v (y + ieyo)]
contributes in the Bjorken limit, so that the process is light-cone-dominated.

Nevertheless Eq. (3.3) cannot be obtained from a light-cone analysis without further assumptions.
Assuming free-field singularities, it is straightforward to find the piece of the current product which con-
tributes to the imaginary part of forward Compton scattering for q'&0:

4 2E P

&P) J'„(y)J"(0))P&=, 2, . —"-3F,(q) + F,(r)) e' &'"—an'I y'+zany, „, g
' 2q

where F, are the (scaling) structure functions derived from the discontinuity in the forward virtual Comp-
ton amplitude T„,. There are four distinct pieces in this discontinuity for timelike photons (see Fig. 7)
one of which [Fig. 7(a)] is related (by crossing) to the left-hand side of Eq. (4.3). Although the object on
the left of Eq. (4.3) is related to one piece of the current product in the above equation, and although the
F,(x) contribute to k, (x), we know of no way of retrieving Eq. (4.3) from the light-cone analysis without
additional assumptions. Ellis" has derived the parton-model scali~ laws for this process from a light-
cone analysis. We refer the reader to his work for a discussion of the additional assumptions necessary
to obtain this result.
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ticle matrix element of a current product,

dQ d@3 s mmetrjc

~
2
~

srm m e ~c

FIG. 6. Squared amplitude for positron-electron
annihilation into a hadron, P, plus anything.

Q. y+P~p'+p, +anything

In an earlier paper" we showed that the high-
energy photoproduction of massive muon pairs
may be described in terms of parton annihilation
much like the process P+ P- p, ++ p +anything.
Separating the parton contribution from the large
background of Bethe-Heitler pairs (see Fig. 8)
necessitates measuring a cross section symmetric
in the produced muons and differential in their
longitudinal momentum,

dg f~
dq2dq Q 2q4 y 2 2b Il 2b 2dQ dQ, symmetric Q0 (4.4)

"„&'y&""&P~~l~,(y)~.(0)F~~)f"',

where the muon currents combine to form the
tensor l"'. When integrated over all muon mo-
menta for fixed Q', I""becomes proportional to
g"". In forming the symmetric cross section dif-
ferential in Q, additional components mould in
general enter into l"'. If, however, Q' and s are
very large and the transverse momenta of the
annihilating partons are limited, then to leading
order l"' is again proportional to g"". Since
the same matrix element enters do/dQ' and
(d&r/dQ~dQ, ), , it is not necessary to transform
the cross section of Eq. (4.4) to coordinate space.
Instead we consider dc/dQ' and write down the
relevant matrix element by analogy to the process
P+P- p, '+p +anything:

where f, = 2 for spin-0 partons and f, = 1 for spin--,'

partons. G» is the structure function for partons
of type 0 in the photon. g, and q, are the fractional
momenta of the partons in the center-of-mass
system, constrained by

I 1 "'dg,
(2 )8 Q ) 2 'exp(iP„~ y)F2n(li)2S A'b ~ 0 ~l

b

1

x "'exp(iP'„y)G „-(q,) .
0 ~2 2

Q
CeIIL

q, q, = Q*/s and q, —q, = 2

As in proton-proton production of muon pairs,
this cross section is proportional to the two-par-

This process has the same light-cone behavior as
hadronic production of muon pairs. Photopro-
duction of muon pairs also provides an experi-
mental arena in which to distinguish the parton
from the light-cone approach to highly inelastic

(c)
FIG. 7. Discontinuities in forward virtual Compton scattering for timelike q .
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(a)

FIG. 8. Contributions to y +P —p p +anything from {a) parton-pair annihilation; {b) Bethe-Heitler process.

electromagnetic processes.

C. Other Processes

We have translated several other parton-mod-
el analyses into the language of the light cone.
Among these are the highly inelastic scattering of
neutrinos and of pola, rized electrons from hadronic
targets, and one-particle inclusive electropro-
duction (e+ P- e+ h +anything). In these cases
nothing unexpected is encountered. Perturbative
parton-model analyses of these processes may be
found in Refs. 7 and 30. In the Bjorken limit, the
parton model predicts scaling laws analogous to
electroproduction. In coordinate space, the scal-
ing laws translate into free-field singularities and
light-cone dominance. The light-cone structure
derived in this manner is well known from other
light-cone analyses. '6"'" Since there are no sur-
prises or additional insights, the details are not
presented here.

V. SUMMARY

Massive-muon-pair production at high energy
emerges from our analysis as the proper experi-
ment in which to study the notion of "pointlike con-
stituents in the nucleon. " The scaling law of Drell
and Yan IEq. (4.4)] is obtained naturally in the par-
ton model but not in the more general analysis of
light-cone singularities. Experiments to date have
been performed at only one value of s,"so the
scaling law is as yet untested. In the near future
it will be possible to test this prediction. If veri-
fied, it provides strong support for the parton
viewpoint.

On the other hand, it appears to be impossible
to differentiate the parton model from the analysis
of light-cone singularities in highly inelastic elec-
troproduction and related experiments. Any effect
understood in terms of the elastic, incoherent
scattering of partons is equally well attributed to
free-field singularities on the light cone. Neither
scaling nor any other aspect of inelastic leptonic
scattering necessitates the existence of "pointlike
constituents. " While they need not actually exist,
we have seen how useful partons are in developing
an intuition for the analysis of light-cone singular-
ities. We may identify the free-field singularities
with the free propagation of an elastically scat-
tered parton, and the "longitudinal" variation of
the singularities along the light cone with the cor-
relation of the points at which the virtual photon is
absorbed and reemitted in forward Compton scat-
tering.

In electroproduction it is a matter of taste how
much reality one ascribes to this momentum-
space realization of canonical light-cone singular-
ities. In muon-pair production there is not so
much freedom. Experiment will make it clear
how seriously the idea of "pointlike constituents
in the nucleon" must be taken.
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APPENDIX A

To obtain a manifestly current-conserving form of Eq. (2.9) we first separate out the longitudinal struc-
ture function F~ (q) =Em(q) —2qE, (q):
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~(PI[/ (y), Z, (0)] IP) =' . (g„„D—B„a„) h(y, m') —,"F~(q)eosP„y
M

1
~ da 4p, p„+2—(p, ll„p, ll, l — ;"())p( a) s(y, Ia'asp; y (Al)

(A2)

Equation (2.9) was derived by identifying two quantities under a Fourier transform and is therefore valid

up to terms whose Fourier transform vanishes in the Bjorken limit. The same is true for Eq. (Al). We

may manipulate Eq. (Al) disregarding terms which vanish when Fourier transformed in the sealing limit.
This allows us to make use of the following equivalences (proved below):

44 '(y, m')sinP„y
hjy, m')cosP„y =0 P„y

[a(y, m')cosP„. y] ='-4(P„.&)'

A(y, m')cosP„y =2i(P„.a) , m') sinP„y
(A4)

where 6'(y, m') = —dC((y, m')/dm'. The equality is up to terms which vanish when Fourier transformed in
the scaling limit. Using these substitutions in the second term of Eq. (Al),

&Pl [&„(y),d. (0)] IP) = (g„.& -&„a„) a(y, m') , Z, (ri)—cosP„y

'd
~ 4]P, y'. —(P al(P„a, ~ P„a )+d, (P 4)'] l '(y, ') "P,(a)—

This is, of course, the manifestly current-conserving form desired.
It remains to derive Eqs. (A2)-(A4). Since the equivalence need only obtain under the Fourier trans-

form, we will establish that the Fourier transforms of both sides of each equation are equal in the
Bjorken limit. Beginning with Eq. (A2),

a'(y, m')sinP„y „,
P„y

1

dn e"'0[6(y, m p)e'~y) "]d y

To leading order in the scaling limit,
2 d 1

I = —
z
— dn 2vi5(2n)tv —Q +m n -ma]3)e(nqMv+m')

2m dies

Finally,

gran

[f(q —x) —&(-q —x)].
2Mv

An analogous and easier calculation of the left-hand side of Eq. (A2) yields the same result. The other
identities may be derived from Eq. (A2) by partial integration of the Fourier transform.

APPENDIX B

Here we discuss three problems which arose in
our analysis of highly inelastic electroproduction:

(1) Finding a four-vector P„ to satisfy P; q

=tv and P„' =m to leading order.
(2) Replacing P"„by riP" whether or not P"„=qP"
(3) Divergences in the q integrals of Eq. (2.15)

(for example) near q=o.
Problems (1) and (3) are solved by deleting the

point &=0 from the region of our analysis and re-
moving n =0 from the integrals. Problem (2) is re-
solved by direct calculation.

First we write down some representations for
P„and see what problems arise:

(I) In an infinite-momentum frame

2Mv+ q
q =— , 0, &-q', —

P„=((q'P'+m')"', O, O, qP) .
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Then

MvmP q =gMv+0
gE

P„=m
(II) In the rest frame of P

q =(v, 0, 0, (v'+Q')"'),
m' mR

P„=-,' qM+, 0, 0, -qM+

P„q=q. Mv + 0 (m'x/q),

P =m.
(III) In the rest frame of P with the parameter

m'=0

P „=(qM, qM, 0, 0),
P q =tv
P R 0

Although (Ill) satisfies the restrictions exactly,
it is of less interest to us since the intuitive cor-
respondence to the parton model is lost when m'
(identified with the parton mass) is set to zero.
Representations (I) and (II) break down for small
g when the second term in P„q becomes com-
parable to the first: q-m/P for (I) and (I- (m'x/
Mv)"' for (II). If the q integrals converged near
q =0, this discrepancy would be inconsequential
since it is important only over an infinitesimal
region. This region of the integrals must be
avoided.

To do this, define the region as the Bjorken-
limit region minus the point x =0, i.e., Q, Mv- ~,
e & ix( & 1 for fixed e chosen as small as desired.
Now repeat the steps of Eqs. (2.12) and (2.13) [con-
sider W"„(x)=— 3F,(x) + (1/-2x)F, (x) for simplicity]:

1
W('(x) — dq[6(q x) 6( ~ x)]W~v(q)

This is accurate up to terms whose Fourier trans-
forms vanish in the region 2, but by construction
it does not contain the leading contribution in the
region ix[&e.

The cutoff at e removes the divergences in Eq.
(2.15). It also removes the difficulties in choosing
P„. Consider, for example, Representation (I)
and choose e =(M/P)'" If .(I) is an acceptable rep-
resentation of P„, the Fourier transform of Eq.
(Bl) should yield W"„(x) with corrections which
vanish as P- ~. Let T be that Fourier transform. '

T =— —2[F2(q) —6F,(q)] 5(2P„q —Q ) for qo&0

R

=Q' —W" (7))5 2qMV+ (2MV —Q') —Q'
P 4qP'

where we have kept the leading correction to P„.q:

w(„'(q)

q[I —(m'/4P'q')(I —x)] „„~2,~2)(, ,),„,
mR mR

T W" *— ~ (1 —*} 1+,(1 —*)).4P'x 2P x

These corrections are largest at x=e but with e
= (m/P)"' the corrections vanish like m/P or
faster as P- ~. A similar procedure may be used
for Representation (II) if e is chosen to be
(m'/M v)"'.

We conclude that all of the representations for
the current commutator given in Sec. II are valid
in the Z region: the Bjorken region minus the
point x =0. The q integrals in Sec. II must be un-
derstood to range from e to 1 for arbitrarily small

Lastly we verify that P"„may be replaced by
qP" to leading order in the Bjorken limit. Con-
sider the identities of Eq. (2.13) with P„replaced
by qP~:

e" ' "Cl[a(y, m')cosqP y] d'y

The analogs of Eq. (2.13) are
e& ixi-l.

=pj's Q g —x+

d'y e"'0 [h(y, m')cosP„y].

= vfq[5(q —x) —5(-q —x)]

and so on, for q & e, e &
i x i

& 1.
Finally,

4' (P I [&g (y), d" (0)] I»

.Oa, ' ~E, „-6E,
xcosP„y . (Bl)

and so on. Since c(q &1, the additional term
(q' —1)m'/2Mv contributes only to lower order as
v- ~. This allows us freely to replace P"„by qP"
although the four-vectors themselves need not be
equal.

It may seem artificial to use P„ in Sec. II when
gP could have been used all along. Vfe chose this
approach because it preserves the connection with
the intuitive parton-model picture of P„as the
four-momentum of the parton which is elastically
scattered. In the conventional light-cone analysis,
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q appears as the Fourier conjugate variable to
P y without any particular physical correspon-
dence.

APPENDIX C

Here we show that scaling in electroproduction
cannot be obtained from a matrix element which is
smooth everywhere in coordinate space. For def-
initeness we consider vW, (Q', v); the proof for
MW, (Q, v} is similar. Isolating the contribution
to vW, from the definition of W„, we obtain

eiy, (QP, )=Q Mf'd' ye"'"C,('y, yP), (Cl)

where

We prove that lime, vW, (Q', v) =0 if C, (y', y ~ P) is
continuous in y' [which requires that
limp QC, (y', y P) exists and equals zero]. First
use Eq. (C2) to write

C,(y', y ~ P) = e(y~ P) da' da 5(y' —a'}
0

x e'~'"C, (a', a) .
Equation (Cl) may be rewritten

vW, (Q', v} =Q'Mv da' dnC, (a', a)
0 ~ oo

x(2 v)'b, (q +aP, a'),

(C2}

C,(y', y P) =-C (y, -y P)

C,(y, y P}=0 for y &0. (C2)

where 6 is the causal propagator defined in Sec.
II.

Take the Bjorken limit of vW, by considering
vW, (PQ', Pv) and letting P approach infinity:

lim vW, (P Q', Pv) cc lim P'Q'Mv da' da C,(a', a)n. (2aMvP —Q'P+ a'M', a') .
8~~ 0

Observe that 6(pR', a') = p 2n (R', pa') and define pa' —=u'.
(20 OO a Mlim iy, (QP, ) limQ'M d ' d C, —, d 2M —Q' ~, ').8-- 0 P

(C4)

We may take the limit under the integral provided the limit of the integrand and the integral of the limit
exist. The continuity of C,(y', y ~ P) guarantees the existence of the integrand. It remains to show that the
following integral exists:

I= du' —dn C,(0, a)h(2Mva —Q', u') .
0

The techniques of Frishman' may be used to perform this integral obtaining

1 dI cc (~ ), d C, (0, a) . (C5)

Since we have required C,(y', y P) to be continuous across the light cone, C,(0, n) =0 and lime; vW, (Q', v)
=0, completing the proof. Ways in which additional singularities in C, (y', y ~ P) can invalidate this result
are discussed elsewhere. "
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