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New rigorous bounds on the discontinuities of off-shell nucleon form factors are system-
atically derived and used in two applications. First, upper limits of between 0 and 0.3 are
set on Z2, the proton's wave-function renormalization constant, under different assumptions
about R, the ratio of longitudinal to transverse virtual photoabsorption cross sections, in
the Bjorken limit, and about possible subtraction constants in the sideways dispersion re-
lations for nucleon form factors. The bounds on 22 —1 represent an improvement by
factors of 8 and 32 over previous results and permit a conclusion without neglect of a sub-
traction constant. If the J"= 2" contributions to deep-inelastic scattering do not scale,
Z2 =0 in any case. Second, it is suggested that the Drell-Yan-West relation is the extre-
mum of an inequality imposed by unitarity and analyticity. This is the case if the off-shell
Dirac form factor F(s,Q ), near s = m, is a smooth but nontrivial function of s, as Q —~,
whether or not the J"= 2 contributions scale.

I. INTRODUCTION

More than ten years ago Bincer' proved that the
form factors representing the coupling of an off-
shell nucleon, of mass W, to a spacelike photon
and a physical nucleon are analytic in the cut W

plane. That is, they satisfy sideways dispersion
relations.

Recently Cooper and Pagels' derived rigorous
bounds on the discontinuities of these off-shell
form factors in terms of the nucleon spectral func-
tions and the structure functions W, and v%'„mea-
sured in inclusive electron-nucleon reactions.
Subject to certain technical assumptions —essen-
tially about the number of subtractions required in
Bincer's dispersion relations —upper bounds may
be set on Z„ the proton's wave-function renormal-
ization constant, in terms of the on-shell proton
electromagnetic form factors at large momentum
transfer and integrals over the structure functions
in the Bjorken limit. Specifically, West has an-
alyzed the consequences of the vanishing of
8 =a~(v, Q )/cr(v, Q') in the Regge and Bjorken
limits (by o~ and or we mean the effective cross
sections for a spacelike photon of four-momentum
q and energy v, polarized longitudinally and trans-
versely respectively, incident on a nucleon at rest;
the Regge limit is v- ~, with Q = -q' fixed; the
Bjorken limit is Q~-~, with &o =2mv/Q fixed).
West demonstrated that given asymptotically van-
ishing form factors and plausible, but unproven,
assumptions about possible subtraction constants
in the sideways dispersion relation, the vanishing
of R in these limits implies Z, =O.

This is an interesting result since the SLAC-

MIT experiments~ on deep-inelastic electron scat-
tering indicate that R is indeed small for large v

and Q', and the condition Z, =0 is part of the input
to Drell, Levy, and Yan's parton model' of deep-
inelastic reactions and is interpreted by them as
representing an entirely composite nucleon.

There are three parts to the work reported here.
First, we improve the bounds given by Cooper

and Pagels' and by West' for the discontinuities of
the off-shell form factors. In Sec. II we show how

the analysis of the off-shell electromagnetic ver-
tex is simplified considerably by working with ex-
tensions of the Sachs form factors G~ and G„,
whose imaginary parts may be bounded by o~ and

0~, respectively. We perform covariant calcula-
tions to obtain bounds better than those given pre-
viously. Further improvements result from
bounding the combination of positive- and negative-
cut contributions, almost as efficiently as each
individually, in terms of the optimal combination
of 0~ and a~. The resultant inequalities involving
Z, are better by factors of 8 and 32 than those giv-
en by West' and by Cooper and Pagels. ' Moreover
we derive limits on the subtraction constant pre-
viously ignored by West and have a new restriction
on Z, which is independent of its value.

Second, in Sec. III, we evaluate numerical
bounds on Z„ for the proton, subject to different
assumptions about the behavior of R in the scaling
limit and the possible subtraction constants in the
sideways dispersion relations. The SLAC-MIT
data~ on vW, as a function of ~ show a remarkably
early onset of scaling, for Q & 1 GeV and W&2
GeV (W is the missing mass). However R is at
present not well determined. The best fit in the
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region u ~ 4 is with R = 0.18, but a fit with g = 0 is
almost as acceptable. Accordingly we evaluate up-
per limits on Z, subject to the following assump-
tions:

(A) R = 0 for all ((), or
(B) R =0.18 for (d & 4 and falls off roughly as

(o '" thereafter (so that if Regge poles offer an
explanation of the behavior of vW, at large v and
large ~, then the Pomeranchukon does not contrib-
ute to o~);

(1) a possible subtraction constant in the ms, g-
netic moment dispersion relation vanishes as Q'
~00 or

(2) it tends to any finite limit.
Our results are
(Ai) ZB =0,
(A, ) Z, ~0.13,
(B,) Z, ~ 0.13,
(B ) Z 0.30.
We find no support for West's claim' that Z, ~ 0.1

with assumptions roughly corresponding to case
(B,}, since his input is an inequality toeaker than
ours by a factor of 8.

Finally, Sec. IV is addressed to the relation ob-
tained by Drell and Yan and by West' in parton
models, by Bloom and Gilman, "from an exten-
sion of observed correlations between resonance
electroproduction and scaling behavior, and more
recently by Drell and Lee, ' namely that if the
threshold behavior of vW, in the Bjorken limit is
vW, ~((d —1)~, then E,(Q'), the proton's Dirac form
factor, falls off as Q

~~+'' as Q -~.

From the rigorous bounds of Sec. III we deduce
the following restriction on the behavior of the off-
shell nucleon form factor E(s, Q'), which reduces
to the Dirac form factor at s=m': all but the first
few derivatives d "E(m2, Q')/ds" must vanish as
[ln(Q2)]'Q &~"& or faster as Q~-~.

The number of derivatives we are unable to re-
strict depends on the number of subtractions re-
quired in the sideways dispersion relation and the
asymptotic behavior of the nucleon spectral func-
tion. For example with p = 3 and p, (s)-C/s (which
results in Z, =0}our result holds for n~ 2, pro-
vided, of course, a twice-subtracted dispersion
relation is valid.

The actual Q' dependence of the form factor de-
pends on how restrictive is our application of the
Schwarz inequality. We argue that in this applica-
tion it is a stringent restriction.

The import of our result is that if E(s, Q2) is a
smooth but sufficiently varying function of s, near
s = m, for large Q', then the Drell-Yan-West re-
sult is the extremum of an inequality imposed by
unitarity and analyticity. It is interesting to note
that whilst the vW, data are consistent with p = 3
there is evidence' that G„(Q') is falling faster than
Q

4 at large Q'. That is consistent with the direc-
tion of our inequality.

Our failure rigorously to bound the strictly on-
shell form factor is perhaps not surprising when
one considers the failure of an operator-product-
expansion treatment to predict a sufficiently rapid-
ly falling form factor xo

II. DERIVATION OF INEQUALITIES

Consider the process: nucleon (p)+spacelike photon (q)-off-shell nucleon (p'), where the kinematics
are those for inelastic electron scattering, namely p'= m', q' = -Q'& 0, p" = W' = s, and

2P q=2mv=s —m +Q =&Q

Bincer has defined off-shell electromagnetic form factors in terms of the Lehmann-Symanzik-Zimmer-
mann (LSZ} reduced matrix element

~, ()' )e='f 8* "*('d- l(()(e(*,)[e(*),(„(e))lp, *)(p,/ )"'
W'

[F,(W, Q )y„+F2(W, Q )to»q" +F~'(W, Q )q„]u(p, s)+(W--W).

For Q ~ 0 the form factors are analytic in the cut W plane' and their imaginary parts are given by the
absorptive vertex function

A„(p, q, s) = 2(2v) g 5(p' —n)(p' —m)(0[ $(0) [n) (n [ j&(0) ) p, s) (po/m)'
n

The form factor I', may be eliminated by virtue pf the Ward-Takahashi identity, which we write as

q~r„(p, q, s}=o q'a(p, s)+(W--W),
P'+W

(4)

where n is the charge in units of e (=1 or 0). Equation (4) then requires

Q E~(W, Q ) = (W —m}[Fi(W, Q') —o(] .
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The projection operators for E» as given by Bincer are rather complicated. Considerable simplifica-
tion results from working with the off-shell analogs of the Sachs form factors, projected out by the polar-
ization vectors ~~ and e~.

Let

p" + (mv/Q'}q"
L m(1 + v2/Q2)l/2

and let e~ be any unit spacelike vector orthogonal to both p and q. Then 61 Q'= E'z 'Q'= E'g E~=o
=1, s~ p= m(1+ v'/Q')'+, and er p=0.

We define form factors Gs „in analogy with Eq. (4):

(6)

s~,l„(p, q, s) =G, „(W, Q') S', ,u(p, s)+(W -W)

and from Eqs. (2), (5), and (7) obtain

Gs(+; Q') = F, (W& Q') —[Q'/(W+m)] F,(W, Q')

Q' m
=( ), ( ), @ Qu(p, s)q~(p'+W)~~I'~(p, q, s),

G„(W, Q') = F, (W, Q') + (W+ m)F2(W, Q )
(8)

=
( ), @p u ( p, s)q'r( p" + W}e~rI'„(p, q, s) .

The imaginary parts of G»(W, Q') can now be bounded, covariantly, in terms of the nucleon spectral
functions p»(W') and the inclusive structure functions W»2(W', Q'}, by a Schwarz inequality for the sum

over the intermediate states in the absorptive vertex function azd the sum over spin in the projection oper-
ator. From Eq. (3)

p u(p, s)e'(p'+W)e"A„(p, q, s) = ~(2s)'g 5(p' —n)[u(p, s)g(p'+W)(p' —m)(0~$(0)(n)]
S n.s

t2
x [(nlrb i(0) Ip, s)(p./m)'"]

- 4(2&) [»[(A™)qtA'+W}q'](W- m)'[W'p, (W')+ Wp, (W')]/m)

x [2e„e„W"'(W', Q')/(2m) ],
where

W""(W' Q') =W(W', Q')(1+ v'/Q')e" e" —W(W', Q')(g""+q"q"/Q')

It will be convenient to work with

R(W, Q ) = a I/oz=WL (W, , Q )/W, (W, Q ),
where

WL, (W, Q ) = (1+ v /Q )W, (W, Q ) —W (W' Q')

From Eqs. (8) to (12) we obtain bounds on the imaginary parts of Gs u(W, Q'):

ImGE(W, Q') ' (, (W+ m)'+Q' R
W —m ' (W+ m)' R+1 '

(10)

(12}

(13)

ImGu(W, Q ) @ (W+m) +Q 1-LW, R+1'
where

L(W, Q ) = s W2(W, Q )[W p~(W )+Wpa(W )]/m.
Next consider any combination of G~ and G„

(W ™)a(W,Q )Gs(W, Q ) + Qb(W, Q )Gu(W, Q )
[(W+ m)'+ Q']'~' 7

(14)

(15)

(16)
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where a and b are arbitrary real functions. The orthogonality of e~ and ar enables us to bound ImG in

terms of any combination (oi+cor), with c an arbitrary positive function of Wand Q . From inequalities

(13) and (14)

ImG(W, Q') '
( ~) [ ( ~)), [b(W, Q'}]' R+c (17)

of which the most efficient version is with c =R '"
i b(W, Q2)/a(W, Q ) i, giving

ImG(W, Q ) * L(W, Q )[R'i i a(W, Q ) i+ i b(W, Q ) I )
W-m R+1 (18)

Inequalities (13) and (14) are then special cases of this result.
We shall be concerned with obtaining limits on Z„which depends only upon p, (W'}. The second spectral

function may be eliminated by the positivity requirement iWp, (W') )( W'p, (w~}. It is however more efficient
to use this relation &fter considering the contribution of both positive and negative cuts to the dispersion
relation in W. Here we use the orthogonality of (P'+ W) and (P'- W) to obtain from inequality (17)

ImG(W, Q') ImG(-W, Q'), '
( ~) [ ( @)), [b(W, Q')]' R+c

( )W-m W+m ' ' c R+1
where c is now an arbitrary positive function of W and Q .

The optimal value for c depends upon the sign of the "discriminant"

(b(W, Q )) -[b(-W, Q ))
[a(w, QI))2 —[a(-w, Q*)]~

Our general result is

(20)

'
ImG(W, Q') ImG(-W, Q')

W' —~ W+ m

where

(M(W, Q )N(W, Q ), (21)

M(W', q') = v'W, (W', q')2W'p, (W')/m I,(+W, q'),
and for d & 0 we use inequality (17) with c = d,

N(W Qa) = [a(w Q2)]2+ [ (W, Q )] R+d
d R+1

[ ( ]
b( W ] +

d R+1 '

but for d( 0 we use inequality (18),

Max[[R"'I a(w, Q'} i+ I b(W, Q') I ]', (W —-W) j
R+1

(22)

(23)

(24)

From Eqs. (8}, (16), and (20) we find d= 1 for G = F», so that by (23) our bound is independent of the value
of R and will be used in our discussion of the Drell-Yan-West relation in Sec. IV. However, for
G =(W —m)F» we find d(0, giving bounds on Z, which will be sensitive to the behavior of R in the Bjorken
limit. The following specific cases of inequality (21) are required:

lmGs(w, Q )
W-m

ImGE(-w, Q } 2 2) (W —m) + Q R
W+m '

(W m) R+1 ' (25a)

[[ImF (W Q'}i+[ImF (-W Q'}i]'-
(w —m)'+ q' R+1 (25b)

[[lmF(W q')[ ilmF( W q')i]'(
(W —m)'+ Q' R+1 (25c)

ImF„(W, Q') ImF|(-W Q )
' '

(25d)
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with Q' ~ 0 and W ~ (m+g), where p is the pion mass.
Inequalities (25a), (25b), and (25c) are now used to obtain bounds on Z„given assumptions about the as-

ymptotic behavior of R and about the subtraction constants required in the sideways dispersion relations.
We shall assume that Bincer's form factors F, »(W, Q') are bounded in both W and Q' and hence satisfy

once-subtracted dispersion relations in W for Q' ~ 0. We are then given the subtraction constant for F,
(or, equivalently, F,) by the Ward identity (5), which requires E,(+~, Q') = a [or, equivalently, E,(m, Q')
= 0]. In addition a subtraction constant for F, is required. It will be convenient to take this as r(Q')
= (Q'/2m) xF,(-m, Q'), since this is proportional to the residue of G&(W, Q') at its kinematic pole [see Kq.
(8)].

The dispersion relation for Gs(m, Q') then reads

( @) ( q)
1 ImGs(W Q} ImGs( WQ}
n' ~( ~~) W-m W+m

and from inequality (25a) we obtain

f' W (W& Q&) Q2 R 1/2 2

la-r(q')-G&(m, q')I'~ Jl
dW' p, (W')

2
' 1+

[~+jf ) 2m

(28)

-(Z ' —1)„' dW ' 1+
d&,»a 2m (W —m)' R+1

using a further Schwarz inequality for the integration. Thus, writing the integral over v =2mv/Q',
r" vW W' Q~Ia-r(q'}-G (m, q')p

Zg Jyyv&gggy&j)/e& N &L 1 W m R + 1

(2'I)

(28)

We now consider the Q' ~ limit of inequality
(28) and assume the Bjorken limit vW, (W', Q')
—E,(e), consistent with the SLAC-MIT data. The
form factors Gs „(m, Q') fall off at least as fast as
Q

4 experimentally. Nothing is known about the
subtraction constant. This gives

la-r(")I'- d~ (29a)

and similarly from (25b) and (25c)

IaP~ des
Za, " Fg((u} [[R(s)—1)P"+ I]'

2 1 CO R+1
(29b)Z~, t" F~(s)) [[R/((o —I)]'"+I]'

R+1

III. EVALUATION OF NUMERICAL BOUNDS
ON THE PROTON'S Z~

We now use the data on inclusive inelastic elec-
tron-proton scattering to evaluate bounds on Z2,
subject to various assumptions about the behavior
of R in the Bjorken limit and about the subtraction
constant r(~}. Inequalities (29a} and (29b) furnish
a sufficient basis for our discussion. It can be
shown that the elimination of r(~) between inequal-
ities (29a) and (29c) yields an inequality no more
stringent than (29b), whatever the values of R.

A very good fit4 to the vW2 data with @2~ 1 GeV'
and W~ 2.0 GeV is

vW, (W', Q') =0.557(1 —I/&u')'+2. 1978(1—I/~')4

(29c)
—2.5954(1 —I/a& ')', (30)

From (29b) and (29c) follow two weaker inequali-
ties which do not depend upon R,

laP- du&
1 —Zg Jg (0

(29d)

(29e)

Inequalities (29a) and (29b) are those we shall
use in Sec. III. The relevant integrals converge if
RE,(&o) falls off as some power of v as ru-~. In-
equality (29a} is an improvement by a factor of 8
of a previous result of West and inequality (29d)
corresponds to a result of Cooper and Pagels im-
proved by a factor of 32 (see Ref. 11).

where v' = re+ m'/Q' is indistinguishable from &u

in the Bjorken limit. This fit encompasses data in
the region 0.8&1/&u'&0. 1 and we shall use it in
evaluating the integrals. A crucial feature of this
fit is that F,(a&) tends to a constant as &u -~, cor-
responding to a diffractive contribution in the
scaling limit. A necessary condition then for the
convergence of the integrals of inequalities (29a)
and (29b) is that R vanish as &o-~, i.e., that the
Pomeranchukon couple to transversely but not to
longitudinally polarized photons in the scaling lim-
it. In fact R is not well determined at present.
The best fit is with R = 0.18+0.1 with no indication
of a strong dependence upon v and Q'. However
R =0 is almost as acceptable. Accordingly we give
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bounds on Z, in the alternative situations:
(A) R =0 for all v, or
(B) R =0.18 in the region at present well inves-

tigated, with co~4, and falls off roughly as co "'
thereafter, since only nonleading trajectories with
o. ~ 2 contribute to o~.

It remains to consider the possible subtraction
constant

I'(~) = lim (Q /m)E2(-m, Q ) .
Q2 ~oo

A slightly different derivation yields inequality
(29a) with a.n alternative subtraction constant

I"(~) = lim 2m
SGs m, o)

Q2~oc sW

which is the result of West' improved by a factor
of 8. We know of no argument whereby the vanish-
ing of E,(m, Q'} or Gs(m, Q ) at large Q' permits
one to set either subtraction constant equal to
zero. Therefore we study the alternatives:

(1) I'(~}=0, permitting a bound on Z, from (29a),
or

(2) I'(~) is finite, requiring a bound on Z2 from
(29b).

The numerical results are
(A, ) z, =o,
(A, ) Z, ~ 0.13,
(B,}z, ~ 0.13,
(B,) Z, ~ 0.30.
We remark that West' has claimed a limit Z,

~ 0.1 results from a fit to the deep-inelastic data
with R =0.18. This numerical result is difficult to
reconcile with his input, which is inequality (29a)
ueakened by a factor of 8. The relevant integral
diverges unless RE,(~) is assumed to vanish at
large w so that no conclusion is possible without
assumptions qualitatively similar to (B,), which
give Z, ~0.54 in his case as against our bound

Z, ~ 0.13.
Finally in this section, we comment on the

stringency of our inequalities. In deriving bounds
on the discontinuities of the form factors a
Schwarz inequality was used for the sum over in-
termediate states. Only those with the same quan-
tum numbers as the nucleon contribute, so that
our result may be stated in )erma of the structure
function for producing only I = 2, J' = 2' final
states, rather than the full inclusive structure
functions. It is evident that the lack of experimen-
tal information or theoretical models relevant to
the final states in electroproduction forces us con-
siderably to weaken our inequalities by dealing
with the inclusive process. For spacelike photons
we have no bounds on the partial-wave projections
of the forward virtual Compton amplitudes. If,
however, some E dependence is assumed for non-

forward virtual Compton scattering in the Bjorken
limit, greater stringency may be obtained by pro-
jecting out the J"= 2

' component with the appro-
priate d functions. " For example a form e ', with
B a constant, would lead to the vanishing of J"= &'

contributions in the scaling limit and one could
conclude Z, =0, irrespective of the behavior of R.
On the other hand a I; dependence of the form e'~~

is not sufficient to permit this conclusion.

IV. THE DRELL- YAN-WEST RELATION

By the Drell-Yan-West relation we mean the
prediction" that the Dirac form factor of the pro-
ton vanishes as Q

~~"' as Q'-~, if E2(w) o: (&u —1)~

near co = 1. The data are consistent with this rela-
tion with p =3.

Originally this result was obtained by Drell and
Yan' from their parton model in which the nucleon
is supposed to behave as a collection of instanta-
neously free pointlike constituents when viewed in-
teracting with a highly virtual photon in the infin-
ite-momentum frame. In this picture the structure
function is given by

n

vW, (s, Q'} =xQ Q f,"(x)~,',
n a=1

(31)

where f,"(x) is the probability that a parton a, of
charge A,„among a collection of n partons, car-
ries a fraction x= I/&u of the total longitudinal mo-
mentum. Drell and Yan showed that the Dirac
form factor is given by

1 n

E,(Q') = dx g g g ",(x, Q') ~. ,
0 n a=1

where there exists a Schwarz inequality

Ig".(x Q')
I
& f".(x) .

(32)

(33)

They argue that the dominant contribution to (32}
occurs when the interacting parton carries all but
a fraction m/Q of the longitudinal momentum, with
m a characteristic mass. Thus E,(Q'} is bounded
by (m/Q)~" and it is assumed that the inequality
reflects the actual Q dependence.

The same result was obtained by West, ' inde-
pendently, in a parton model. Bloom and Gilman"
have suggested that it may be viewed as an ex-
treme case of observed correlations between res-
onance electroproduction and scaling behavior.
More recently Drell and Lee' have given a covari-
ant model of the proton as a bound state in which
the result, with p=3, follows using the Bethe-
Salpeter equation in the ladder approximation, with
scalar gluons.

Our concern here is to extract as much as is
possible from the proven analyticity properties of
the electromagnetic form factors and the rigorous
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unitarity bounds of Sec. II, without additional mod-
el-dependent input.

We define a suitable off-shell form factor in
terms of Bincer's form factor F,(W, Q }. Let

F(s, Q~) = F,(W, Q )+(W- -W), (34)

where s =W'. Then F(s, Q') is analytic in the cut
s plane and reduces to E,(Q'} at s = m'. Its imagi-
nary part is restricted by inequality (25d):

) ImE(s, Q') [
& s(s —m') [W,(s, Q')p, (s)/2m]"'.

(35)

We now show that all but the first few derivatives
d"F(nP, Q')/ds" are bounded by (lnQ')'Q '~"",
where c is an arbitrary positive number. The
restriction upon n depends on the unknown asymp-
totic behavior in s of the nucleon spectral function

p, (s) and the off-shell form factor F(s, Q'). Let us
assume that these are bounded by s' and s', re-
spectively. Then for n & b we may write an n-
times-subtracted dispersion relation and use in-
equality (35),

[W( q') (s)/2m]'"
(m+~)2 s —m

(36)ds p, (s)(s —m')~" ' '" ds [W,(s, Q')/2m](s —m'}'
~ (m+p) ~ (ne+p)

where we have used a Schwarz inequality for the integration over s. Taking the Q'- ~ limit, we obtain

lim
p&~~

(3V)

The integral over the structure function is finite
for arbitrarily small positive e. The integral over
the spectral function is finite for n & (p+2+a)/2.
Thus all derivatives with n & 5 and n ~ (p+2+ a)'/2
are bounded by (lnQ')'Q ~~"~. To get some idea of
the number of derivatives we are unable to restrict
one must consider what are reasonable values for
a and b. In Sec. II we assumed b =0 corresponding
to a constant term arising from the equal-time
commutator and given by the charge. Elementarity
of the proton (Z, &0) would correspond to a & -1,
but a& 0 is a sufficient condition for the existence
of the Lehmann representation. For concreteness
let us assume p=3 and a=-1, which corresponds
to a composite proton (Z, =0) and involves only a
dimensionless constant in the spectral function.
Then our result holds for n ~ 2 provided the side-
ways dispersion relation requires no more than
two subtractions, which is hardly a restrictive as-
sumption. If

lim F(s, Q ) -f(s)g(Q~),
Q~~ce

near s = m', and f(s) varies at least quadratically
in s then g(q~) is bounded by (lnq )'Q f~"~. Loose-
ly stated our result is that the Drell-Yan-West re-
lation is the extremum of an inequality imposed by
analyticity and unitarity, provided the off-shell
electromagnetic form factor is a smooth but suf-
ficiently varying function of s, near s = m', as
Q~~ oo

Note our inability to exclude logarithms in Q'.
In the Drell and Lee bound-state model' F,(q')
~ (lnQ ) Q and E, (m) ~ (&u —1)', consistent with
our result.

Finally we discuss whether the bound may be
made more stringent by considering only J"= &'

contributions to vW, . Even if the t dependence of
virtual Compton amplitudes were given by e ', so
that the J'= &' contributions did not scale, no im-
provement may be achieved. In that case the
Bjorken limit of Q'vW, (~')(s, Q') behaves as
(v —1)~"near a& = 1 and the same result is ob-
tained from inequality (3V) with e —-1.

V. CONCLUSIONS

The inequalities of Sec. II, which set upper lim-
its on Z, if R vanishes as co -~, represent im-
provements over previous work in three respects:
numerically, in their sensitivity to the behavior
of R in the Bjorken limit, and in permitting a
conclusion without neglect of the subtraction con-
stant. The upper limits on Z, of between 0 and
0.3, evaluated in Sec. III, indicate the latitude in
drawing conclusions about the compositeness of
the proton from the deep-inelastic data, given in-
adequate experimental information about R and the
uncertainty of the subtraction constant. However
this is a very weak application of the unitarity in-
equality, since Z, =0 if the J"= ~' contributions to
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virtual photoabsorption do not scale. Our result
on the Drell-Yan-West relation is a more strin-
gent application of unitarity and analyticity. We
conclude that the proton's Dirac form factor E,(Q')
= E(nP, Q') is bounded by (lnQ')'Q t~"' if F(s, Q')
is a smooth but sufficiently varying function of s,
near s = m', as Q -~. This is true whether or

not the J"= 2' contributions scale.
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We study the relationship between the parton model and the analysis of light-cone singular-
ities for highly inelastic leptonic processes. For deep-inelastic lepton scattering the parton
model is found to be a momentum-space representation of any model in which free-field
singularities on the light cone are dom&~~~t. Scaling laws and sum rules derived in one ap-
proach are shown to obtain in the other with equivalent assumptions. For massive-muon-
pair production the two approaches are found to differ fundamentally. In the parton model
the lea~&~~ singularity is dominated in the high-mass limit by the. nonsingular»~&&&&ation
diagram. The scaling law which is obtained in the parton model is not obtained from a light-
cone ~~~&ysis without additional, see~&~f 1y arbitrary assumptions. Massive-muon-pair pro-
duction therefore tests the parton model in a region where it is not equivalent to the light-
cone approach. Several other processes are studied including one-particle inclusive e+e
&~~&&&Iation and photoproduction of muon pairs.

I. INTRODUCTION

The theoretical effort to understand the hi, ghly
inelastic interactions of leptons with hadrons has
been extensive in the past few years. Much of this
work comes in response to the SLAC-MIT inelas-

tic electron scattering experiments' and, in par-
ticular, to the observation of scale independence
at large energy and momentum transfer. Our ob-
ject is to explore the relationship between two of
the multitude' of theoretical models in which this
process has been studied: the parton model and


