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In parton models the most singular part of the electromagnetic level shift of a physical
state is predicted to be a weighted sum of the level shifts of the partons. This leads to a
tadpole model for masses squared. Requiring consistency of this result with Cottingham's
formula leads to a prediction of the cross section for absorption of virtual scalar as well
as transverse photons in the Bjorken scaling limit. If these cross sections are in apartic-
ular ratio to each other, mass shifts or differences will be finite in conventional electro-
dynamic s e

I. INTRODUCTION

The apparent scaling behavior of the structure
functions measured in deep-inelastic electron-nu-
cleon scattering' have been accounted for by two
basic theoretical approaches. The more abstract
and formal approach assumes a simple form for
the commutator of the hadronic electromagnetic
current on the light cone. ' Kinematic analysis
shows this to be the space-time region ultimately
proved in deep-inelastic scattering. ' The MIT-
SLAC results have also been realized more con-
cretely in parton models in which the virtual pho-
tons scatter incoherently from the nucleonic con-
stituents (partons) which can be considered instan-
taneously as free, bare particles. 4 These two ap-
proaches are really complementary, for the par-
ton models can be regarded as a particular real-
ization of a light-cone algebra isomorphic to that
generated by the electromagnetic currents of the
free parton fields.

In this paper, we look at parton pictures for the

electromagnetic mass shifts of hadrons. This is,
in a sense, a contraction of the problem studied in
the inelastic scattering experiments since the most
singular parts of the electromagnetic mass shifts
are governed by the behavior of products of currents
near the tip of the light cone. The parton models
give a realization of the original operator expan-
sion suggested by Wilson, ' and are consistent with
the general formula for leading singularities pro-
posed by Bjorken. ' In another sense, however, the
mass differences study more than the inelastic
structure functions since the latter are proportion-
al to the absorptive part of the forward brompton
amplitudes for virtual photons while the mass dif-
ferences depend upon the real parts as well. There
have been previous attempts' to relate the scaling
behavior of structure functions to divergences in
calculations of electromagnetic mass differences
from Cottingham's formula, ~' but our model being
more specific leads to more definite and complete
results.

In the parton model we picture hadrons as a col-
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lection of bare particles which are instantaneously
free. This suggests that the contribution to the
level shift from photons of large virtual momenta
should be a sum over the parton distribution func-
tions of the level shifts of the partons. This turns
out to be the case, where it is the energy shifts in
the infinite-momentum frame which are directly
related by the summation. This leads to a corre-
sponding formula for the shifts of the squared
masses of the physical particles as a sum of shifts
of the squared masses of the partons.

If the charged partons have spin 0 or spin —,', the
calculated shift diverges quadratically or logarith-
mically, respectively. The divergent term takes
the form of an infinite c number multiplying the
expectation value of a regular operator (more pre-
cisely, it is a sum of such contributions). We can
replace the infinite c number by a numerical pa-
rameter to be determined from experiment either
in the spirit of renormalization theory or from a
belief that some as yet undiscovered mechanism
will eventually cut off the q' integrations and give
us a finite calculation of the second-order electro-
magnetic mass differences. The resulting terms
have the form of tadpole contributions to the shifts
or differences of the squared masses. '

If the partons are isosinglets and isodoublets
only, as in quark or other triplet models, these
singular terms contribute only to the I=0 and I= 1
pieces of the mass shifts. Mass differences trans-
forming as I=2 should, therefore, be finite when
calculated from Cottingham's formula.

The coefficients of the divergent terms can be
compared with those obtained by using the scaling
hypothesis for the absorptive parts of the Comp-
ton amplitude in the dispersion formulation of Cot-
tingham. For spin- —,

' partons, consistency requires
a certain sum of the structure functions to ap-
proach the scaling limit as 1jq'." The specific
form of the coefficient is determined from the par-
ton distribution function. This result predicts the
form of 0„ the total cross section for the absorp-
tion of virtual scalar photons in the scaling region.

If the charged partons have spin —,
' and zero rest

mass, the mass shifts are finite. This implies a
simple proportionality between a, and cr, in the
scaling regions (o, is the total cross section for
transverse photons). Assuming this relation to
hold everywhere, we can estimate the continuum
contribution to the neutron-proton mass difference
from recent MIT-SLAC results. ' This continuum
term has the correct sign but is two orders of
magnitude too small to account for the observed
mass difference. '

The necessity for subtractions in the dispersion
relations of the Cottingham formula" corresponds
to the presence of contributions to mass shifts or

differences from "wee" partons whose momentum
distribution cannot be expressed as a function of
the scaling variable. The apparent degree of di-
vergence of the final q' integrations is unaffected
by the subtractions.

These ideas may be extendable to the strong
mass differences among SU(3) multiplets and to
the weak parity-conserving spurions which, ac-
cording to the current-algebra predictions of Suz-
uki and Sugawara, are supposed to determine non-
leptonic s-wave decays of hyperons. '4

In Sec. II we review the parton model and derive
our basic result, Eq. (13). More explicit calcula-
tions in See. III using the Bjorken limit and a per-
turbation calculation in field theory confirm the
deduction. In Sec. IV, we calculate the mass shifts
from Cottingham's formula and investigate the im-
plications of consistency between this formalism
and our earlier formulation.

II. DERIVATION OF THE MASS-SHIFT
FORMULA IN PARTON MODELS

where H, is the Hamiltonian for strong interac-
tions, we can expand the physical state as a super-
position of plane-wave states of the free particles
("partons") of the underlying field theory:

Since the U matrix conserves -three-momentum,
we define

The wave function g" is normalized to

xg&»P p, . (4)

The derivation of our results is carried out con-
veniently in the formalism of Drell, Levy, and
Yan, "which we summarize very briefly. To es-
tablish normalization conventions we note that our
one-particle plane-wave states are normalized as

(P'
I P& = (27)'5 "(P' —P) .

Introducing the U matrix,
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A one-particle distribution function is defined by

xg&» -p — p,
f=2

and normalized to

1=+ )l d'pf"(p).

(5)

Extending our notation to include different types
of partons, we label the states by the set of occu-
pation numbers of the identical particles (N&), and
define in analogy to (5) a one-particle distribution
function for a particle of type j, f("&}(p).

The normalization is

1=g g—' tf("&}(p)d'p (Va)
) N J

In an infinite-momentum frame, P=P,-~, the
longitudinal momentum of a parton is a fraction,
x =p„/P, of the momentum of the physical parti-
cle; the transverse momenta have a finite cutoff.
The energy dependence of the wave functions scales
so that we can write the momentum dish ibution as
functions of x and p„ f("s}(x, p, ), normalized to

N)
dx d'p, f (,

"~}(x, p,}. (7b)N ~0
{Nf)

If A(0) is any dressed local operator, we can
write

»m&PIA(0) IP) = Itm Z &UPI(Ng&&(N&)IUA(0)U 'I(N&)&&(N~)l UP&.
P~ co P~ {Nf)

{Nq)

a(0) =UA(0)U is the undressed operator. If a(0) is a one-particle operator, bilinear in the bare fields,
we get

('iii(&I&(0(i»=&I, miff
"' ((*,(i)(r( p(i(ii, la(o*)(*,(, (i, i uxa (i'

{N )f

In particular, let A =JD(0}, the electric charge density. Then the total electric charge is given by

q = &P I Z, (0) IP&

= QQ N(Qq Jtf~~"&}(x, p, )dxd2p, .
{Nf) g

(10)

In general, this is an additional normalization constraint on possible distribution functions. If, however,
Q("&» is symmetric in the moments of all the constituents, so that f ("&} is independent of i, we can use
conservation of charge,

0 =QNg Q~ I (v,}a*~

to reduce (10) to our original normalization condition.
The well-known scaling limits of the inelastic structure functions in the parton model are recorded for

reference':

W, .=2Eg &Pl~, (0) le&&el~. (0)IP&(»)'5"'(P+ q- P.)

P q & P q

The scaling limit (lim) is defined by
Bj

P. q=-Mv ~, q --~, Mv/q~ fixed,

lim W,(q, v)= F (x=-q*/2Mv)

=(2s) 8 Z5~&N&Qg'ff"' (x) ~

{Nf)

lim 2MvW2(q*, v) =F~(x)
Bj

=BvM2 Q QN(Q, mf((x)x,
{Nf) C

where f(x) is the one-particle distribution inte-
grated over p, . 5„=0,1 if the parton has spin 0 or
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—,', respectively.
Vfith these preliminaries, we can write down the

leading behavior of the electromagnetic mass shift
quite easily. To the first order in the fine-struc-
ture constant, the mass shift is determined from
an effective operator

S(0)=f 4 rD""(r)T (J„(r)J„(0)), (12)

where D"" is the free photon propagator and J„(x)
is the dressed electric current density of the had-
rons. The energy level shift is given by 5E
= (P ~

S(0)
~ P), and is related to the mass shift by

SE = (5M'/2E.
The most singular contribution to 5E comes

from the region near r„=O. At this point S(0) ap-
proaches a local operator. If we evaluate the en-
ergy shift in an infinite momentum frame, in the
limit P-~, the most singular term is given by

) 1
5E(&) —QQ + (fgf (&g) (&)5E(s)

{~~) g

(13)

The energy shift of the particle is the sum of the
energy shifts of the partons weighted by the proba-
bility for a given parton to be present.

For the parton energy shift, we can write

gE( )
2E] E]

For all except "wee partons" E, = xE, so that

5(M')"= QQX5(M')(') jl
{N&) t

(14)

These formulas will be rederived by Wore ex-
plicit calculations in Sec. III. At this point, how-
ever, we can discuss certain consequences of our
result.

(1) If the charged partons have spin 0 or —,', the
expressions for 5M, ' are, respectively, quadrat-
ically or logarithmically divergent.

(2) If the charged partons all have spin —,
' and

they belong to isodoublet or isosinglet charge
multiplets, then the formally logarithmically di-
vergent expression has pieces which transform as
I3=0, I=0 or 1 isotopic tensors. Mass differ-
ences which transform as I=2 are finite in such a
model and can be computed from Cottingham's for-
mula.

(3) The parton mass shifts 5M, ' can be written
as Q, 'C where Q,

' is the squared charge of a par-
ton, and C is a divergent number which is formal-
ly equal for each member of a parton isomultiplet.
If, in the spirit of renormalization theory, we re-
gard the C's as c numbers to be fitted to experi-
mental mass differences, our singular contribu-

tion to the mass shift is equivalent to a tadpole
model. For models restricted to partons with
quantum numbers as specified in comment (2) a-
bove, we have obviously a tadpole model for I= 1
electromagnetic mass differences. Actually, we
have tadpoles for masses squared, but for purely
electromagnetic differences, this hardly matters.

(4) In addition to the ultraviolet singularity, ex-
pression (14) appears to have an additional diver-
gence in the integration over x if f (x) does not go
to zero sufficiently rapidly as x-0. This effect
is spurious, however. The troublesome factor of
I/x is actually lim~ „(E/E,), which is not equal
to I/x very close to x=0. If the distribution func-
tions do not vanish fast enough for the integral to
converge, then it should be cut off at some xo«1
and the contribution from wee partons x& xo must
be treated separately. The impulse approximation
we have used to get our result breaks down for
this part of the parton spectrum.

If we assume a power behavior, f(x)-x', near
x=0, then convergence of the integral requires
a&0. If a &0, the contributions from wee partons
must be handled more carefully and the singular
contribution to the mass shifts cannot be expressed
in terms of the scaling limit of the parton distribu-
tion function. "

(5) It is natural in a parton model to think of a
particle as a core of partons and antipartons with
the quantum numbers of the vacuum plus some va-
lence partons and antipartons which carry the
quantum numbers of the particle. A common
choice is to suppose that the number of valence
partons is fixed and finite, and that states of high-
er total occupation number N have just more par-
tons in the core. ' If proton and neutron structure
functions approach each other for small x
[Mv/(-q') large], then the leading term in the dis-
tribution function f(x) near x=0 comes from the
core partons and antipartons.

Assume that the charged partons consist of an
isodoublet (d', X) and an isosinglet ()).). The parton
wave function of a neutron is obtained-from that of
a proton by replacing 6' partons by X partons and
% partons by 6' partons one at a time. If we as-
sume that the valence particles for a proton are
partons only and not antipartons, and we assume
that the proton-neutron mass difference is domi-
nated by the tadpole contribution, then we conclude
that

()Mp,(go, —5M„,„(,„())~ —((L)e —1)

and

neutron ~proton n y ~ Qg 2 .
For the usual quark triplet model, of course,

Q+= , Q~=Q), =-—,'. Therefore, if the physical
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proton-neutron mass difference is to be ascribed
to the singular contribution of the quark partons,
there must be some admixture of antiquarks in the
valence yart of the nucleon wave function. Similar
discussions can be given for multitriplet models.

(6) It would seem possible to turn this model in-
to a general tadpole scheme for octet dominance
in SU(3). There are some problems, however.
For electromagnetic masses, assume that there is
a single quark-parton triplet, neglect SU(3) break-
ing in the parton wave functions of a physical multi-
plet, and neglect mass differences among the
quarks. Then 5M ' transforms as a sum of an
SU(3) singlet operator and an SU(3) octet operator
with the quantum numbers of electric charge. In
the models of comment (5), the presence of a non-
vanishing d/f ratio implies that there are anti-
quarks in the valence part of the wave function.

Suzuki and Sugawara have shown from partial
conservation of axial-vector current (PCAC} and
current algebra that hyperon s-wave nonleptonic
decays are determined from matrix elements like

H is the effective nonleptonic weak Hamiltonian;
B and B' are baryons. If we assume for & a cur-
rent-current interaction mediated by an intermedi-
ate boson, then me can analyze the singular part of
the weak spurion vertex above and get a result
analogous to (13). A tadpole associated with this
(quadratically} divergent term will have the same
d/f ratio as the electromagnetic mass splitting.
However, if we can apply the parton model direct-
ly to the complete energy-momentum conserving
matrix element describing the decay

suit analogous to (14), which will give a matrix
element with the same d/f ratio as our electro-
magnetic mass shifts. However, it will be the
squared masses which are described by this oper-
ator and which are supposed to satisfy a Gell-
Mann-Okubo formula for all particles. For the
baryon octet a squared-mass formula works to
within -2%, but it fails significantly for the ~

decimet. It is, of course, a dynamical assumption
that gs should be considered SU(3) symmetric. If,
instead, we make the ad hoc assumption that
gs/~Ms is symmetric, we will get a Gell-Mann-
Okubo formula linear in the baryon masses.

III. SOME FURTHER SUPPORT

FOR THE RESULT

d
Sm' J (q'j„

e' 1
4m 13'7 '

T„=2Ei Jt d ' r e" "(P
I
T (J„(r)Jp(0)) I P) .

(15)

The basic result, Eq. (14), can be made more
plausible by some further calculations. For spin-
—,
' partons, the original method of Bjorken' for ana-
lyzing logarithmic divergences in the calculated
electromagnetic self-energy can be adapted to our
model. For spin-0 partons, a perturbation calcu-
lation to second order in the strong coupling con-
stant agrees with (14).

A. Bjorken Method

The mass shift can be written as

then the analysis of Nussinov and Preparata" pre-
dicts that the quadratic and logarithmic diver-
gences vanish for both a direct current-current
and a boson-mediated form for H (0).

It is tempting to assume that SU(3)-breaking
mass differences come mainly from the mass dif-
ferences between the (3I, (P) quarks and the A. quark.
Using the operator s,(0) = qA q evaluated between
SU(3)-symmetric wave functions, we will get a re-

It will be convenient to have a well-defined ex-
pression for the singular mass shifts which we can
obtain by regulating the photon propagator. For
fermion self-energies we replace I/(q2)s by
-A /q2(qm —A2). The singular term is identified
with the leading term in the limit A -~. For bo-
sons I/(q')s will be replaced by A'/q'(q' —A')'

If there are no contact terms in the Compton
amplitude, the large-q2 behavior of T is found by
taking the limit qp- i, q =0, which gives

lim T„„=—,g J)d'r[&PI J„(r 0) In&&nlJ~(0)IP&(E, -E~)+(PIJ~(0)ln&(nIJ'„(r, 0)IP&(E, —E~)].
2E

ap~i~
(16)

We can evaluate the coefficient of 1/q, ' for E~ very large so that the states
I P) and

I n) contain only for-
ward moving partons:

lim T„„=—,lim 2E g Jt d 'r[(UP Ij „(r,0) I Un) (Un Ij „(0)I UP)(E„E~)-
a ~4~ qp Is~~

p
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(17)

where j (r) is the undressed electromagnetic current in the infinite-momentum frame. The sum of the en-

ergies of the free partons in the states
I UP) and

I Un) are equal to the energies of the physical states I P)
and Is), respectively:

Hol v» =&p I v»,
where H, is the free Hamiltonian of the partons. Then closure allows us to write (17) as

lim T „=—, lim2E d'~ UP j„r,O, Hp, j„O UI'
qp~ j oo Qp E~ oy

(18)

For spin--,' partons, the double commutator is bilinear in the free field operators, and T» can be ex-
pressed as a sum of parton contributions

1 E
lim T„„=—2 lim g PN, —fPs) (x, p, )dx d'p,

Cp~f
~

~p E~ o E

d'r2E, xP, p„i j„r,O, Hp, ), 0 xP, p„i

The second-order mass shift of a free fermion is one case in which the Bjorken limit is known to give the
correct logarithmically divergent contribution. Using E/P. , = 1/x, we recover the result (14) with20

3a A'
5M; =4 Q] M,. ln

B. Perturbation Calculation for Spin-Zero Particles

For spin-0 fields, the Compton amplitude has a contact term and the Bjorken method may not be applica-
ble. In this case we turn to a model of a charged. scalar field 0 and a neutral scalar field 4 interacting via
a trilinear interaction, g+g@.

Drell and Yan ' have considered this model because it is superrenormalizable and gives structure func-
tions which satisfy scaling in the Bjorken limit. They calculated the structure function for the 4 particle
of the two-particle state to order g2 and found

gvM2g~ «2(] «)
lim 2MvW~(q, v) =

(4 ), (20)

where M is the mass of the 4 field and p, is the mass of the 4 field. Comparing with (11) the parton dis-
tribution function to order g2 is

(21)
g x(1 —x)

(4w)' M'(1 —x)'+ g'x '

The corresponding contribution to the electromagnetic mass shift is given by Feynman diagrams of
Fig. ]..

To separate the leading mass-shift contribution from the wave-function renormalization, let (p+ k)2 = M'
in the electromagnetic self-energy part. The sum of the Feynman diagrams is

5M (g ) =igm
I ~(k —g ) '(k2+P k) ~5M2(0),

d k
(22)

where

d'q A' q'(q' —4M') 2o,
(2v)4 q2(q2 A2)2 4 4[ ( p+ k)]2

The k integration in (22) can be performed after combining denominators by the standard 1'eynman para-
metrization. The result is

2 1
m'(g') =, , ~M~(0)(4v)' 0 M'(1 —x)'+ p, 'x
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—f ("» (x)5M'(0).
idx

o X

In this case f(x) vanishes linearly as x-0 and there is no problem with wee partons.

(23)

IV. COTTINGHAM'S FORMULA AND THE APPROACH TO SCALING

Scaling in deep-inelastic scattering has been shown to imply divergences in electromagnetic mass shifts
and differences calculated from Cottingham's dispersion-relation method. ' However, the correspondence
between divergences in the Cottingham approach and Eq. (14) is not always apparent in previous calcula-
tions. We will make this relation explicit. Much of the following material is review and is presented for
coherence and completeness. The principal new results are formula (33) for ow in spinor parton models
and the sum rule (34) for the average charge squared times mass squared per parton.

We start from
~ i+ 4

T„„=i d re" "2E P T Jx JO) P
(15)

T„„is expanded in kinematic-singularity-free amplitudes

2

T(e„e.-e'E„)&'(";)~.(M, '„&.——(P„e. P„e.)+ "z„.) 4(e', )M " Elf

A Wick rotation of the qo contour leads to

dq2 +c
5M'= » dv(q' —v'}'"[3q't,(-q', iv} —(qw+2v') t,(-q', iv)].

(24)

(25)

For spacelike q', the t's satisfy dispersion relations in v. Assume for the moment that no subtractions
are required. We obtain

Q
"~ d 2 +0

5M =, dv(q —vw)asw
2w'~, (q')„~

"Imt, (-q', v') "Imt, (-q', v')
v'&v' —(q'+2v') „, v'dv'+Born terms

Vo Vo

(26)

With our normalization conventions,

j. v2
Imt, (-qw, v) =

w W, (-ql, v) ——
2 Ww(-qw, v)

Imt, (-q', v) =,W, (-q', v).
2q

(27}

Assume that in evaluating the large-q contribution to the mass shift, the limit q ~ may be taken in-
side the dispersion integrals. +hen,

5M'i'»= » —
J

—lim W, —~, —(2MvW, ) +, J) dxlim(2MvW, )
3a q'dq' t'dx. 1 1 1 t'
Bwm ~ qws 0 x Bi

1 4MRx 2q 0 9j
(28)

If the integrals over x exist, the first integral
gives rise to a quadratically divergent self-mass
and the second term generates a logarithmic di-
vergence.

For charged scalar partons, W, =0,

lim(2MvWw) =8wMw g g f("s»(x)xN, Q
w

Bj fr~) g

k
~4r —~
p+k+q

p p+k p p+k

q

FIG. 1 Feynman diagrams for gjtf (g ) in ggp mode&.
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and we set

1

(q 2) q 2(q R + A2)2

The first x integral is dominant, and we get
fI"~' x dx

5M ~'»= —A QQN Q
4 p

(N&} g

(29)

our earlier result. They can be reconciled if the
corrections to Imt, are O(1/q'). More precisely,
to reproduce (14) it is sufficient that

1 1 1lim W~(-q~, v) —
~

—[2Mv&~(-q~, v)] =—~g(x),
Bj

(31)

with

=0,
limImt, (-q', v) = — xz (x).2 2q4 2

(30)

The first term is the coefficient of the quadratic
divergence and it is expected to vanish. The sec-
ond term gives a logarithmically divergent expres-
sion, but it is easy to see it does not agree with

which agrees exactly with our earlier result.
Equation (29) has been derived previously by Hall
and Osborn, who interpret it slightly differently. '

It now appears, as the reader may already have
realized, that the possibility of a divergence in the
x integral above near x = 0 is precisely the same
as the possible high-energy divergence of the un-
subtracted dispersion relations. In Sec. II, our
physical picture showed that this is due to the con-
tribution of wee partons and requires a cutoff in
the x integral. The small x contribution cannot be
simply expressed in terms of the scaling limit of
the distribution function f(x) but it gives rise to
the same high-q' behavior. The same result
should hold here.

If

lim Imt, (-q', v) =—,h(x),
Bj

then the calculated mass shift diverges quadrat-
ically independent of the possible need for a sub-
traction in the dispersion integral over the energy
v. There does not seem to be any physical reason
to expect the degree of divergence of the q2 inte-
gral to depend on whether the intercept of a Regge
trajectory lies above or below J=0. To make the
correspondence with the parton model explicit we
could write the Cauchy integral for t(-q', tv) on a
finite contour of radius

~
v) =R —q*/2Mxo. xo is the

cutoff of Sec. II and R is some constant greater
than vo. Then, for large q', the integral f,'dx is

1replaced by f, dx and corresponds to the contri-
bution from partons described by the scaling dis-
tribution f(x), while the integral over the arc cor-
responds to the effect of wee partons.

For spin-& partons, the problem is not so
straightforward, but the result is more interest-
ing. Using the results tabulated in (11), we get

1 1 1)'m(mt( 0 )=—,);(*)-—', , —E( ))Bj

27@ v
0, —

2 1+—2 W2 W~2MV —q q

(32)

For spin--,' charged partons, the scaling behavior
can be expressed as

lim a, = gg f ("&)(x}N,Q '
Bj q'{}'"

lim a,/a, =0.
Bj

Equation (31) says

(33a)

XN Q '(x'M'+M') (33b)

The longitudinal cross section vanishes relative
to the transverse as 1/q'. For high energy (x-0),
o, has the same power behavior as the transverse
cross section. The term proportional to M,2 dom-
inates here.

If o, were measured and turned out to have gen-
eral behavior implied by (33b), then we could
write a sum rule for (QpM, '), the average charge
squared times mass squared per parton. For non-
symmetric g"'s this is a weighted average:

g(x)-4m g gN, Q ~(x~M~ M ~}f(&,)(„)
(N~};

This new information about a nonleading term in
the Bjorken limit is deduced from demanding con-
sistency between our direct parton model result of
Sec. II and the dispersion theoretic formulation of'

Cottingham. Again, if f (x}does not vanish as x
approaches zero, the dispersion relation must be
subtracted and wee partons contribute to the sin-
gular mass shift or difference. We expect, how-
ever, that (31) should hold independent of the be-
havior of the distribution function near x=0.

Our deduction can be expressed in terms of other
physical quantities. W, and W2 can be written in
terms of the total cross section for the photo-
absorption by a particle at rest of virtual photons
with transverse and scalar polarizations, o, ahd

o„respectively.
With our normalization'

2lTQ

Mv-
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1

(Q, M,.z) =
2 dx(1 —x)(qua, —qzM2x2o, ) .

(34)

This has been written in complete analogy to the
Bjorken-Paschos sum rule for (Q,.2). If (34) could
be measured, it could be combined with the Bjor-
ken-Paschos calculation of (Q,2) to estimate the
order of magnitude of the effective mass of the so-
called par tons.

According to a model of spin-~ partons, not only
the integral of (34) but the integrand at each value
of x must be positive. It can vanish only if all the
charged partons have zero mass. This is just the
condition for mass shifts or differences to be fin-
ite. If this condition is satisfied, the high-energy
longitudinal cross section falls by two powers of

the energy relative to the transverse cross-sec-
tion at least for large q'. To be precise

+s 2z 2~2 qlim —=
Qj G~ q 2v

(35)

W, (-q 2, v) = W2(l+ v 2/q 2) —W, .

Then, the Cottingham formula can be written

(36)

This is not in contradiction with the observed
cross sections for protons. For the differences in
cross sections which are relevant for the neutron-
proton mass difference, nothing is known yet about

O~.

Condition (35) is sufficient to guarantee finite
maps differences independent of its origin in the

parton model. It was stated first by Hall and

Osborn. ' It is useful to define

j. I

dq2 dz(1 —zz)'~2 -3,2» [Wa(-qu, v') —W, (-q2, v')]dv'
W A p 1

I

(1 ~ 2 ') Jf „,, qq, (-q', ')d ').
v I2+ q2z 2 2 (37)

If vW2 scales in the Bjorken limit, the coefficient
of the logarithmically divergent term in the final
q' integration vanishes if

I
W, = 2W2 (38)

in the scaling limit. z' From (32) and (36) this im-
plies the relation between o, and or given in (35).2u

Bloom and Gilman'4 have indicated that the scal-
ing limit of W, for protons is a good average repre-
sentation of the structure function even in the low-
q2 region where prominent resonances can be
seen. If we assume that this is also true for W„
valid for both protons and neutrons, and that (38)
holds for all q2 in the continuum, then the pre-
liminary data on the neutron structure functions

can be used to estimate the continuum contribution
to the neutron-proton mass difference. With these
assumptions, t, (q', v) satisfies an unsubtracted
dispersion relation in contradiction with the Regge
analysis. " The result is

(M neutron

™proton�

) cont

which has the correct sign, but is too small by two
orders of magnitude to cancel the Born term and
explain the observed mass difference.

If the scaling of vR', in the Bjorken limit is a
true fact of nature, it seems that the only remain-
ing way to explain the neutron-proton mass differ-
ence by a convergent calculation in conventional
electrodynamics is through some unexpectedly
large contribution from W, in the small-q' region.

*Work supported in part by the AEC under Contract
No. AT(11-1) 3472B.
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