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It is argued that the use of a visibly localizable parametrization of the gravitational interac-
tion yields a number of advantages. First, the question of ambiguities can be completely
solved: According to a theorem of Lehmann and Pohlmeyer there exists in such theories a
unique "minimally singular" solution which it is natural to adopt as the physical one. Second,
it is possible to show that this solution satisfies the usual requirements of analyticity and
unitarity in the sense of perturbation theory. These points are reviewed in this paper, the
main object of which is to introduce a new technique for the treatment of those nonpolynomial
Lagrangians in which the interaction terms are intimately associated with the free part and
contain derivatives. The gravity-modified theories exemplify this type of Lagrangian: In
such theories the zero-graviton approximant to any process is "cradled" in a sequence of
graphs with arbitrarily large numbers of gravitons whose sum exists, is finite, and free of
ambiguities. Since the problem of preserving electromagnetic (and gravitational) gauges is
also the problem of derivatives occurring either in interaction Lagrangians or in the propa-
gators, our general treatment of derivatives is expected to resolve such gauge difficulties.
In particular, we show that both the gravity-modified photon renormalization constant and
the gravity-modified electromagnetic self-mass of the electron up to order 0. logG&m
(where Qz is the Newtonian constant) are gauge-invariant.

I. INTRODUCTION

Field-theoretic infinities —first encountered in
Lorentz's computation of electron self-mass—
have persisted in classical electrodynamics for
seventy years and in quantum electrodynamics for
some thirty-five years. These long years of frus-
tration have left in the subject a curious affection
for the infinities; perhaps even a belief that they
will never be circumvented. '

As is well known, the infinities result from a
lack of proper definition of singular distributions
which occur in field theory. One of the major ob-
stacles to progress in the subject has been the un-
certainty of whether these singularities have their
origin in the circumstance that a perturbation ex-
pansion is being made or whether it is the form of
the Lagrangian -assumed to be polynomial in field
variables —which is at fault. An important sug-
gestive advance in resolving this uncertainty has
been the work of Glimm and Jaffe' who, working
with exact and mathematically well-defined solu-
tions of Polynomial Lagrangian field theories (in
two and three space-time dimensions) have shown
that infinities persist even in exact solutions. If

their conclusions may be extrapolated to physical
four-dimensional space-time, it would seem that
the origin of the infinities is not so much in the
inadequate mathematics of the perturbation solu-
tion. Rather, the fault lies with the inadequate
physics of the assumed polynomial character of
the electromagnetic interaction.

Now nonpolynomial Lagrangian theories have
been studied since 1954 (in fact they date back to
the Born-Infeld nonlinear electrodynamics of the
1930's) and it is well known that a variety of these
do indeed possess perturbation solutions free, of
infinities. However, in modifying electrodynamic ~

to a nonpolynomial version one has been presented
with two dilemmas:

(1) There are many nonpolynomial ways of
"completing" the conventional polynomial version.
Which represents physics'P

(2) Since the methods developed for solving non-

polynomial theories are radically different from
those for polynomial theories —for example they
involve analytic continuation procedures in an es-
sential manner —one would wish to be sure that
the field-theory solutions thus defined do satisfy
the conventional canons of good field theories,
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like appropriate analyticity, unitarity, positive

definiteness, and Froissart boundedness.

In respect of the first problem, i.e., that of dis-

covering the missing (nonpolynomial) physics,

which should complete conventional electrodynam-

ics, we revived in a series of earlier papers the
conjecture of Landau, Klein, Pauli, Deser, De
Witt, and others' which suggested that it may be
the neglect (of the intrinsic nonpolynomial char-
acter) of tensor gravity —and the associated cur-
vature of space-time produced by an electron or
a photon in the space surrounding it —which may
be the direct cause of the electron's and photon's
self-mass and self-charge infinities.

In respect of the second problem, an advance
has just recently been made by Lehmann and Pohl-
meyer' and Taylor' who have shown rigorously
that the analytic procedures developed in earlier
papers by Volkov, Filippov, Salam, Strathdee,
and others' ' do indeed define good field theories,
good in the perturbational sense, provided the as-
sociated nonpolynomial theory falls into the local-
izable class, satisfying the principle of microcau-
sality.

The advance of Lehmann and Pohlmeyer' and
Taylor' is an important one. Of peculiar rele-
vance to our work is their insistence on localiz-
ability, microcausality, and their consequences.
In our earlier papers, ' following Efimov and Frad-
kin, "we had worked with nonlocalizable nonpoly-
nomial theories. This had led to a number of se™
rious shortcomings which were noted in Ref. 9.
Although we were able to show by actual computa-
tion that, when tensor gravity effects were proper-
ly taken into account, the conventional logarith-
mically infinite expressions ) o log 0

~
for self-

charge and self-mass do become realistically reg-
ularized to

~
o. log(z m2)

) where 16vx' is the New-
tonian constant G„, there were still a number of
problems the computation left unresolved.

Mathematically:
(1) The results were not (electromagnetic)

gauge-invariant.
(2) In obtaining the results, use was made of a

Borel. summation of a divergent series-a proce-
dure open to ambiguities.

(3) The results were obtained, using a particu-
lar choice of the gravitational field variables-
viz. , the one which treated the contravariant field
g"" as the fundamental field with the covariant
field g„, expressed in terms of it. Since field-
theoretic equivalence theorems would seemingly
permit either field being treated as basic, the
role of such transformations was not clear.

Physically:
It was not clear whether it was true tensor grav-

ity which was responsible for the finite computa-

tion of the renormalization constants or whether
it was some scalar version of it.

It is the purpose of this paper to show that these
shortcomings of the earlier papers are circum-
vented, provided we work with a localizable, vis-
ibly microcausal version of Einstein's gravity the-
ory. Notwithstanding this change, it turns out that
our numerical results to the order we computed
are unaltered.

The plan of the paper is as follows. In Sec. II
we discuss localizable theories in general and the
localizable parametrization of gravity theory in
particular. (Since we shall be dealing in a later
section with spin--, particles, it is necessary, as
is well known, to work with the vierbein formal-
ism of the spin-2 gravity field. We wish to em-
phasize that for a quantum-field theorist, it is a
mistake to get too involved in the geometry asso-
ciated with vierbein quantities or indeed even the
geometry of the metric tensor. All one needs to
know is that the vierbein field is related to the
"square root" of the metric tensor field. Refer-
ence 8 may be consulted for further details. ) In
Sec.. III a number of technical points relating to
the mathematics of singular distributions and their
space-time derivatives are discussed and we for-
mulate a "law" of conservation of derivatives to
give a precise meaning to products of derivatives
of singular distributions and to eliminate tadpoles
of the second kind from the theory. In the last
subsection of Sec. III, a model Lagrangian is con-
sidered in order to show the heart of the ideas in-
volved in the detailed calculations of gravity-mod-
ified photon self-energy and electron self-mass
presented in Secs. IV and V. Appendix A describes
a very simple calculation which illustrates the
basic ideas behind the quantization of a nonpoly-
nomial Lagrangian field theory. Appendix B con-
tains some remarks on the method of "kinking"
and "cradling. "

II. LOCALIZABLE GRAVITATIONAL FIELD

THEORY

A. Localizable Theories in General

Consider a nonderivative Lagrangian:

where the double dots denote normal ordering
[i.e., we agree to "renormalize" D"(x —x)
=lim, ,(-1/x')" to the value zero for n& ].0Ac-
cording to Jaffe's classification, Z(» defines a
focalizable theory, with operators 2(» satisfying
the microcausality relation
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[g ,((t}(x}),2 ,((p(0))] = 0, x' & 0 (2.2)

p=expll p'll"'
2 2=g: e " ~ —1: just locglizable,

p = exp II
p'll'"

1=g: —1: nonlocalizable,1+K(QI)

p=explfp'll.

(2.3)

(2 4)

(2.5)

In general, with Z((p) given by (2.1), the theory is
localizable if l s(n)l &A"n'" with 0&a&-,'.

Let us list the reasons for preferring, at this
stage of the development of the theory, the class
of localizable Lagrangians.

(1) Elimination of Borel ambiguities. The su-
perpropagators

g(x) = ( Z(y(x) )g(y(O) )},
for the localizable and nonlocalizable theories
(2.3}and (2.5) are, respectively,

g}.(x)=g'Q „! [D(x)]", (2.6)

g«(x}=g'Q n! (x')"[D(x}]".
n=l

(2 7)

Notice that gt, (x) is an entire function in the (x'D)
complex plane, while 8„~ is a divergent series.
Efimov, Fradkin, ' and we ourselves in our ear-
lier papers' worked with rational normally or-
dered Lagrangians of the nonlocalizable variety
and were faced with the problem of defining the
sums of divergent series like (2.7). We adopted
the Borel summation procedure; this, however,
necessarily introduces a source of ambiguity. By
&corking alsoays saith localizable theories see avoid
this ambiguity completely. An n-point superprop-
agator in a theory with the localizable Lagrangian
(2.3) is expressed in the form

(g}"exp( 'pD(x, —&y}}, (2.8)

provided the spectral function p(P'} associated
with the two-point function increases for large
lip'll no faster than expllp'll with o(&-,'. For a
growth like exp llP'll '" we shall say that the theory
is just localizable. When n) 2 the theory is not
localizable To .compute p(p') for the Heisenberg
operator in a Lagrangian theory, one convention-
ally uses second-order perturbation theory in the
major coupling constant. There is no reason to
believe that perturbation theory gives the correct
high-energy behavior of p(P'). These perturbation
estimates, however, typically give for a zero-
mass field:

g((p) =g: e"+- 1: localizable,

again an entire function in the D(x; —x, }plane.
(2) Distribution th-eoretic ambiguities. Both

localizable and nonlocalizable theories suffer
from one further set of ambiguities. These are
the distribution-theoretic ambiguities met with in
the definition of the time-ordered product of field
operators. Specifically

(2.9)

equals n! [D(x)]"with ambiguities up to terms of
the type

(2.1o)

[There is no ambiguity in the Wightman product
(:Q"(x)::(p"(0): ); it is the lack of precise defini-
tion of the time-ordered product at x„=0 which
introduces this ambiguity in all field theories. ]

Now Lehmann and Pohlmeyer' show that these
particular ambiguities can be turned into a posi-
tive virtue so far as certain localizable nonpoly-
nomial field theories are concerned, marking
them out as superior not only to nonlocalizable
theories but also to the conventional polynomial
ones. This is because one can sharply distinguish
between terms like (2.6) and (2.7) and the ambig-
uous terms (2.10) in a distribution-theoretic
sense. Their first remark is that localizability
implies a restriction on b„'s in (2.10}such that
the function b~" is entire of order n&-,'. Secondly,
in Fourier space one can verify that g~(P), for ex-
ample, in (2.6) falls to zero along some direction
in the complex p' plane for large ll

p' ll. There is,
however, no direction along which the ambiguity
terms (2.10) can fall. This is guaranteed by the
fact that (2.10) must be of order less than 2 for
the localizable case. However, ~o such distinc-
tion can be made between g « in (2.7) and the cor-
responding ambiguous terms. Lehmann and Pohl-
meyer thus define a class of minimally singular
superpropagators which are ambiguity free for
localizable theories. This class coincides with
the class previously considered by Volkov, Filip-
pov and other authors. Using this, Lehmann and
Pohlmeyer show that the theory thus obtained pos-
sesses conventional analyticity and unitarity prop-
erties to all orders in the major coupling constant,
g. The same result has been independently estab-
lished by Taylor. ' Their proofs can be extended
to establish positive definiteness also.

(3) Proissart boundedness Glaser, .Martin,
and Epstein, "in a fundamental paper, have shown
rigorously that mass-shell S-matrix elements for
two-particle scattering in localizable theories
must possess Froissart boundedness at high en-
ergies. There is no such result known for non-
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localizable theories. (This aspect of the superior-
ity of localizable theories may, however, be illu-
sory. This is because the Volkov-Lehmann mini-
mally singular perturbation expansion in the ma-
jor constant does not exhibit this behavior if any

single term in this expansion is considered. Pre-
sumably one must sum chains of supergraphs —as
one does for polynomial Lagrangian theories if
one wishes to exhibit Regge or eikonal high-ener-

gy behavior —a behavior not characteristic of in-
dividual graphs. It is conceivable that the same
treatment may yield Froissart-bounded high-ener-

gy behavior for both localizable and nonlocalizable
theories. )

(4) Equivalence transformations offield vari
ables. For the purposes of this paper, the most
important basis of the superiority of localizable
over nonlocalizable theories lies (together with

the elimination of Borel and other distribution-
theoretic ambiguities) in the circumstance that for
these theories we can make field transformations
at will. Since localizable theories are microcaus-
al, and microcausality is the basis of Borchers's
theory of equivalence classes, we shall take over
Borchers's results and assert that those field
transformations which transform one localizable
theory into another do respect the equivalence the-
orems regarding the etlua&ity of oooass-shell S-
matrix elemeats.

In the rest of this paper me shaIE freely make
such field Cransformations and, as we shaQ see,
this wBI assist us greatly in the discussion of
electromagnetic gauge irxvariance.

To summarize, Eocalizable theories are superi-
or to nonlocalizab1e theories for five reasons:

(a) There are no problems of Borel ambiguities
for the former.

(b) The remaining distribution-theoretic ambi-
guities can be eliminated using the Lehmann-Pohl-
meyer minimality ansatz which holds only for non-
polynomial localizable theories.

(c) The Glaser-Epstein-Martin theorem assures
Froissart boundedness of localizable theories.

(d) We can make field transformations at will
and. expect that on-shell S-matrix elements will
remain unaltered.

(e) The Lehmann-Pohlmeyer and Taylor proof
of appropriate unitarity and analyticity is available
for localizable theories.

We close this section with two remarks:
(1) Localizability implies only microcausality

of the theory. Whether it corresponds to the mac-
rocausal behavior of field theories is an unre-
solved problem.

(2) As was emphasized in Ref. 12, Sec. D, a
rational Lagrangian-like 1/(1+ xP) is nonlocaliza-
ble only when normally ordered, i.e., when D(0)

=lim„, l/x' is renormalized to the finite value
zero .If D(0) is renormalized to a finite value, all
rational Lagrangians can be shown to fall into the
just-localizable class. In this paper we shall al-
ways normal order. This may well be the real
source of the paradoxes which arise when one is
considering problems of equivalence of Lagran-
gians under field transformations.

B. Localizable Parametrization of Gravity

In our earlier paper' we assumed that the fun-
damental gravitational field was the contravariant
field g"'(x). In the limit of an asymptotically flat
space-time this field splits up in general into the
sum of its Minkowskian expectation value

+1 0 0 0
0-1 0 0
0 0-1 0
o o o-i)

(2.11)

and a functional of the physichl interpolating field.
At this stage it is possible to use a wide variety
of parametrizations. One such is the "rational"
parametrization

g""(x)= q""+xp"'(x), (2.12)

where Q~ "(x) is the physical graviton field which
possesses in and out states. The covariant field
g„„(x)is then given as the ratio of two polynomials
in P"" of degree 3 and 4, respectively:

aa' gg' yy'-
I w

~paQ~ua'Q'y'g g
'L J—

aa
&aPyt'&a'8'y'eg 8 g

(2.13)

g""=[expx(4o)]"", (2.14)

where (t)
~ = ft)

~ are the basic interpolating fields.
The covariant tensor g„„(x) is simple and is given
by

g„,(x) =(exp[-x(4o)] j„„.
Similarly, the vierbein gravity field L"' can be
parametrized as

(2.15)

L"' = [exp(-,'xylo)]"'. (2.16)

More generally, instead of the exponential para-
metrization, one may consider any other entire
function parametrization in (2.14). Since in grav-
ity theory one always assumes that detg &0, it is
clear from (2.12) that if g""(x) is entire, so is
g„„(x).

Throughout this paper we shall, for the sake of
simplicity, use a Euclidean rather than Minkow-

An alternative (and by the mathematicians the
more favored) is an exponential parametrization""
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skian metric, transforming back to the correct
metric at the appropriate stage, This should
cause no confusion. Notice that the Minkowskian
form of Eq. (2.14) would be

(q'"gq'")"'=[exp'(q'"yq'")]"",

where
1000
Oi 00
00i 0

(2.17)

l.e. )

g= fj+ KQ+ 2K )77) ~

In particular one finds

(-detg}'" = exp' Tr(qy)

=exp@(P „) (2.18)

for the determinant of the Minkowskian tensor.
We shall call the rational parametrizations

(2.12) and (2.13) nonlocal, while (2.14) will be re-
ferred to as the local parametrization of gravity.
To justify this nomenclature, consider the non-
derivative parts of gravity-matter interaction and
assume that the gravity-gravity interaction can be
neglected. One can easily show that the superprop-
agators of cotensors (g»(x, ), g~a(x, ), . . .) in the
rational parametrization (2.13) give rise to non-
localizable high-energy behavior, while the expo-
nential parametrization (2.15) leads to a behavior
characteristic of localizable theories.

When derivative couplings of g"' are additionally
considered (including the nonpolynomial graviton-
graviton couplings characteristic of Einstein's
theory) this conclusion may alter, though the pre-
sumption is that (2.14) is still a localizable theory.
This is because an interaction term like (S„p)(&„P)
xexp(xp) can be majorized —so far as the high-
energy behavior of the superpropagators in mo-
mentum space is concerned —by a (localizable)
term like P' exp(xP), where each derivative 8„ is
replaced by a field function ft). Such a majoriza-
tion procedure is, however, likely to be mislead-
ing when applied to the nonlocalizable version of

The exponential can be expanded to give the ma-
trix formula

ql/2g q1/2 j + Kql/2 yql/2 + 1 K2gl/2 Pqgq 1/2 + ~ ~ ~

the theory (2.12). The reason is that with deriva-
tive couplings there is the possibility of enormous
numbers of cancellations which may reduce the
seemingly nonlocalizable behavior of (2.12}and
(2.13) to a less singular localizable one. The ma-
jorization which replaces (S„P) by P' is likely to
conceal this.

To summarize, in a full derivative-containing
gravity theory, we believe that the parametriza-
tion (2.14) does give us a localizable theory. What
we cannot assert is that the seemingly nonlocal-
izable theory, represented by the parametriza-
tions (2.12) and (2.13), may not after all also be
localizable. In this paper we shall take no
chances and will work with the parametrization
(2.14), leaving open the question as to whether or
not the rational and exponential parametrizations
of gravity after quantization represent the same
theories in the sense of field-theoretic equiva-
lence theorems. It is important to stress that the
parametrization (2.14) is only one of a class of
parametrizations which may be classified as local-
izable. The common characteristic of the ele-
ments of this class is that they are represented by
entire functions of the variables Q"". Borchers's
theorem should permit us to make field transfor-
mations between members of this class.

III. GRAVITY-MODIFIED ELECTRODYNAMICS

A. The Lagrangian

The gravity-modified Lagrangian for quantum
electrodynamics may be written in the form shown
below in Eq. (3.3*). [We use the notation of Ref. 9.
Equations "parallel" to those from the latter ref-
erence will carry an asterisk to distinguish them
from the equation numberings of this paper. Equa-
tion (3.3*) below is parallel to Eq. (3.3) of Ref. 9
in the sense that when ao„ the weight of the elec-
tron field, is set equal to zero in (3.3*}we re-
cover Eq. (3.3) of Ref. 9.] As stated in the intro-
duction, the spinor character of the electron field
necessitates the introduction of a vierbein version
of gravity, the vierbein spin-2 field L"'(x) being
simply related to the metric field g"'(x) by the
relation

g"'(x) = L '(xM, "'(x)5

In terms of the field L"', the electrodynamic La-
grangian reads'

L«» =Lv»,„+( ),«+, [2iL"'(gy, tt. „—g. „yg) -moplt+eogy+&gL"']

1 (g" 'g" F„„F„q)+ 3ib'(0} ln ( detL (4 detL}
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where

g. „=s„tl —,i—B„"o„g+w,(detL) „g,

EIIv ~ PAv 8 IJA]i

=A, . q -A„, ,

det~ —=detL, "'.

(3.4*)

we recover

The parameter so, denotes the weight of the elec-
tron field. It can be changed at will by making
field transformations and, if Borchers's theorem
holds, it should not appear in the physical S ma-
trix. Writing

(3.1)

Now if 5m and 5e were strict physical mass-
shell quantities, one zeould unhesitatingly have

said that scalar gravity plays no regularizing role
for electrodynamics of zero (bare) mass electrons.
One cannot make this negative assertion with con-
fidence for two reasons: First, in the exact theo-
ry 5m and 5e are both expressed as integrals of
(off-mass- shell) spectral functions. Although both
5m and Z, share with the strict mass-shell quan-
tities the property of electromagnetic gauge invari-
ance (unlike Z, ), there are no results known at
present which should imperatively guarantee that
the mass-shell S-matrix equivalence theorems
apply also for the case of these off-mass-shell
quantities. Second, it is fully possible that the
inclusion of nonzero mass term coupling

g"'= (expel)"'. (2.14)
-m, q'q'[exp(--, 'z y) —1]

detL= exp(-, z' Trg) . (3.2)

B. Scalar Gravity

The vierbein connection, B„„,is the product of
I's and their derivatives, its full expression be-
ing given in Eq. (2.9) of Ref. 9. It is worth re-
marking that the factor detL in (3.3*) (so crucial
in Ref. 9 for infinity suppressing) acquires a very
simple form in exponential parametrization. In
fact

may alter the situation. Thus, even though we
have so far failed to demonstrate this, it is con-
ceivable that a technique of summation over the
major coupling constant (mo in this case) may be
devised which regularizes the theory, though the
prognosis for this happening does not appear too
bright.

C. The Tensor Gravity Lagrangian and

Electromagnetic Gauge Invariance

In this section we wish to show that a scalar
gravity theory is unlikely to suppress infinities
in electrodynamic s.

The scalar gravity Lagrangian can be recovered
from (3.3*) by substituting

u, =0,
L"' = exp(-'s y) b" '

g"'= exp(sg)5~",

detL= exp(2sg) .

] reduc es to the form

L„,= L,„,,„+i[py„(8„—ieoAgg]exp(-&xP)

—mug exp( 2xp) —,E„„E-». —

(3.3)

(3 4)

g' = exp(-4a'Q}g . (3 5)

This has the effect of decoupling the electron and
the graviton also, except from the mass term for
the electron. In the limit m0=0, even the elec-
trons do not interact with scalar gravitons.

Note the crucial circumstance that the photon field
and the scalar graviton do not couple, a result well
known in general relativity theory from the con-
formal invariance of scalar gravitons and photons.

Let us now make a further field transformation:

Fortunately, true gravity is tensor and cannot
be decoupled. We shall attempt in this section to
make field transformations which may assist in
the task of preserving gauge invariance. One of
the major difficulties we encountered in Ref. 9 was
connected with the technical fact that whereas the
Heisenberg elect'romagnetic current from (3.3)
equals

e.lr.gL"'
(detL)' "'

and is conserved using the Heisenberg equations
of motion, the conserved quantity in the interac-
tion representation does not, however, coincide
with this, being just copy„g. Stated differently, it
is difficult to make gauge-independent computa-
tions because of the awkward factor L"'(detL) '"& '

which multiplies the interaction term e,gy, gA„ in
(3.3*). This factor can be removed by making a
suitable choice of the basic field variables. To
this end, we choose to assign the weight se, = --,'
to the electron and regard the combination
A'=A„I-"' as the photon field. Notice that this
does not decouple the tensor gravity from the elec-
tron and, even more significantly, from the pho-
ton.

With these choices write the Lagrangian (3.3*)
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in the form

gp+2, +2,+2, +24,

where

(3.6)
FIG. 1. Insertion of unit kinks into a massless free-

boson propagator.

2,=-,'i6"'($1.B„y—Bgy.q) —m, y(( ——,'6""6~v „„F„,
(3.7)
(3.8)21 ——eo: py, gA, :,

~.=-.'i: (~"'- 6"')Qy B„y Bg-y.y):,
pK vX

yc vz~3 4'
( )

6 6 Ff!VFKX'detl

Z. =-2'. ~"'py, (liBq'a, ~)g:.

(3 8)

(3.10}

(3.11)

2p is the conventional free Lagrangian for elec-
trons and photons; S„Z„and Z~ are terms of
order x. It is important to remark that S~ and S~
are explicitly gauge invariant, while it is only the
sum 2, +Z, which is explicitly so. In Ref. 9 we
considered only the Z, part of the Lagrangian, ig-
noring 2,. The results could not be expected to
be gauge invariant.

First consider this Lagrangian for its infinity
suppression role. 2, in (3.11) is a Lagrangian of
the general form

X"e"' » (BX}'X e"'

where g and p are massless scalar particles. As
has been shown elsewhere, "the exponential term
is highly potent in its infinity-regularizing role.
Heuristically one may see this as follows. The
two-point superpropagator (y"e"', y "e"') is of the
form (1/x')"e " '*'. Approaching x'-0 from an ap-
propriate direction in the x space (and using ana-
lytic continuation methods for the approach from
other directions) the singularity of the superprop-
agator will be regularized to zero for all n. This
will however, not be the case for Lagrangians of
the generic variety,

=}("( e"' -1}
or of the type

g =(Bx)2( ~ e"' -1)

(3.12)

(3.13)

The , and Z, pieces of the electromagnetic La-
grangian belong to this last category. Our major
task in showing that gravity-modified electrody-
namics does indeed possess an inbuilt regular-
izing nonpolynomiality lies in analyzing the po-
tentially unregularized singularity produced, for
example, by the -(Bx)' term in (:e"" -1)(By)' and
showing that such terms are harmless.

1 1 , 1 1 , 1 , 1—=—p'—=—p'—p' —= .
p2 p2 p2 p2 p2 p2 (3.14)

corresponding to the successively kinked lines
shown graphically in Fig. 1.

In what follows we shall use the words "single
kinking" to refer to the act of inserting such a unit
operator (which corresponds physically to minus
the emission of one zero-graviton} into a free
propagator. "Double kinking" will correspond to
the amplitude of two zero-graviton emission, "tri-
ple kinking" to minus the amplitude for three zero-
graviton emission and so on.

To illustrate the manner in which kinking is
used consider the computation of the propagator
(T(y(x)y(y) exp(i JZ.,)))~ where Zmt is given by
Eq. (3.13}. This is shown graphically in Fig. 2,
up to the second order in Z. , The first graph is
the free X propagator, the second represents the
one-graviton modification due to Z. „ the third the
two-graviton modification, and so on. Our basic
contention is that the first graph should be re-
garded as part of the series formed by the rest by
inserting two kinks, at the space-time points x,
and x„and using the graphical identity of Fig. 3.
The sum of all the graphs in Fig. 2 may be writ-
ten in terms of the one supergraph shown in Fig.
4 in which the effective Lagrangian operating at

the free Lagrangians are mixed in with graviton-
particle interactions. Examples are provided by
the electron-graviton and photon-graviton interac-
tion terms 2, and Z„which, together with cCp,

formed one whole, before the split into Zp and 2,,
was carried out. A generic example is the one dis-
cussed in the last subsection. If Z„„,equals
(By)2: e"", the split ~,=(B~}', S. ,=(:e"4'. -1)(By)'
represents the situation presented by the 2, and
the Z, terms. This nonpolynomial interaction La-
grangian would, acting by itself, give finite ma-
trix elements were it not for the possible infinities
which its "kinking" part -(By)' might produce.
The "kinking" terms in Z. , are so called because
inside any y line the operation of (By)' acts simply
as minus the unit operator. In momentum space,
for example, the y propagator 1/P' may be written
in the form

D. The Theory of Kinetic-Energy Kinks

It is a general feature of particle Lagrangians
in gravity theory that the kinetic-energy terms of

X X X g X X X

+ i' ~

FIG. 2. Series of gravitational self-energy graphs.
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X X
1

X
2

FIG. 3. Insertion of two unit kinks.

x, and x, is (ay)'e"~which will produce finite an-
swers. We shall refer to this absorption of the
free propagator into a superpropagator as "cra-
dling. " Such a. procedure is always possible in
any theory in which S,has the generic form
[v(y) —1](ay)' since there will always exist in the
theory graphs which (by suitable kinking) can be
cradled as part of a nonpolynomial chain repre-
senting zero Q-particle exchange. The effective
interaction in such situations is therefore: v(y):
and not [:v(P}:—1].

Similarly, if we were considering terms up to
third order in 2,' in ( Tyy exp(i fZ, ))„ the graphs
(i) and (ii) shown in Fig. 5 could be kinked as
shown in Fig. 6 and then cradled (when proper ac-
count is taken of the sequence of plus and minus
signs corresponding to even and odd numbers of
kinks) as the sum of the supergraph shown in Fig.
7 plus four times the supergraph shown in Fig. 4
minus twice the free y propagator which corre-
sponds to Z,« ——e" (ay)'. (For the general kinking
and cradling formula see Appendix B.} It is im-
portant to note that "kinking" and "cradling" are
possible only when free Lagrangians are hewn out
from a total Lagrangian which is finite [i.e., (ay}
separated out from e" (ay}']. This is of course al-
ways the case for gravity theory where Sp for mat-
ter fields is obtained from 2 «„by replacing L"'
by O~'.

To consider a really complicated "kinking" situ-
ation take the interaction Lagrangian

2,=:ggA:+(a„A}'(:e"@:—1). (3.15)

This is a prototype of gravity-modified electrody-
namics with g the (zero-mass) electron field and
A and P the (scalar} photon and graviton fields.
The photon self-energy graphs are shown in Fig.
8.

Clearly the first graph (with no gravitons) iden
ti cally equals (-1}'times the kinked graph of Fig.
9 [with (aA}' operating at the two kink points] and,
as such, forms part of the graviton-exchanged
chain representing zero-graviton exchange. With
the inclusion of this graph, S. , behaves as if the
effective photon-graviton Lagrangian for this par-
ticular situation is the (manifestly regularized)

FIG. 5. Higher-order corrections to a self-energy
graph.

Lagrangian (a„A)': e"~: rather than (a„A)'(: e"&:
—1). Practical applications of kinking and cra-
dling will be found in the photon and electron self-
energy calculations in Sec. IV.

E. Kinking, Cradling, and the Calculus of
Derivatives

where F„,is given by

F„„(x}=e" v'*'a„a&(x)

=g —,«'"[D(x}]"a„a+(x).
p Se

(3.17)

The zero-mass causal propagator D(x) is given by
(-4«'x') '.

The problem is to define the Fourier transform
of (3.17). This could be done by the method of
Lehmann and Pohlmeyer' or by the following, less
rigorous, method. Consider the integral

1F„,(x, &) =
2

. dz F(-z)(-y)'[«'D(x)]'a„a+(x),

(3.18)

where the contour C comes from positive infinity,
encircles the origin in the clockwise sense and
returns to infinity. This integral evidently repro-
duces the sum (3.17) if y = 1. On the other hand, if

~
arg(-X)

~

& —,
'

v then it is possible to replace the
contour C by one running parallel to the imaginary
axis with Rez&0. Disregarding for the moment
the problems caused by the derivatives in (3.18),
one could follow the Gel'fand-Shilov prescription
for obtaining the Fourier transform of D'8„~„D
since it is now possible to arrange the contour
such that 0&Re(z+2)&2, a necessary condition
for the convergence of the Fourier integral. It

Analytically, the graphs of Fig. 2 or, equiva-
lently, of Fig. 4 correspond to the expression

aD(x —x,), aD(x, —y)
xy x2 a v v(xg xg

yv

(3.16)

X X
1 2

FIG. 4. Supergraph sum of graphs in Fig. 2. FIG. 6. Insertion of kinks into Fig. 5.
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FIG. 7. Supergraph resulting from the kinking
procedure of Fig. 6.

FIG. 9. Insertion of main kinks into Fig. 8.

must be emphasized that if the kinked graph of
Fig. 3 had not been included in the sum then the
contour would have been confined to the strip
0 & Rez & 1 and the Gel'fand-Shilov requirement
could not have been met —signalling the presence
of an unregularized infinity.

The derivative problem is dealt with in the fol-
lowing way. First, combine the factors D' and

~„, D'& into the form

D(x)'8„8,D'& =
( )

'
)

I

x (1+z,)8„8,—,
)
8„,8' D"'&,

(3.19)

[D(x)]'8„»(x)= lim
2

o z+1 z+2

x 8„8,——,'8„, 8' [D(x}]"~

(3.21)

where ¹ris an integer and e is a positive num-
ber. It is to be understood that the singularity at
z=-~ lies to the left of the z contour and that the
limit c-0 is therefore to be taken after evaluating
the Fourier transform and after translating the
contour to the right of z=0. In this way one ob-
tains a definition which is consistent at z =0 where
(3.20) failed. For other values of z it coincides
with (3.20).

Another feature of (3.21) may be noted. Con-
tracting the indices p, , v, one finds

which in the case z, =1 becomes

2

(z + 1)(z+ 2}

x (8„8„—,'5„„8')D*",— (3.20)

J dz f(z)[D(x)]'8„8„D(x),
Reg& 0

where f(z} has a pole of order r & 1 at z = 0, we
shall adopt the definition

which is an identity except in the neighborhood of
x„=0, where it becomes ambiguous. VKe shall
adopt this formula as a definition for all x„except
in the neighborhood of z = 0 where it needs to be
elaborated. It is clear that (3.20) cannot be a sat-
isfactory definition at z =0 since the left-hand side
assumes the well-defined form, 8„8+(x), while
the right-hand side assumes the equally well-de-
fined form, 8„8,D(x)+(j/4}5(x), which is different.

To meet this difficulty and also to render the
formula useful for computing the Fourier trans-
form of integrals like

[D(x)]'8'D(x) =0 for z ~0.

This has the important consequence that all those
tadpole-like graphs in the theory which arise from
a consonance of terms like D(x)'8'D(x) = D(0)'5(x)
and which cannot be removed by the normal-order-
ing procedures, automatically vanish. Thus, in
effect D(0) = 0 everywhere.

Using (3.21}and taking the Fourier transform of
(3.18), one obtains

F„,(P, X)=-f " '+O(x').

The higher-order terms will depend on the auxil-
iary parameter A.. By taking an average of the
limits X- -e"and X- —e '" one obtains the mini-
mally singular solution of Lehmann and Pohlmeyer.

IV. GRAVITATIONAL SELF-ENERGY OF THE
PHOTON

The relevant graph is shown in Fig. 10, where
the thick line represents the graviton superprop-
agator. The vertices come from the derivative in-
teraction of the gravitational field with F„,= „A,
—8,A„ in the Lagrangian [cf. Eq. (3.10)]

PV K)L )I V KX
3 4 ( det ) / g g flK Ux '

(4 I)

FIG. 8. Prototype of photon self-energy graphs.
This interaction is present in a tensor gravity the-
ory and is the field-theoretic manifestation of the
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FIG. 10. Gravitational self-energy of the photon.

way in which the light cone is directly affected by
the gravitational field. The tensor structure of
(4.1) is combinatorially very complicated. Since
we wish to illustrate the principles of the calcula-
tion we approximate (4.1) by a model Lagrangian

1 1
4 (de) )'" } (4.2)

[i.e., we replace g
"' in (4.1) by 5"']. We expect

that the numerical answers obtained in the model
(4.2} differ only very slightly from full tensor the-
ory. The calculation of the superpropagator

(T((detg" ) '"(detg" ) "')) (4.3)

[g ""« tg"}'"]..= o (4.5)

is particularly simple when the exponential para-
metrization is used. Indeed if g"'=(e "@}""then

( T ((detg. .
) -4/2(detg. .)-1/2)) —( T(e -( K/2) Tre) e -( K/2)Tr ($)))

(4.4}

In the DeDonder gauge which is characterized by
the condition

the Lagrangian for the tensor field g"" can be
chosen so as to yield the bare propagator (Ref. 9):

( T(e
—[ K/2 ) Tr (g) + -( K/2 ) Tr ( 0)) ))

K2D -( x) (4.7)

for the superpropagator in Eq. (4.2). [Note that
the sign of »' in (4.7) is opposite to that one nor-
mally obtains for a superpropagator of a scalar
free field. This simply signals the fact that the
approximation &T(([7"'/detL)(TI"'/detL))) to the su-
perpropagator (T((L"'/detL)(L"'/detL))} and the
neglect of closed loops of Feynman-Faddeev-De-
Witt fictitious particles is too much of an over-
simplification if one is computing to an order high-
er than the lowest. No error is introduced so far
as the present paper is concerned, but if ever
higher orders are computed more care will be
needed. ]

The Green's function of interest, corresponding
to Fig. 10, is

(4.6)
Now it can be shown" that if X ~ and E' ~ are any
4x4 symmetric matrices, then

& T(e +Dr[)» e) 0'y/" )}= exp([Tr(XY) ——,
' TrXTr Y]D(»)} .

In particular, putting X "2= Y "2 = (-»/2)5 8, we ob-
tain

0', ( )=e(0 r(A (e)A„(D)exp -' —'X,(y)X „(y)[ (D(y)) —1]d'y 0
con

=re, .(*)- l J

dree�(

0
I r(A„(*)A(D)[lz.e(r)X.e(r)I[lX„(e)K„(e)[)ID)B(r -0)+h Khe 4 de 4,

(4.8)

where D„,(») is the free-photon propagator and
() ($ —[7) denotes the superpropagator

8(t - q) = &01 T([v{y(g))- I][v(y(T}))-I])l0},
(4.9)

where

v((f)) =: (detg) '":—1 = exp[(-2/2)9)] .
Graphically we are computing Fig. 11 in which,
because of the subtraction of "one" in Eqs. (4.7)
and (4.9), the lowest term in the superpropagator
corresponds to the propagation of one graviton.
The fundamental "kink" technique discussed in
Sec. III is that the free photon should be included
as part of the infinite series defining the super-
propagator by regarding it as being equal to itself
plus two kinks. Thus Fig. 11 becomes modified to
Fig. 12 in which the crosses denote the kink ver-
tices arising from an effective derivative interac-
tion &I'„,I'„.. The kinked graph is clearly the

D['1,(&) = -2 d/dq&0( T(Q„(»)Q (0)[—'Z (t)Z (g)]

"[4+.d)7)+.~()7)] ) I 0) 8'(( —T}),

where

8'(g - T})= &0 i T(v(y(g) )v(@(q)))l 0) .

(4.10)

(4.11)

Notice that the kink procedure only works if the
photon is originally in the Landau gauge with the
transverse propagator

(4.12}

where D(») is the usual zero-mass boson propa-
gator. If any other gauge is used, such as

first term of the series obtained by computing the
superpropagator using v(Q) rather than v(p) —1.
In this approach the required Green's function
therefore becomes
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0 X 0 X

HIGHEII OICI&I'.'kS The superpropagator can be written in the usual
way' as a contour integral:

FIG. 11. Gravitationally modified photon Green's
function.

D(x),=.(2,.—
D

' D(x),~p ~v (4.13)

D „(*)=[2„— " D(*) (2 —2)
8 Bp 8 Bp (4.14)

and the transverse part treated in the above way.
The longitudinal part is then added on separately
to the resulting Green's function.

We are interested in the Fourier transform of
the Green's function in Eq. (4.10}defined as

then the transverse and longitudinal parts must be
separated out as

9'(r) = . dz I (-z)[v(z)]'[D(r)]'(-I()' (4.19)
278

with

D(r) = I/4z'r',

r'=(], —r],)'+('f- j) ~ (f —q).

The contour F passes through the real axis to the
left of z =0 and, as shown in Ref. 8, v(z) is the La-
place transform of the interaction potential v((p).

It is useful to define D„'„(x,z) by

D„'„(x)= . dz I'(-z}[v(z)]'D„'„(x,z)(-I).)'
7lZ

(4.20)

with, from (4.18),

4
(4.15) D „(x,z)= —'f d(dzD(x —()D(2)

As is standard in the nonpolynomial procedures,
this integral is first evaluated in the Symanzik re-
gion of the external moments (in the present case
this corresponds simply to p'&0) and the result
thus obtained is analytically continued (i.e., to
timelike P' ~ 0). The Symanzik procedure enables
Wick rotations to be performed on the space-time
integrals, converting them into Euclidean form.
Assuming this has been done, we use the expres-
sions

(o I T(A„(x)z.,(g)) I o) = (5„.8, 5»8.—)D(x —g)

(4.16)

(olT(~ (&)~.,(q))l»
= (5~888„-5,„8g„+58„8g„-5 „888$D($ —q)

(4.1V)

D„'„(P', z) = —. d'xe'2'*D„'„(x, z). (4.22}

To evaluate the integrals in Eq. (4.21) use must
be made of the derivative formula discussed in
Sec. III. Thus we write [cf. Eq. (3.19)]

D 88 D= ~ I" 2)[88 & 58~& (z

(4.23)

where II(z, e) =z/(z+e) and the limit e-0 is to be
taken only at the very end of the calculation.

Inserting Eq. (4.23) in Eq. (4.21) and using the
relation

X 8]]8g[D'($ —q)(52„888 2 —5]],8 8 g+ 5]]),8„8„
—52) 888 }D($—&6

(4.21)

and similarly

in Eq. (4.10}. After performing two integrations
by parts, we arrive at QD'= -16m z(z —1)D"'

leads to
(4.24)

D„'„(P')= ——. It e'2'd'x d(drlD(x —()D(2I)
Z

x8,8„(8 (t —q)(5„„8,8„-5,„8„8„+5~8„8„
—52),888.}D((—n6

(4.18)

in which all the derivatives are with respect to g.

+ HIGHEH ORDEHS

FIG. 12. Insertion of kinks in Fig. 11.

D'„(x, z)= [2 —2 (z, z)] f d(dZD(x —2)
16m z

xD(q)(5„„C] 8„8,}D"'(g—']I) .
(4.25)

To perform the Fourier transform in Eq. (4.22) we
take as usual the basic Gel'fand-Shilov expression

d¹xe 2 ¹D(¹)x(4s)2-2¹('p2)¹-2I'(2 - z)
2 r(z)

(4.26)

which when used in Eq. (4.25) leads finally to the
result
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D„„(p')= lim, dz I'(-z)[v(z)]' 5„„- "," (-P')' '(4z) " [2 —Z"(z, e)](-&)'
f~o 27@

jf v p2 I' 2+z)
(4.27)

in which the limit e-0 is taken at the end, in accordance with the discussion of the derivative formula in

Sec. III. As remarked earlier, if any photon gauge other than Landau's is used then the longitudinal part
must be subtracted out and added in by hand to (4.27). Particularly, if

D, (xl = (6, — ' D(x),
a 8

then

D2,(p') =(1 — ) ",--"- +lim . dz I'(-z)[v(z)]' 5„„- "," (-p')' '(-X)'(4z) " [2 —}('"(z,e)].
&~0 27Tl

(4.28}

Only single and double poles occur along the positive real z axis in this expression and, in particular,
there is just a single pole at z=0, which means that we can choose N= l. The actual form of D„',(P') may

easily be computed once the explicit form of v(z) is known. In general, v(z) can be written as z'(k)(z) and

it is always normalized so that v(0}= 1. The zeroth order in z is therefore the same for all choices of

v(z) (since it comes from the single pole at z =0) and we have

D, (5*l=(1 '—. )
'' '

(5,.-3'3" —, D(x )=+5,'. —5 ' ' —,~ 0( *).

Note that kinking, cradling, and the derivative formula have correctly reproduced the free propagator.

V. THE ELECTRON SELF-ENERGY

The next process to be discussed is the electron's electromagnetic self-energy. The order-e' contribu-
tion to this is shown graphically in Fig. 13 which is simply the convolution of the free electron propagator
with the gravitationally modified photon propagator computed in Sec. IV. The crucial result here is that the
mass shift 5m is finite, gauge invariant, and numerically the same as the analogous quantity computed
in Ref. 9.

Suppose initially that the photon is in the Landau gauge. Then the electron self-energy insertion is (with
p2 (0)

2 2 4 Dl(D (~)
Z(j) )= (f ky(( ~ }y

=lim dzI'(-z)[v(z)] Z(p', z, 2)(—().)',
&~0

where Z(p', z, e) is defined from Eq. (4.28) (with a =1) as

2(. )
.D(,)yxk ((( 4~)(k„.-k, k„lkx) -( 5). ,

p- '-m'
with

F(z, e) -=(42() "[2—g "(z, e)](-X)'r(I - z)

(5.1)

(5 2)

(5 2)

and d k stands for (2w) 'd'k. Now

y„Q —P+ m )y„=4m —2P+ 2g,

gQ- P+m)g = $(2P ~ k —k') —k2(fj —m),

giving

D(~ ),D( )fx 53m —(( 3$ —(((33 k))k'( 3), ,
p jp

2 m2

-=/A(p2, z, e)+m B(p2, z, z)

in which A(p2, z, e) and B(p', z, e) are defined, respectively, as

(5.4)
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A(p', z, e) = (I/4p') Tr[PZ(P', z, e)],

B(p', z, z) =(1/4m) TrZ(p', z, e}.
For convenience let us define the integral

k2 z-1
k(p*, ', *)=fd'k( ).

which occurs frequently in what follows. In Feynman's a-parameter form we have

(pk', m', )= fd k'd, d, e p[,[(p- k)' —m'] ~,k']
0

Now diagonalize the quadratic form in the exponential by defining

Pp&x p (y
l =k — =k —p +a+0. " " a +n

so that (remember ]p)z & 0)

d(p', m', )= — d') d,de, exp ( (e~*,)+,p* ' * —m*,)I' 1 —z 0 Q~+ Q2

On using

fd'l exp[i'(u, + u, )](l, l„, l„l„)=, , 1, 0, —
16z'u+u, ' ' ' n+u,

this becomes

Introduce the change of variables u, = rt and u, = r(1 —t) with the Jacobian

a(u„n, ) t r
S(r t) 1 —t -r

therefore

1 1
I(tp', m', z)=, , dr dtr ' '(1 —t) 'exp[P'rt(1 —t) —m'rt]

16w I'(1 —z

1

d t(1 —t) 't' [(m ' -P') +P't ]
'z},,I (1+z}I(1 —z

(edx(( — ) )'(2) ' ' 'm' —P')

r(-z)r(I +z),. p'

From Eqs. (5.4) and (5.7) it follows that

B(p, z, e) =3e E(z, e)I(p', m', z)

3u I"(1+z}I'(-z)I'(1 —z) m " „, p'
[2 —]t"(zp e)](-]).)'F 1 —z, -z; 2;—,

The computation of A(p', z, e) is slightly harder. From Eqs. (5.4) and (5.6) we obtain

e2
A(P'p z, e) = , F(zp e) d'k—,', ' ' —(-k')' ',p' (P- k)'-m'

which in u-parameter form is
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&()*, , )=- *' &'& &,& e V(,[() -a)*- *]~ .).*}
( )

* ~
(

*) )
e'F(z, e), " . . . (-p'+3p k)n, ' 2(p k)'n, ' '

0
(5.15)

e'F(z, e)
" exp[p'n, n, /(n, + n2) —m'n, ]

16 2 1 2 (n, + n, )'

n +n, &(1 —z) n +n, (n +n)' 1(2 —z)

Using Eq. (5.11) we can rewrite this as

(5.18)

A()*... ,)=-,*z(,, )(i((*, *, ) — ),r(p*, *, ~ ))~, d(

(5.17)

16m pal z (— z j

2

+ -,',g -z, 2 —z, 1 —z, 1 —z,' 3;—2
. . P 2z

2p' 1+z „„(-z)(-z—1) (1 —z)(-z) 1 F 2 1 . 4. P'
(1-z)(-z) (-1- z)

2z 2 21(1+z)1( z)1(1 z)
[2 & (z e)]( ]))' F 1 —z, —z;2; p, ——'(1+z)F 1 —z, -z;3;—,4„r(3+z) 4w 'm'

+ —F' -z, 2 —z;3;—+ 2 z(1+z)F 2 —z, 1 —z;4;—~ . (5.18)~ . p'

J

Equations (5.13) and (5.18) when integrated over z as in Eq. (5.1) give the scalar and the spin contribu-
tions to the electron self-energy. The highest singularity occuring in the z plane at z =0 is a double pole.
According to the discussion in Sec. IH, this would necessitate taking N=2 in Eq. (5.3).

The leading-order contribution in z to the mass shift 5m [evaluated from Z(f(=m)] comes from this
double pole at z = 0 and gives the result

(5.19)

This is numerically precisely the same as the result in Ref. 9 up to terms of order alnG„m, ' and is of
course finite.

So far we have assumed that the photon is in the Landau gauge. If an arbitrary gauge is used then the
longitudinal part is subtracted off separately, as explained before, and the propagator in Eq. (4.28) (now
with a e 1) is used in the convolution integral in Eq. (5.1) to construct the electron self-energy. The addi-
tional contribution is

ru&uZ(a, p ) =—e (1 —a) (f k
( 2)2 (~ ~ )y„k„, (5.20)

which manifestly vanishes on the mass shell P =m, showing that the mass shift 5m is indeed a gauge-in-
variant quantity. The off-shell value of this additional contribution is ultraviolet divergent (unless a= 1).
Thus in all but the Landau gauge our procedure does not regularize the electron's off-shell Green's func-
tion and needs to be extended. This is in contradistinction to the on-shell magnitudes which are finite and
realistically regularized.
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FIG. 13. Electron electromagnetic self-energy,
gravitationally modified.

VI. PHOTON SELF- ENERGY

The simplest set of gravity-modified gauge-
invariant graphs in our theory is the Ward-Feyn-
man set of Fig. 14. To this, obtained by attaching
photon lines to the electrons in the electron-gravi-
ton graph'8 (Fig. 15), we add the basic graph (also
gauge invariant) shown in Fig. 16. It is our con-
tention that when the graph of Fig. 16 is suitably
cradled (and this needs kinking in six places} in
the master graph shown in Fig. 17, the resulting
graph (Fig. 18) is both finite and gauge-invariant,
even though individually graphs of Fig. 14 and 16
are not finite. (If n„n„n, represent the number
of graviton lines in Fig. 18, it is clear that Fig.
17 corresponds to n, =n, =n, =o.) The computation
of the graph in Fig. 18 involves a triple integral
in z space. Even though we do not anticipate that
any basic problem will arise, this calculation is
unfortunately very complicated and has not yet
been explicitly carried through.

VII. CONCLUDING REMARKS

We conclude with a number of general remarks:
(1) It is the main message of this paper that,

from a good field-theoretic point of view, it is
desirable to work with localizable rather than
nonlocalizable nonpolynomial theories. When
graviton-graviton interactions are neglected, an
exponential parametrization of gravity does in-
deed provide such a localizable theory. It is im-
portant to state that when graviton-graviton cou-
plings are added in, we expect that the theory
would remain finite and no new infinities are like-
ly to appear, though this has been verified on a
power-counting basis only.

(2) The rational parametrization of gravity ap-
pears to define a nonlocalizahle theory when grav-
iton-electron interactions alone are considered.
Nothing is known when graviton-graviton interac-
tions are added in. It is perfectly possible that
the full theory is localizable on account of cancel-
lations of singular terms. In this case the ratio-

FIG. 15. Basic electron-graviton loop.

nal and the exponential parametrizations may be
fully equivalent in Borchers's sense. It is also
possible that the two theories (in their quantized
versions} are indeed inequivalent. More work is
needed in elucidating these points.

(3) The major technical advance of this paper
consists in kinking and cradling techniques and
in the beginnings made towards a calculus of de-
rivatives of singular functions. This development
holds the promise of being able to treat properly
tadpoles of the second kind and the related prob-
lems of ensuring gauge covariance.

(4) Quite genera. lly it is important to realize
that finiteness of self-charge or self-mass does
not obviate the necessity of charge and mass re-
normalizations, which are operations that must
be carried out in a Lagrangian field theory in any
case. The S-matrix elements in a gravity-modi-
fied theory, in general, have the form

o'~(ln~'m')'(x')" (p, q, r are non-negative
integers and q &p).

These are singula, r in the limit a-0 only for r =0.
This clearly is the case for self-mass and self-
charge matrix elements. For all other matrix
elements, in the limit ~-0, we will inevitably
recover the standard power series in e.

(5) One is frequently asked if gravity modifica-
tions will affect Lamb shift or other low-energy
phenomena to any measurable extent. The answer
in view of (2) above is clearly "no."

(6) We have been concerned in this paper with
electromagnetic gauge invariance only. When
graviton-graviton interactions are introduced, we
will be faced with the problem of showing that (non-
polynomial} calculational techniques exist which
preserve also the gravitational gauge invariance
of S-matrix elements. We conjecture the follow-
ing: If we draw a set of conventional perturbation
graphs which are "correct" in the formal sense
that their sum is both electromagnetically and
gravitationally gauge-independent on the mass
shell up to a given order in n"~', then a replace-

FIG. 14. Gauge-invariant set of photon self-energy
graphs. FIG. 16: Original photon self-energy graph.
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+ less singular terms,

(AA) = -1/x',
(A2)

FIG. 17. Kinked version of Fig. 16.

oi= e'/4w= r'n,

m ized-(16w)-~G m 2~ 10-» (Al)

%e wish to exhibit the realistic regularization of
the otherwise infinite electron self-mass through
gravity. Writing the most singular parts of the
relevant propagators in the form (we have dropped
some factors of 4w)

(g& = -(iy ~ s+m)1/x'

ment of all graviton lines in such graphs by grav-
iton superpropagators will yield finite expressions
for the S-matrix elements whose gauge indepen-
dence is maintained up to the order e"~', and no
higher. In other words, insertion of superpropa-
gators in a "correct" set of graphs in perturbation
theory renders them finite and preserves their
"correctness" up to the order we started from.

Note added in Proof. In a recent DESY preprint
H. Lehmann and H. Trute have claimed that for
chiral theories the demands of Jaffe localizability
are so strong that only one parametrization can
satisfy them —the exponential parametrization. We
would conjecture that, following Lehmann and
Trute, a similar proof can be constructed to show
that the exponential parametrization of gravity dis-
cussed in this paper is the unique localizable one.

APPENDIX A

The infinity-suppression mechanism of local-
izable nonpolynomial theories is so transparent
and so easily exhibited that we feel the following
illustrative calculation could form part of first-
year courses in quantum field theory.

Consider a model electrodynamic interaction
2= eggA exp(zQ) where g is the electron field, A
is the (scalar) photon, and P is the (scalar) gravi-
tational field:

(AS)

Using a Sommerfeld-Watson transform, this
equals

Q (z2)s( 1 )I 1 8+1
dz

2wi I'(z+1) sinwz x'

1
x(iy ~ 8+m) (A4)

where the contour lies round the positive real z
axis. This contour may be rotated to lie parallel
to the imaginary axis to give

n „(z')'(-X)'
2wi „„, I'(z+1}sinwz

+m —— . A5

The advantage of doing this is that now we can
use the unambiguous expression for the Fourier
transform of the (classical) function (-1/x')' val-
id in the range 0& Rez & 2, given by

P' r(2 —z)-
(4w)' (4w)' r(z)

Thus

-~) u dz(z')'(-A)*
2wi(4w)' a„«sinwzr(z+1)

p' r(- )
-z+2 ™)(4w)' I'(z+2) '

(A6)

(4y) =-I/x',
and noting that (e "~ *'e"~ ")=exp(-z'/x'}, the con-
tribution to the electron self-mass from the sum
of the chain of graphs in Fig. 2 (with y=0} is giv-
en by

1 1
F(x) = o. —, (iy ~ 8+m)

n! „ x'

fl
3

FlG. 18. Final finite and gauge-invariant photon self-
energy graph.

Rotating the contour back to the real axis, the
double pole in z space at z=0, gives regularized
contributions to self-mass F(P) ~» 0 of the form
nm In(&n'). This simple idealized example illus-
trates the basic technique used in this and earlier
papers. The conventional infinity of 6m/m is in-
stantly recovered by taking the limit ~- 0. Since
numerically ln(G„m, ) = In(z'm, ) = 100 ~ a ', the
magnitude of Sm/m is not outrageously different
from unity —lending support to the Lorentz view
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that all electron self-mass may be (gravity-mod-
ified) electrodynamic in origin.

APPENDIX B

We have four remarks to make to clarify kinking
and cradling in Sec. III D.
(1) Take as an example the Lagrangian (see Sec.

III D)

&=r(s, xb) x): &":+2s)4s) 4»

then the insertion of a g kink corresponds to mi-
nus the unit operator when proper account is taken
of factors of i, -1, etc. In general we define

()(x, )y=(T'( (x)(x)ye xa' f-,'a, x(()a, x(():(a'e'"—)):d( =r()'"'(e, y),
n=o

where 8 " is the nth term arising from the expansion of the exponential, whilst the kinked Green's func-
tions are defined as

ae( y) e(y*(x(=*)x(y) aee-', a„x((la, x((): e*"":d( =z x'"'(e, y).
L n=O

One can show by a lengthy but straightforward in-
ductive proof that

(B1)

I

and can be expressed, using (B1), as

$( n) ~ + X(~)

r=o
(B2)

This expression is the main "cradling" formula.
It expresses the physical graphs on the left-hand
side in terms of the kinked graphs on the right-
hand side which are finite when nonpolynomial
techniques are used and hence it serves as the
definition of the left-hand side. Note that cradled
graphs represent essentially a perturbation ex-
pansion in terms of Z„, in contrast to normal
perturbation theory which is a series expansion
in terms of Z. t.
(2) The sum of all graphs up to order n is

(3} In using Eqs. (Bl}and (B2) it should be re-
membered that because of the normal ordering of
the Lagrangian we have

8(1) p

and so, by (Bl),
X(z) + X(0)

(4) As a particular application consider the
Green's function 3 ' . From (B2}and (B3}we
have

&(aa) p g(J)
j=o

8()=X "+4X ' —2X (B4)

~Many physicists in our experience have so despaired
of ever coping with this problem that even the need to
compute finite values for renormalization constants
some day is no longer felt. Those who entertain such
hopes are often considered "irrational. " We feel that
the following quotation from Bertrand Russell's post-
script to the third and final volume of his autobiography
The Final Years 1944-1967 (George Allen 5 Unwin, Lon-
don, 1969), p. 221 (though somewhat harsh) adequately
comments on the current attitude to the "misery" of the
in6nity problem.

"In the modern world, if communities are unhappy, it
is often because they have ignorances, . . . , beliefs, . . . ,
which are dearer to them than happiness or even life.
I find many men in our dangerous age who seem to be in
love with misery and death, and who grow angry when
hopes are suggested to them. They think hope is irratio-
nal and that, in sitting down to lazy despair, they are
merely facing facts."

2For a recent survey of results see the articles of
J.Glimm and A. Jaffe, in Proceedings of the Internation-

al School of Physics "Enrico Fermi, "Local Quantum
Theory, edited by R. Jost (Academic, New York, 1969).

W. Pauli, Theory of Relativity (Pergamon, London,
1967); S. Deser, talk given at the Austin Conference on
Particle Physics, 1970 (unpublished) .

H. Lehmann and K. Pohlmeyer, in Nonpolynomial
Lagrangians, Renormalization and Gravity, 1971 Coral
Gables Conference on Fundamental Interactions at High
Energy, Vol. 1 (Gordon and Breach, New York, 1971),
p. 60.

5J. G. Taylor, in Nonpolynomial Lagrangians, Renor-
malization and Gravity, 1971 Coral Gables Conference
on Fundamental Interactions at High Energy, Vol. 1 (Ref.
4), p. 42.

M. K. Volkov, Ann. Phys. (N.Y.) 49, 202 (1968).
A. T. Filippov, Dubna report, 1968 (unpublished).
AMus Salam and J. Strathdee, Phys. Rev. D 1, 3296

(1970).
9C. J. Isham, Abdus Salam, and J.Strathdee, Phys.

Rev. D 3, 1805 (1971).
E. S. Fradkin, Nucl. Phys. 49, 624 (1963); G. V.
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Efimov, Zh. Eksperim. i Teor. Fiz. 44, 2107 (1963)
[Soviet Phys. JETP 17, 1417 (1963)].
' H. Epstein, V. Glaser, and A. Martin, Commun.

Math. Phys. 13, 257 (1969).
Abdus Salam, in Nonpolynomial Lagrangians, Renox-

malization and Gravity, 1971 Coral Gables Conference
on Fundamental Interactions at High Energy, Vol. 1 (Ref.
4) p 3

3Such a parametrization has been used by C. Misner in
the discussion of the "mixmaster" solution of Einstein's
equations. We are indebted to Professor Bryce DeWitt
for the remark that the virtue of exponential parametri-
zation (so far as general relativists are concerned) is
that the sign of detg is automatically preserved and the
problem of the metric + ———changing, for example, to

++ ——does not arise.
~4J. Ashmore and R. Delbourgo (unpublished) have re-

cently completed the explicit construction of the super-
propagator in an exponential parametrization.
~5R. Delbourgo and A. Hunt, Imperial College, London,

Report No. ICTP/69/18 (unpublished) .
' Qne can see the virtue of the field transformations

which carried us to the Lagrangian form of (3.8)—(3.11).
The fact that the direct photon-electron interaction is
completely given by gy, gA, permits us to use the Feyn-
man-Ward classification of gauge-invariant sets of photon
self-energy graphs. All one does is to draw loops of
charged lines with (neutral) gravitons interchanged be-
tween them and then attach photon lines to the loops in

all possible ways.


