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Virasoro, Ref. 7.
An analogous situation exists in the study of chiral

dynamics where phenomenological fields are very con-
venient for formulating the chiral constraint equations
for the scattering amplitudes.
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A set of sum rules among coupling tensors of different rank is derived for spontaneously
broken continuous symmetries in an effective-Lagrangian framework. The sum rules,
among which is the Goldstone theorem, constitute in this framework the physical content of
that part of the spontaneously broken symmetry not contained in the conventionally realized
subgroup which leaves the vacuum invariant, the latter subsymmetry manifesting itself in
Wigner-Eckart relations among coupling tensors of the same rank.

In a spontaneously broken' symmetry (SBS)
group G of a Hamiltonian H, the vacuum state is
invariant only against a lower symmetry G', a
subgroup of G, and hence zero-mass excitations
or Goldstone-Nambu particles'* (ONP's) are re-
quired to support the noninvariance of the vacuum
against group operations in G but not in G' which
leave H invariant. The single-particle states
form irreducible G' multiplets, the mass matrix
is invariant against G' but not G, and group op-
erations in G but not in G' take single-particle
states into multiparticle states which have zero-
mass particles in them and take the vacuum into
zero-mass particle states."Multiplets irreduc-
ible under G exist' but do not correspond to parti-
cle states with fixed particle number. "Wigner-
Eckart selection rules arising from the G' symme-
try result in the usual relations among scattering
amplitudes for fixed n-particle processes.

It is interesting to inquire into the nature and
physical content of the residual symmetry of H
under operations not in G', that is, Wigner-Eckart
selection rules involving these operations. If ex-
perience with broken chiral symmetry is a guide,
and if the soft-meson limits endemic in chiral-
symmetry calculations4 take one to an underlying
spontaneously broken theory with a multiplet of
mesons playing the role of GNP's, ' then the in-
variance of the theory in this limit against group

operations not in G' results not in the usual Wig-
ner-Eekart relations among n-particle amplitudes
but in theorems for the emission or absorption of
GNP's, 4 that is, relations among amplitudes
having ~~&ferent numbers of particles in external
states. This is not surprising since the fixed-
particle-number states' cannot A'~onalize the
conserved charges which are generators of group
operations in G but not in G'. That the results of
an SBS ean be extracted by Wigner-Eckart rela-
tions among states not having fixed-particle num-
ber, but 4'~~onal in the spontaneously broken gen-
erators, has been shown for the particular case
of theories invariant against c-number translations
of scalar boson fields. ' This method, while com-
plete and straightforward, is also awkward and
tedious, involving first the diagonalization process
and then the restatement of the resultant Wigner-
Eckart relation in terms of fixed-particle-number
states. More importantly, the method does not
easily generalize to the physical case in which
the vacuum degeneracy is lifted by the addition of
explicit symmetry-breaking terms which remove
the vacuum degeneracy and give the GNP's a non-
zero mass.

Apart from the practical purpose of establishing
all physical consequences of SBS over and above
what is well known' [namely (i) conventional in-
varianee under G', the symmetry of the vacuum,
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and (ii) the appearance of GNP's as required by
the Goldstone theorem] the question of full con-
sequence of the SBS is interesting from a formal
point of view because it is related to the converse
problem: Given a theory invariant under G' with

a vacuum also invariant under G', with a spectrum
which includes a multiplet of zero-mass mesons,
under what conditions is it possible to extend the
symmetry G' to a higher symmetry G which is
spontaneously broken' ?

A simple SBS framework in which these questions
can be precisely posed and one of some practical
importance and current interest is the effective-
Lagrangian' or tree-approximation approach' in
which the Lagrangian S(P}, a polynomial or entire
function on a real set of scalar or pseudoscalar
fields P„with 2 symmetric against a group of
continuous orthogonal" transformations G on the
fields, ' has a minimal constant field strength

P, o0, with Q; (Ref. 11) a solution of
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where p,'=—p, —p, are displaced fieMs with &g =0 a
solution of aZ'(p')/ap, '=0. If Q, is identified"""
with (0)Q, (0} and p,

' with (0~&f (0) then p,
' are physi-

cal fields with zero vacuum expectation values.
8'(p'), the Lagrangian in terms of physical fields,
is not G-invariant but is invariant against the set
of transformations [g'} which leave Q invariant,

(4)

where (g'} form the little group O' =—G&, a sub-
group of G, with Gz the vacuum symmetry.

It is clear that the G invariance is realized in
the usual way, that is, by the G& irreducible
multiplets, and a G& -invariant mass matrix and
coupling tensors M~"'.2 Apart from this, deMot-
toni and Fabri' have shown that to operations in

G but not in Gg, that is, those for which gp e $,
there corresponds a field gs0,

gy = e-"oy -=y+ xx+ o(x2), (6)

which is an eigenvector of the mass matrix Ms~(Q)
with eigenvalue zero, and that the number of such
GNP fields is the dimension of the orbit of Q.

It is instructive to repeat their proof of the
Goldstone theorem in this framework because a
generalization produces the sum rules among the
coupling tensors: Since aZ/aQ, . transforms like

g,. under 6, gp is also a solution of aZ/ap, . =0 if
fdt} is and therefore

ag ag
~~~ se

g2g (g4- 4)'o((g4- ~)')
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implies, for an infinitesimal transformation gQ
=%+~X'

(6)

=xMp„~($}x,+ o(x'}. (8)

However, since a'Z/ap, ap, transforms like a
second-rank tensor under G,

MIs'(gP) =g;, g, mM, m (P)
= (I+xQ)„(1+x@), MI'~(P)+ o(P)
= Mls (4)+~[&liMIJ (0)+ QfmMC'm(4)]+ o(x }.

With f real and g orthogonal, Q is antisymmetric"
and we have

M',"(gy) M~,'(y) =x[q, M—]„+o(z'},

whence, combining with Eq. (8},

M';l'Q)x. =[a M'"(4)l;, ,

(10)

which is a relation between third- and second-
rank tensors with nontrivial physical content.
The coupling between y and physical fields g&'&

and g"' (eigenvectors of M'"}for example is
given by

o =x MI", (4)X&+ O(x'),

with X therefore a GNP field, M"'(Q)X =0.
Thus the spontaneous breakdown imposes a

strong physical constraint on the mass matrix
M"'(P), a residual effect of the higher symmetry
of S(P). Generalizing Eq. (6) to second-rank
coupling s,

g2g g2g
Ms~~(gg) —Ma, ~(P) =
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(g4-4), o(x')

k I it



2544 WILLIAM F. PALMER

M(3) y(1) y(2) —y(1)[q M(2) ] q(2)

= (m, ' -m, )g, ')!)),,g, (12)

Thus trilinear couplings invloving at least one
GNP are given by two-particle matrix elements
of the spontaneously broken charge Q associated
with the GNP. Equation (12) states, among other
things, that GNP's do not couple trilinearly to
particles with the same mass, that the couplings
of two GNP's to a third particle is proportional to
the third particle's mass, and that the mutual

coupling of three GNP's always vanishes. These
results depend on the absence, apart from kinetic-
energy terms, of derivative couplings, but if de-
rivative couplings are added the rules persist
among the nonderivative couplings. The restric-
tion to scalar or pseudoscalar fields is therefore
a fundamental one because, even though, for ex-
ample, vector fields are easily incorporated
(with A„=O}these must couple via derivatives to
two pseudoscalars. Correlations induced by
spontaneous breakdown among derivative cou-
plings similar to Eq. (12) are under study, but one
cannot conclude at this stage the unlikely result
g»„——0 or g2„„-m22. In Eq. (12), of course,

.2 -2
(3) m, —m;

M...=
a

3
(3) (3) (
t jk i jkxP I

are the physical couplings [see Eq. (3)] among the
physical fields f,'= P, —P, in the original basis;
g'", g

' are arbitrary fields which diagonalize
M")(P), and )!»= (QP)». Since there is clearly a
basis which diagonalizes M'"(P), let us assume
we are in this physical and diagonal basis, and
then Eq. (12) reads

M&,",(Q1t))» = (m, ' —m, ') Q... (12a)

where Q is any broken generator. It is clear from
(12a) that a GNP does not couple to two identical
particles, or two particles of the same mass. At
this point one might question whether Eq. (12a)
has any content beyond that implied by the G~.
Equation (27) below addresses that question, but
for illustration consider the simple SU(2) scalar-
field model (i = 1, 2, 3)

with SBS solution Q, = a5,3 With p,'=-
Q,- —f, ,

g=2e"&ga„4,'+(0' ) +2aA'0' +4+ a,

M I'1'(4) = Sa(5»3~ ) + 0»5)3+ 5)»~ 3}

where fII), = Q,
' and p2 = Q2' are GNP fields. Equation

(12a} requires (with Q;J =»„& or 2,;,)

we have

M(n+1)(y(1) y!2) q(3) q(n) ~)

(13}

M (n)(~(1) ))t(2) q(3) q(n))

perm

(14)

where Q„, means the sum of all possible dis-
tributions of Q among the fields g ", . . . , g'"). The
sum rules relate the (n+ 1)-rank coupling of n

arbitrary fields to the n-rank coupling of the n

fields '", )I)"', . . . , g" (plus permutations).
For n = 1, Eq. (14) reduces to the Goldstone
theorem and with n& 1 we have its generalization.
If one of the fields g('), . . . , &

"' is itself a GNP
[not necessarily the same as the r in Eq. (14}]
then at least all but one of the M(") terms may be
further reduced to M'" " couplings, and so on. If
all the g", . . . , g'"' are multiples of P, the vacu-
um direction, then

=0 (15)

That is, fields with P quantum numbers do not
couple to a single GNP.

Had we applied the process leading to Eq. (14}

.2 .2
(3) mj mj

a

which requires not only M;,' =0 = M!3,' (implied
already by charge conservation} but also

=m'=m3'= m'=
322 a $ ( ) ™311t

which is not implied by G& and of course is con-
sistent with the couplings calculated directly from
Z(P'). In the more physical case of chiral symme-
try broken to SU(3), with P; a (3, 3*)$(3",3}
doublet nonet (u, , v, ) of scalar and pseudoscalar
fields with (u, ) = u, e0 and the v, octet a GNP

multiplet, the mutual coupling of 3 GNP's is for-
bidden already by parity but the mass conditions
are not obvious, i.e., we have then, from (12a),
g, „r-m„/(2u) andy„„-m, 2/(u, ) in the m, '
= mE'=0 SBS limit.

This procedure easily generalizes to coupling
tensors of arbitrary rank. With the notation

M(n)(y(1) q(2) y(3) y(n) )

~(n), j)(1) . i (2) )1,(3) ~ . . ,I,(n)
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to a transformation in G&, with generator Q, QQ

=0, we would have obtained

M{n)(y{&) ){2) qy) 0

fields P, then Eq. (14) persists for n& 1 whereas
for n = 1 we have, instead of the Goldstone theo-
rem,

perm

M{nj(qq{&) q{2) q{n))

(16) with

=xM""x +o(x'),J
i g4

(21)

ag' ag og
~op, (18}

and if Z(4{) is a polynomial of degree N', then the
sum rules

g M i{n)(q~{{) ~{2) ~{n))

(19)
persist, even in the presence of explicit symme-
try breaking, Z(Q), for n&N'. The sum rules
with n & N' are modified by terms arising from
the M'"', n & N', which do not transform like M'"'.
For example, if to Z(P) is added a linear break-
ing term, popular" in some spontaneously broken
effective Lagrangians,

(20)

with 5ft), Q,- the G@-invariant term linear in the

which simply states the G~ invariance of the M'"'

couplings, implying the usual Wigner-Eckart re-
lations for the conventionally realized symmetry
G@, for example, with n= 2, Eq. (16) implies

[q, M{'~J =0, q a generator of G~.

If Z(P) is a polynomial of degree N, then M'""'
=0» Q„, M'"'(qg'", g{",. . . , g'"') =0, implying
the full G invariance of the highest-rank coupling.

Consider now the case in which explicit symme-
try-breaking terms appear in Z(P): If to Z(P) is
added a G-symmetry breaking but Gz-invariant
term, -62(P), 2'(g) =Z({t{}—6P,(g), with new
vacuum Q a solution of

eg'
9 fIt},. ~ 8P)

and thus

= 6P,.+ 6x(qp); —6Q;+ O(A')

=6xx;+ o(x'), (22)

Ml{ "(4)x, =6x, (23)

with QQ = X still an eigenvector of the mass matrix
but now with eigenvalue 5=m '.

A host of other sum rules may be derived by
considering G transformations to O(X ) of M'"',
resulting in sum rules among tensors of rank
(n+ m), (n+ m —1), . . . , n, involving the couplings
of m GNP's to n other particles; these are, how-
ever, not independent of Eq. (14) but merely the
result of successive reduction of these sum rules.

It is noteworthy that all the sum rules are in-
dependent of the specific form of Z(P) (which is
an arbitrary entire function of the G-invariant
forms) and therefore do not suffer from the arbi-
trariness of many explicit effective-Lagrangian
models. Since the rules are entirely, in this
framework, the result of the G-nonvariant vacuum
and the transformation properties dictated by the
higher symmetry, it is possible that they can in
some form be extended, without the embarrass-
ment of a Lagrangian, to a more sophisticated
axiomatic or S-matrix approach to SBS.'
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