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and cz can be chosen so that [ez-z; z ~& 3zE implies that
e~-z; ~ is real. This procedure can then be carried out
inductively, routing c„in such a way that ~e, -z«~& 3 'E
implies that e„-z&

„

is real. Such a choice of c„might
be impeded by two singularities z«and z„,with

Im(z„;-zy f) & 0 and (z«-z„&t~»3"E. However,
the choice of the contour c„+&

rules out this possibility:

~z„;-z„&~
& 3"+ tE implies that z, ; -z„,. is real.

2~For a slightly more complete discussion of this model,
see N. Christ, in Nonpolynomial Lagrangians, Renormal-
isation and Gravity, Proceedings of the 1971 Coral Gables
Conference on Fundamental Interactions at High Energy,
Vol. 1 (Gordon and Breach, New York, 1971), p. 69.
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The modified WEB method due to Miller and Good is used to derive the scattering phase-
shift formula including h terms for the radial equation of the three-dimensional scattering
problem.

I ~ INTRODUCTION

Previous papers have developed a derivation, in
the spirit of Miller and Good, ' which yields the
scattering phase shifts in terms of an expansion in
powers of S. A previous paper' presents the terms
to the order h2.

The present paper is an extension of the previous
result to terms of the order of 84. Section II of the
present paper recapitulates the rigorous derivation
of Ref. 2. A rigorous derivation of the scattering
phase shifts to order h4 by the method of Ref. 2
would, however, require a very great expenditure
of labor.

Therefore, in Sec. III we present a less rigorous
derivation which can serve the purpose nicely.
This same procedure can be easily followed for ob-
taining terms of higher order than S4 for the meth-
od developed is a straightforward expansion. This
is, however, not so if we follow the rigorous deri-
vation and try to obtain some higher-order terms
by that process.

The divergence of the perturbation terms to h'
was successfully avoided in the scattering cases. '4
The main idea there is to replace the divergent in-
tegrals by contour integrals. As a result, we were
able to obtain some meaningful results. In the
~pi~it of the modified WEB method of Miller and
Good, we can express the phase shifts which we
want in terms of the known phase shifts of a known
potential. In the specific example chosen in Ref. 4,
the terms of second order in 8, in general, contrib-
ute to the phase shifts to the second decimal place

while the zeroth-order terms in some places can-
not give the result even to the first decimal place.
An important question to be answered in this note
is the extent to which improvement is possible.
When the potential of the known part is sufficiently
different from the potential of the unknown part,
we may need to go to terms of higher order than
h' in order to get results of higher precision.
We, therefore, investigate the contribution due to
h4 terms.

Throughout this paper we avoid Langer's substi-
tution, which replaces the three-dimensional dis-
tance r by e' with x being the one-dimensional dis-
tance. Breit raised the point that it is difficult to
give a physical justification for the lower limit
used in the integration if Langer's substitution is
introduced. Here we simply consider the case
where the angular momentum quantum number I.
t 0 for expansion in I/L will be made later.

In the derivation of the formula in Secs. II and
III the basic assumption is that g(r) has the form
g(r) = T(r)g(S(r)), where g(r) is the unknown wave
function and p(S} is the known wave function that
we want to make use of. Care should be exercised
in the choice of the known part, P(S). For ex-
ample, in solving to order I, we find that it is
inadequate to represent the Coulomb scattering
problem by the fractional-order Bessel-function
formula as was possible when solving to order 5'.
This situation may be changed if we set, for ex-
ample, g(r}=T,g(S(r))+ Tzg'(S(r)) where T, and T,
are functions dependent on r and Q'(S(r)) = dp/dS.
However, if short-range forces are the main con-
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cern here, we will see that good results will be ob-
tained as we take g(r) = T(r)P(s(r)) up to order k'.

II. DERIVATION OF THE SCATTERING

PHASE-SHIFT FORMULA TO ORDER

The Schrodinger equation we are going to solve
for the phase shifts is

p, y(r) + ~, iC (r) = 0,

with

p, '(r) = 2m[E —V,(r}]-L(L+1)Ko

and

g(r) -sin(kr —,'Lv+—5„),

Q(S) - sin(kS —0 Lv+ 5o),

(10)

with koko=2mE. By our assumption [Eq. (3)],
those two expressions should give

Here we take po 0(s, ) =0 and p, (r, ) =0 or the lower
limits of integration are taken to be the classical
turning points for both sides. And hence we make
the assumption that there is only one real and posi-
tive classical turning point for p„orp, .

Equation (9) will give us the relationship among
phase shifts. For short range forces, we have at
large r and S,

An approximate solution is obtained by means of a
solved equation

lim k(r —S) = 5o —5„.
yahoo
$~0O

(12)

d' p'
ds" a' ~( }= '

with

I.(I. +1 k'
p, '(S) = 2m[E —V, (S)]—

Here we use the assumption

0(r) = T(r) P(s(r)}.
After substituting this relation in Eq. (1), as in

Miller and Good, we get

$I 1/2

and

T"
n2 —- S"p '+ p '=0.

2 1

We use then the WKB expansion

S = S0+ 82$2+ h4S4+ ~

and let

p, '(S) =p„'(S,) + k'p„'(S„s,) + ~ ~

(2)

(4)

(5)

(8)

3S"
I

2 $ I3 $ f2 0~2,2
P2, 0 0 0

If we denote

dpo, o(So}
P2.0 ( 0}

0

we find from Eq. (8)

(13)

dX p20 S0

6$ is assumed known, hence 5„canbe deter-
mined from Eqs. (9) and (12). Notice here Eq. (9}
is valid to the lowest order of approximation in ex-
pansion against S. This part of the presentation
follows from the work of Rosen and Yennie. ' Our
purpose in this paper is to give the expansion to h4

terms. In this section, we will limit the derivation
to order h2

~ The increase in complication will be
seen to be very rapid indeed. Here we present the
formulas to order 52 without introducing any other
assumptions.

The next order term in h is

Here the first term p, 0 depends on S0 only. We
will treat the L(L+1)}f'term as if it is of the
zeroth order in h' as was done before. Or we
will set

I L+1 k'p„'(S,}= 2m[E —V, (S,)]—
0

in the latter part of this note. So to the zero order
in 82, we have

and

P, '(&) P (&), dP. ,(S,)
S,'(x)

Po,o(so) Po, o (So) dSo

P, '(~) P,'(~)

p (s ) p '(s ) "
Pl Pl P2, 0 Pl

0 3
P2,0 P2, 0

(14)

or

P, (r)
p. ,(s,) ' (8) Pl P2,0 3P1 P2,0+ 5 ~

P2,0 P@0
(15)

+ $ fr
P.,.(o)«=„~ p, (&)«.

1 1

(9)
After substituting Eqs. (14) and (15) into Eq. (13),
also using Eq. (8), we have the following expres-
sion
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P2 o(dSo+ h dS2) +h 2

2
'

dSO
2 s

2,0

t' $ t e2 S t m

J( P,dd ——S',f, „dS— f,dd)
S 4 S t2 t2 " S 2 21 1 1

+8
p 3 0

2, 0

Pl Pl Pl
Pl

(16}

~r t e2 r t"'
1 2 1 1

P dr ——5 1]2,2 dr —
t 1]2t, d

~
„

tl tlrl 1 r 1 11

(22)

We compare terms in the above equation with

2

P (P 2 h2P 2)1/2 P h2
P2,0

Therefore, to the order of h2, we get

f P,dS —ld (
'', — ', )dS

Here notice that in the terms in 82 we use the inte-
gration from 8, or x, to 8 or r again for there are
no longer any divergences involved. This is an-
other way of writing the relation of Eq. (19) and
gives the solution of the problem to order h2.

III. DERIVATION OF THE SCATTERING
PHASE-SHIFT FORMULA TO ORDER 5

We are going to derive a formula of the following
form:

However, we notice that the perturbed terms be-
come divergent, respectively, at 8, and r„for
then we have p, (S,) =0 and p, (r, ) =0 or these are de-
fined as turning points. We can avoid such diffi-
culty by following the work of Bertocchi, Fubini,
and Furlan as before' replacing the divergent in-
tegrals by line integrals which are evaluated under
and over the real axis around the turning point with
open ends at positive infinity. We get, therefore,
instead of Eq. (18) which is divergent, the follow-
ing convergent expression:

Il+I2=J1+ J2,

with

V

1

f, -=——', S' J(P,"'P, 'dr +If' —,",, f(f PP'd, ",
S

J, —= p, dS ——,', h' |Itp,"p, 'dS,"sI

(23)

~l

1 1 1

P,dS —if —,', lf'(, —,)dS.

(19)

and

J =-- —I-' P "'p 'dS+O' —,",, P,"p, 'dS,

The method of writing of the above equation is not
unique for it is connected by integration by parts
or

udv= — vs. (20)

One of the expressions is

P2dS —,eh2 )& s = P,dr —sshs fP s dr.
Sl 2 rl 1

(21)
Because the above equation is simple we will use
it in Sec. III. We will transform it further for a
specific potential as given in Sec. IV.

By defining t» =P»', respectively, we can obtain
the following expression by several partial inte-
grations:

solving the problem to order k~. If we just take
terms to the order of K2, we get I~ =J, or Eq. (21)
from the above equation. The upper limits ~ and
S in Eq. (23) will be set equal to infinity. The con-
tour will be taken above and below the real axis
around the turning point to the left and going to
infinity to the right as in Sec. II. Of course, terms
in Eq. (23) cannot be uniquely given as they are
connected with other possible integrations by parts.
It is precisely this property that we shall use to
get rid of the divergent terms as illustrated in Sec.
IV.

We observe that in the case p, (S) =constant, the
derivation is much simplified. We will derive Eq.
(23}for the case of a general p, (r) and p2(S)
=constant. If we are successful in this, we can
replace p, (r) by ps(r) with p, (r) having another
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form of dependence on r. Eq. (23) becomes, to
order h4 p

tttt ppp tp ttt j3 p
tt2

I, + I~ =p2 (S —S,) = Ki + K,
with

(24)

99 P1 P1 297 P1
Cr

and

"r
g] p3dr ——' 8 p "p 'dr

1

p p +8 —
p3 p3 dr.

p t/2 t p
t4

1 1 15 1
64 p5 256 p7dr+ —() dr

I2
@4

Then we say that Eq. (23) is valid in general be-
cause each side, I, +I, or K, +K„hasto be equal
to p, (S —S,) in Eq. (24) and therefore they have to
be equal to themselves.

The following is the derivation of Eq. (23) with

p2 = constant. Since we make the assumption
r p2dS=I, +I .2 I

1

(34)

(33)

Collecting terms, we get the first part of Eq. (24)
as

(t(r) = T(r)y(S(r)),

we get, as before in Eq. (4) and (5),

Ttt
@2 St2p 2+p 2 p2 1

(25)

(26)

(27)

This completes the derivation of Eq. (23). Then
the connection it gives between S and r give the
phase shifts through Eq. (12).

IV. AN EXAMPLE: THE POTENTIAL yr

With the WEB approximation

S= S +O2S +S4S + ~ ~ .
0 2 4

we can obtain

T= T +h2T +84T + ~ ~ ~
0 2 4

with S2, P1
S 112 2 2S t3/2

0 0 P2

T tl lt

S S'=
2 2Stp2T 4 2St 2T

0 2 0 0P2 0

(28)

(29)

(30)

Since p, is taken here to be constant, we get, after
some algebraic substitutions,

To illustrate the method of evaluation we choose
the potential yr, where y is a positive constant,
to represent a repulsive potential. The reasons
for this choice are threefold: First, it is of short
range in comparison with the Coulomb potential.
If we accept the fractional-order Bessel function
as the solved part Q(S), we think that g(r)
= T(r)Q(S(r)) is valid here to order O'. Second,
the integrations involved in the WEB approximation
to order 5 are much simplified. And third, the
exact phase shifts are given in Mott and Massey, '
hence comparison can be readily made.

The exact phase shifts for the Schrodinger equa-
tion

p2dS = p2(SO'+ k 2S~'+ g S4')dr

p tt 3p t2

=p1d7 + 5 2+ 3 dr
Pl P1

Pl ypP1 P1 ~~ Pl
16 p4 p5 2 p5

2 (rR~)+ k' —, (rR~) =0,
d', L(I.+1)+P

as given on page 40 of Ref. 8, are

5I = 2 7f(V —L),

(35)

(36)

99 P1 P1 297 P1
p6 8 p7

As before, we get,

and

(31)

(32)

with v(v+1)=L(L+1)+P and P=(2m/5')y. We are
going to obtain the corresponding WKB results and
then compare these results with the exact ones.

The corresponding solved equation, the fraction-
al-order Bessel equation, was used previously. '
We need only change one side from L(L+ 1) to
L(L+1)+P to get the other side with the integrals
remaining the same. It is seen that the following
integral is valid:
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"S
lim —[o' —L(L + 1)]'"do
S~ a) 4 [L(Ly1)]1/2 0

tO

32 g 2 2
——'h'~ p "'p 'do+I' —„",~~p, "p, 'do

= lim [S' —L(L+1)]'"

= lim(S ——,
' x[(L+ 1)L]'"].

(3'1)

i [S —L(L+ 1)]—[L(L+1)]' tan '
[ ( 1)]„2

+ ' ~~Z '"r'r ~'dc
1536 g 2 2 2

2 2 () dQ

(r[s' —Lfr. 1)]'")
I do'

128L(L + 1) a[o2 —L(L + 1)]~~2

We will make use of the following reduction for-
mulas: 2m

128 (L(L+1)] (42)

and

$) dx 1 () dx
x(a+bx+ cx2)7~2 a x(a+bx+ cx2)5~2

1 (~) dx
a' ~ x(a+bx+ cx')'"

1&i d
a' ~ x(a+bx+ cx')'" '

dx 2n

x(a+bx +CX')'" (-a)'" for a& 0.

(38)

(38)

Therefore in accordance with the modified WKB
method, the phase shifts are, to order I4,
6&'& = —,

' ~([(I.+1)I.+P]'" —[(L+1)L]'"
+8 [L(L+1)+p] '"——,

' [L(L+1)] '

,', [L(L+1—)+ P] -"+—„',[I.(L+1)]-'"].
(43)

We are going to identify the results given in Eq.
(43) by writing Eq. (36) in the following way, where
we let L(L+1)=A so L=-,' [-1+(1+4A)""]:

To order k', we have, as before, ' the phase shifts,
(b~ =0),

6~&" = lim k(r —S)
s~ ao

= ~ w( [L(L + 1)+ P]
'~2 —[L(L + 1)]

+8[L(L +1)+p]
' ' —'[L(L+1)] ' )—

(40)
Remember

6 = —,'x(—'[-1+(1+4L+4L +4p)'~ ] —L)

= a &4[-1+(1+4A+4p)~~2]

——,'[-1+(1+4AP&2] )
= —,

'
w[—,'(1+ 4A+ 4P)'~2 ——'(1+4A)u2]

A+ P 1+ -A' 1+—

pm
= 5 Tm =—

2 [a —L (L + 1)]k 2,
0'

2L(L+ 1) „6L(L+1)
2 03 7 2 04

and (41)

8 A+P 128 A P

1]2 1 1
8A 128A2

g(4)+. ..
L (44)

24L(L+ 1)
2 0' 5

We can prove, after several algebraic steps,

This can easily be identified as the result given
in Eg. (43) given by the modified WKB perturbation
theory.

S. C. Miller, Jr. and R. H. Good, Jr. , Phys. Rev. 91,
174 (1953).

2P. Lu and E. M. Measure, Lett. Nuovo Cimento 2, 37
(1971).

3P. tu, Nuovo Cimento 1B, 65 (1971).
4P. Lu and E. M. Measure, Phys. Rev. C 4, 31 (1971).
~G. Breit, in Hcndbuch der Physik, edited by S. Flugge

(Springer, Berlin, 1959), Vol. 41, part 1, p. 452.
~R. H. Good, Jr. , Phys. Rev. 90, 131 (1953).

7M. Rosen and D. R. Yennie, J. Math. Phys. 5, 1505
(1964).

L. Bertocchi, S. Fubini, and G. Furlan, Nuovo Cimen-
to 35, 633 (1962).

N. E. Mott and H. S. Massey, The Theory of Atomic
Collisions (Oxford Univ. Press, London, 1949), second
edition, p. 40.

P. Lu, Chem. Phys. Letters 9, 207 (1971).


